
白帆,男,生于1995.06,陕西咸阳人。
2012年9月至2016年6月就读于西安交通大学能源与动力工程及自动化专业,获工学学士学位,同年考入本校能动学院,就读于动力工程及工程热物理专业,并加入CFD-NHT小组,师从陶文铨院士,2022年9月获工学博士学位。
【研究方向】
燃料电池单电池及电堆内多物理场分析
燃料电池堆三腔分配特性分析优化
燃料电池国产自主仿真软件的开发
燃料电池数字孪生技术研究
室内半挥发性有机物散发特性研究
半透明隔热材料换热性能仿真
GPU高性能计算
格子玻尔兹曼方法的应用
直接模拟蒙特卡洛方法的应用
办公地点:西安交通大学兴庆校区东三楼乙204
单位:西安交通大学能源与动力工程学院,热流科学与工程教育部重点实验室
地址:陕西省西安市咸宁西路28号,710049
联系方式:fanbai@mail.xjtu.edu.cn
个人主页:fanbai.gr.xjtu.edu.cn
【已发表论文】
[1] Bai, F., Tang, Z., Yin, R. J., Jin, S. Q., Chen, L., Fang, W. Z., ... & Tao, W. Q. * Optimization of the operational conditions of PEMFC by a novel CFD-DT-GA approach. Applied Energy, 2025, 387, 125620. doi: 10.1016/j.apenergy.2025.125620
[2] Dai, Y., Zhao, J., Gui, X., Wang, Y., Tao, W., Zou, Z., & Bai, F. * A fast and high-fidelity multi-parameter thermal-field prediction system based on CFD and POD coupling: Application to the RPV insulation structure. International Journal of Heat and Mass Transfer, 2024, 233, 125985. doi: j.ijheatmasstransfer.2024.125985
[3] Bai, F., Tang, Z., Yin, R. J., Quan, H. B., Chen, L., Dai, D., & Tao, W. Q. * A novel ‘3D+ digital twin+ 3D’upscaling strategy for predicting the detailed multi-physics distributions in a commercial-size proton exchange membrane fuel cell stack. Applied Energy, 2024: 374, 124012. doi: 10.1016/j.apenergy.2024.124012
[4] Bai, F., Gong, X. M., Li, H. W., Guo, H. B., & Tao, W. Q. * An improved black box model and the details of its numerical treatments for rack in data center simulation. International Communications in Heat and Mass Transfer, 2024, 158, 107916. doi: 10.1016/j.icheatmasstransfer.2024.107916
[5] Dai, Y., Zhao, J., Zhang, X., Bai, F. *, Tao, W., & Wang, Y. Thermal full-field prediction of an air-cooled data center using a novel multi-scale approach based on POD and CFD coupling. Energy and Buildings, 2024, 307, 113992. doi: 10.1016/j.enbuild.2024.113992
[6] Dai, Y., He, Y., Yu, D., Dai, J., Wang, Y., & Bai, F. * Study on the effect of semi-transparency on thermal insulation performance of silica aerogel composites. Case Studies in Thermal Engineering, 2024, 54, 104010. doi: 10.1016/j.csite.2024.104010
[7] Bai, F., Yin, R. J., Liao, J. Y., Zhang, Z., Cai, S. J., Mu, Y. T., ... & Tao, W. Q. * Eccentricity design for the coolant distribution optimization of a practical commercial-size proton exchange membrane fuel cell stack using a novel proper orthogonal decomposition based analysis model. Applied Energy, 2023, 347, 121389. doi: 10.1016/j.apenergy.2023.121389
[8] Bai, F., Quan, H. B., Yin, R. J., Zhang, Z., Jin, S. Q., He, P., ... & Tao, W. Q. * Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells. Applied Energy, 2022, 324, 119763. doi: 10.1021/acsomega.2c06277
[9] Bai, F., & Tao, W. Q. * Projection Diagram for Determining Polarization Curves under Variation of Activation Criterion Using Similarity Theory. ACS Omega, 2022, 7(49), 45556-45561. doi: 10.1016/j.apenergy.2022.119763
[10] Bai, F., Lei, L., Zhang, Z., Chen, L., Chen, L., & Tao, W. Q. * Application of similarity theory in the study of proton exchange membrane fuel cells: A comprehensive review of recent developments and future research requirements. Energy Storage and Saving, 2022, 1(1), 3-21. doi: 10.1016/j.enss.2021.09.001
[11] Bai F., Lei L., Zhang Z., Li H. L., Yan J. Y., Chen L., Dai Y. J., Chen L., Tao W. Q. * Application of similarity theory in modeling the output characteristics of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46(74): 36940-36953. doi:10.1016/j.ijhydene.2021.08.205
[12] Bai F., Ding H., Mu Y. T., Dai Y. J., Zhang Y. P., Tao W. Q. * Three-dimensional non-isothermal numerical model for predicting semi-volatile organic compound transport process in a room. Indoor Air. 2021;00:1–17. doi:10.1111/ina.12849
会议论文:
[13] Bai F., Yin R. J., Jin S. Q., Cai S. J., He P., Mu Y. T., Gong X. M., Tao W. Q. A fast and accurate method for predicting proton exchange membrane fuel cell output characteristic. 6th International Workshop on Heat/Mass Transfer Advances for Energy Conservation and Pollution Control, August 13-16, 2021, Harbin, China.
[14] Bai F., Feng X. Y., Zhang Z., Chen Y. J., Yin R. J., Chen L., Tao W. Q. Massively parallel GPU-Based implementation for the lattice Boltzmann method. The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow, Qingdao, Sep. 23-26, 2021.
[15] Bai F., Tao W. Q. Coupling Euler and Lagrange methods for CFD investigation on semi-volatile organic compounds (SVOC) emission process in indoor dusty air. The 7th Asian Symposium on Computational Heat Transfer and Fluid Flow, Tokyo, Sep. 3-7, 2019.
[16] Bai F., Tao W. Q. Massively parallel GPU-based implementation for DSMC simulations of rarefied gas flows around a blunted cone. XIth International Conference on Computational Heat, Mass and Momentum Transfer, May 21-24, 2018, Cracow, Poland.
[17] Feng X. Y., Bai F., Chen Y. J., Chen L., Tao W. Q. Application of the lattice Boltzmann method in the heat conduction analysis of anisotropic materials with porous structures. The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow, Qingdao, Sep. 23-26, 2021.
[18] Zhang Z., Wang Q. Y., Bai F., Tao W. Q. Performance simulation of commercial-size PEMFC. 6th International Workshop on Heat/Mass Transfer Advances for Energy Conservation and Pollution Control, August 13-16, 2021, Harbin, China.
[19] 白帆,雷乐,陈黎,陈磊,戴艳俊,陶文铨.相似分析导出燃料电池相似准则数.中国工程热物理年会, 传热传质分会, 广州, 2020.
[20] 尹仁杰,白帆,何璞,戴艳俊,陶文铨.波纹型流道质子交换膜燃料电池性能研究. 中国工程热物理年会, 传热传质分会, 2020年11月, 广州.
发明专利:
[1] 白帆, 戴艳俊, 赵杰, 张秀丽, 陶文铨. 一种数据中心的内部物理场预测方法、系统及设备. 陕西省: 202311788186.7[P], 2024-03-19.
[2] 白帆, 全泓冰, 陶文铨, 唐智亿, 母玉同. 一种燃料电池堆内多物理场预测方法及相关装置. 陕西省: 202410923337.3[P], 2024-10-25.
[3] 陶文铨,全泓冰,白帆,靳姝琦,尹仁杰,张卓,何璞,母玉同,宫小明. 燃料电池三维物理场的预测方法、系统、设备及介质. 陕西省:CN115270633A,2022-11-01.
[4] 陶文铨,雷乐,白帆,陈黎,陈磊,屈治国. 燃料电池输入输出特性的相似原理分析方法. 陕西省:CN110413941B,2020-08-28.
[5] 陶文铨,汤龙生,戴艳俊,任兴杰,白帆. 一种宽域值接触热阻三元测试方法及装置. 陕西省:CN107504924B,2019-07-12.
所获学术奖项:
[1] Hartnett-Irvine Award (2021). International Centre for Heat and Mass Transfer.
[2] Keynote Delivery and best paper award. 6th International Workshop on Heat/Mass Transfer Advances for Energy Conservation and Pollution Control, August 13-16, 2021, Harbin, China.
[3] 2020年工程热物理学会传热传质分会“王补宣-过增元青年优秀论文二等奖”
[4] 2017年热能动力技术重点实验室学术年会暨中国工程热物理学会热能动力技术学术会议“优秀论文奖一等奖”
Bai F., Feng X. Y., Zhang Z., Chen Y. J., Yin R. J., Chen L., Tao W. Q. Massively parallel GPU-Based implementation for the lattice Boltzmann method. The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow, Qingdao, Sep. 23-26, 2021.