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2.1 Grid Generation (Domain Discretization)

2.1.1 Task, method and classification of domain
discretization

2.1.2 Expression of grid layout (77 & )

2.1.3 Introduction to different methods of grid
generation

2.1.4 Comparison between Practices A and B

2.1.5 Grid-independent ( P #&3d 7 f# ) solution
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~ — 2.1 Grid Generation ]

2.1.1 Task, method and classification

1. Task of domain discretization

Discretizing the computational domain into a
number of sub-domains which are not overlapped(E&)
and can completely cover the computational domain.

Four kinds of information can be obtained:

(1) Node (%) :the position at which the values of
dependent variables are solved,

(2) Control volume (CV#Z#HIZ&fH) + the minimum volume
to which the conservation law iIs applied;

(3) Interface (5m) :boundary of two neighboring
(#B45mg) CVs.
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(4) Grld lines (M#&£8) + Curves formed by connecting
two neighboring nodes.
The spatial relationship between two neighboring

nodes, the influencing coefficients, will be decided in the
procedure of equation discretization.

2. Classification of domain discretization method

(1) According to node relationship: structured (&#i4k)
vS. unstructured (Fe&5#54k)

(2) According to node position: Inner node vs. outer
node

2.1.2 Expression of grid system (M &5 ER)
Grid line—solid line; Interface-dashed line (jB%) ;
Distance between two nodes— O X

g Distance between two interfaces— AX 7
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Distance between nodes

Gridline

‘ Interface

Distance between interfaces

2.1.3 Introduction to different types of grid system
and generation method

(1) Structured grid (Z5#4EM#%): Node position
layout (#E) isin order, and fixed for the entire

domain.
[ CEmenar-EHT 6/47



/
/

(2) Unstructured grid (Fe&5#4k M%) : Node position
layout(#p ‘&) iIs in disorder, and may change from node to
node. The generation and storage of the relationship of
neighboring nodes are the major work of grid generation.
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X 4 V4
~ “ - - y 4

5 elements

Structured (a)

Un-structured

6 neighboring
elements
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Both structured and unstructured grid layout (5 5%
17 ®) have two practices.

(3) Outer node and inner node for structured grid

(a) Outer node method: Node Is positioned at the
vertex of a sub-domain(+ X /ATi); The interface
IS between two nodes; Generating procedure: Node
first and interface second---called Practice A, or
cell-vertex method (BLILTH p3).

v .
Cartesian
B, Coen = 8/47
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(b) Inner node method: Node Is positioned at the
center of sub-domain; Sub-domain is identical to
control volume; Generating procedure: Interface
first ad node second, called Practice B, or cell-

centered (BASLHILEE) .

1 radian
(15K BE)

‘Sub-domam is the control volume
(5L, Sovren =" 94T
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Generating procedure of Practice B
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2.1.4 Comparison between Practices A and B

(a) Boundary nodes have different CV.

W
Practice B

Practice Aw

&

1

Boundary point has half CV. Boundary point has zero CV.
(b) Practice B is more feasible (G&F) for non-uniform

grid layout.
Practice B /V
_i_ Zj_

| [ 11/47

Practice A |
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(c) For non-uniform grid layout, Practice A can
guarantee the discretization accuracy of interface

derivatives (FES%) .

| _Il;| (be), |

. =
W | E
E
4\ V7 f\
) € w €

‘Interface in middle‘ ‘ Interface is biased (JF®&)
0¢ ~ O —Po o¢ ~ Pe — P
( ) (5X), ( ) (6X),

‘Z”d-order accuracy ‘ ‘ Lower than 2"d order accuracy

(B, Sooeren 12/47
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2.1.5 rid-ndependent solutions

Grid generation is an iterative procedure (AR
IFE) ; Debugging (i) and comparison are often
needed. For a complicated geometry grid generation
may take a major part of total computational time.

Grid generation method has been developed as a

sub-field of numerical solutions (Grid generation
techniques).

The appropriate grid fineness(44Z5#£ B) is such
that the numerical solutions are nearly independent

on the grid numbers. Such numerical solutions are

called grid-independent solutions (4% ##). This

a IS required for publication of a paper. 47
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Int. Journal
Heat & Fluid Flow,
1993, 14(3):246-
253,

Int. Journal
Numerical Methods
in Fluids, 1998, 28:
1371-1387.

UO ) TW ’y
Grid systém used in cdmputation
E 15.00} K (82 37)
Z. \\’;
——p
10 00 1 1 1 1 1 1
. 0 2000 4000 6000 8000 10000 12000 14000
Grid number
50 I _
l_’ J o 22X15 A 60X50
oLy 042x28 O 70x60
3 050x40 ® 75x65
“ grid system used in
R ] computation
20 H d J 1 i
0 1 2 3 4 5

B o

Grid number X 1073
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International Journal of
Heat Mass Transfer,
2007, 50:1163-1175
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2.2 Taylor Expansion and Polynomial Fitting
for equation discretization

2.2.1 1-D model equation

2.2.2 Taylor expansion and polynomial
fitting (ZTX#&) methods

2.2.3 FD form of 1-D model equation

2.2.4 FD form of polynomial fitting

(B, SooeenT 16/47
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2. 2 Taylor Expansion and Polynomial Fitting
for Equation discretization

2.2.1 1-D model equation (—#E#EM 5#2)

1-D model equation has four typical terms
transient term, convection term, diffusion term and
source term. It is specially designed for discussion of
discretization methods.

Non-cons. a(p¢)+pu 09 — 0 (T a¢) + S, For FDM
ot OX OX  OX
Conserva | 0(p9) N o(pug) _ 0

-tive ot OX OX
Trans Conv. Diffus. | | Source

(I a¢) +3S, |For FVM
OX

£ s ' 17/47
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2.2.2 Taylor expansion for FD form of
derivatives

1. FD form of 1st order derivative

A

1t

Expanding ¢(X,t) at (i+1,n) .
with respect to (XJF) point " % ®
(1,n): ; | :
. . oQ 0°d.  AX
1+1L,n)=¢(l,n)+—), AX+—), , —+.....
o ) =¢(1,n) ax)' 5X2)’ o

O d(i+1,n)—g(i,n) Ax,0°¢
_)i,n — _ ( > )i T
I% gl;:_ln_l: JJJJJ a X AX 2 aX 18/ 47
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8¢) - ¢(1+1,n)—¢(1,n) +O(AX)

AX
O(AX) is called truncation error (F¥iiR%)

With AX — 0 replacing %)_ by (1 +1,n) —¢(1,n)
ox’ " AX

will lead to an error < KAXx where K is independent
of AX __mathematical meaning of O(AX)
The exponent (3§%k) of AXis called order of TE(ZZK
#0) . Replacing analytical solution #(1,n) by approximate
value ¢", yields: . n

' 0 O N
Forward difference: ¢). n = ¢) = i 1Ax¢ , O(AX)

A OX
@EI HHHHHHHHHH (ﬁ '%ﬁ') 19/47
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Backward difference: 5¢)I = ¢ ¢. 1 O(AX)
(ﬁF%ﬁ') OX AX

Central difference: % a4l 2
(El:"l:s‘%ﬁ') aX)i,n — 2 AY 1O(AX )

2. Different FD forms of 15t ad 2"9 order derivatives

Stencil (# B %) of FD expression

¢n 2 i+1
I+1 - @ e

Ax
O For the node where FD form is constructed

@® For nodes which are used in the construction
(G o ewT 20/47
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SH ENFRR B ES Rz
gn, — ¢ i i+1 - A==

i H
Ax —— IO(A-Z')I
¢n_ 7 1—1 3 : . I
A .= O(ax)||
> I y==1
Loy ¥ LRI LS S a2
28z I !
n 4 4gn n i i+l i+2 | [
387 H497. 1~ #l et — . o]l
gj) i I [
Zlinl  3gr-adr 4, ig2 i-1 i . !
2Ax h - | I
- -
srred-ngrag, | L2 QL 5 AL =
12Az : :

—_ y - '+2

12Az (8
$r_,—8¢7_ +8¢n, - dr,, | P2 il B il it2 (A

12Ax
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P BB AR iz
n_h n y 1 1 - -+.1I i
¢ 2¢3;12+ [ -0 z. 212 o T O(Ax)
no__ n n  — 2 i —1
¢,‘ 29&2‘;12’*' éi—z —f-.— 14 ﬁ."; W 1 O(A.:L')
. r---‘
@) $y =287+ #1, S, lo(az2)1
px%/ ; 4 Ax? —f - ~° — |10(AI J I
i~2 i=1 i i+1 i+2 -
(- $7_,+ 1647 308" Ty T
2 1 O(Ax4]

+ 1647, — $742) /1282

Rule of thumb (x#3gJEN|) for judging correction
of a FD form

(1) Dimension (&%4) should be consistent(—%f);

(2) Zero derivatives of any order for a uniform field.
(G Conenuar ewT 22/47
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2.2.3 Discretized form of 1-D model equation by FD

1. Time level at which spatial derivatives are determined

Taylor expansion with respect to this time level
LT

. I—] -':_ ] :..4 \ )_-H-At

r T T

(SEau C-N#g =
explicit implicit ~ Crank-Nicolson
O(At) O(At) O(At?)

I% HHHHHHHHHH 23/47
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2. Explicit scheme of 1-D model equation

o(1,n+1)—@(1,n) ¢(i+1,n)—¢(i—1,n):

Analytical # At TPl 2 AX
form #(i+1,n) —24(i,n) + ¢(i —1,n)
b AX®

Finite difference form S —
Explicit in space derivatives

n+1  n n<_ n n n
¢| ¢| +,0U ¢|+1 ¢|—1 :F¢|+l 2¢| +¢|—1 +Sin,O(At,AX2)

+S(1,n)+ HOT

yo,

At 2AX AX?
Forwardin  Central in Central in TE. of FD
time, (At) space,(sz) space,(sz) equation

O(At, AX?)

(G o ewT 24147

Forward time & central space--FTCS
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Notes to Section 2.2

2.2.4 Polynomial fitting for FD of derivatives
Assuming a local profile (¥i4k)for the function studied:

« Local linear function—Ileading to 15t-order FD
expressions

P(X, +AX,1) = a+bx
Set the origin (J5 x%) at X,, Yields:
¢'=a, ¢, =a+DbAXx,

%Eb ¢iil_a: ¢i|11_¢in

OX AX AX

(B, SooeenT 25/47
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2. Local quadratlc function (kK pF%L) —leads to
2nd order FD expressions

B(X, + AX,t) = a+bx+cx’
Set the origin (J5 x%) at X,, Yields:

§'=a, #,=a+bAx+cAC, 4" =a-bAx+cAx’
h— ¢in+1 — ¢in—1 ¢In+1 — 2¢in T ¢Irll

C =

2AX 2AX°
% ~h= ¢i21 B ¢ir11 _¢ ~ 9 ¢iil B 2¢in T ¢in-1
OX A X AN

I% HHHHHHHHHH 26/47
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3. Polynomial fitting used for treatment (4t3#) of B.C.

[Exam.2—1]  Known: T,,,T;,, T4 § Ti.s
Find: wall heat flux in y-direction with 2nd- - an
order accuracy. yL [
Solution: Assuming a quadratic temp. z i

function at y=0
T(x,y)=a+by+cy?, O(AYY)
T.,=a, T,, =a+bAy +cAy*T,, =a+ 2bAy + 4cAy*

Yield - o 3T+ 4T, T
2AV
Then: qb :_lﬁ_T) 0= ib:i(3Til—4T|2-l—Tl3) ;O(Ayz)
oy’ 2Ay " ’
End of Notes 57147
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2.3 Control Volume and Heat Balance Methods for
Equation Discretization

2.3.1 Procedures for implementing (5243°) CV method
2.3.2 Two conventional profiles(#iZk)
2.3.3 Discretization of 1-D model eq. by CV method

2.3.4 Discussion on profile assumptions in FVM

2.3.5 Discretization equation by balance(3FE4#) method

2.3.6 Comparisons between two methods
I% g::.r:l;r-EHT 28/ 47
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2.3 Control Volume and Heat Balance Methods for
Equation Discretization

2.3.1 Procedures for implementing CV method
1. Integrating (#143) conservative PDE over a CV

2. Selecting (3%£3%) profiles for dependent variable (48 &)
and its 15t derivative

Profile is a local variation pattern of dependent variables
with space coordinate.

3. Completing integral and rearranging algebraic equations

2.3.2 Two conventional profiles (shape function)

Originally (Z=3k) shape profile GEpEZL) is to be

solved: here 1t Is to be assumed!
(G o ewT 29/47
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Variation with spatial coordinate

| Profile(GE& %) 4 Profile
#E p \SE -
#p [ _1_1_ T '
Pw 1
| S
| ] 1
W P E =z w P E x
piece-wise linear step-wise approximation
4 B M A B

(B, SooeenT 30/47
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Variation with time

¢ Y P -
you Implicit Explicit
#
C - N ¥
| |
L o 1 —
t t+Ar ¢ t t+ At ‘

piece-wise linear  step-wise approximation

g Bega it i BhiE i

I% CFD-NHT-EHT 31/47
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2.3. 3 Dlscretlzatlon of 1-D model eq. by CV method
Integrating conservative GE over a CV within [,

t+At],  9pg) Olpup) _ O (T (j;ﬁ) +s,
X

ot OX &
yields:

(8x)w (ax). e t+At

p—t— +
ceBen (¢ =gk p [ [(ug), - (ug), ot =
| i—1 i i+l W t
'_W_[éfx/{.i T t+At t+At e

v rju )—(%]m+jjsmm

To complete the integraton we need the profiles

of the dependent variable and its 15t derivative.
I% HHHHHHHHHH 32/47
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1. Transient term

Assuming the step-wise approximation for ¢
with space:

Pl (@™~ )dx = p(g™ — 41 A

2. Convective term

Assuming the explicit step-wise approximation
for ¢ with time:

t+At

p | [(Ug), - (ug),Jdt = p[(ug); — (ug), 1At

@EI HHHHHHHHHH 33/47
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Further, assuming linear-wise variation of ¢ with space

L), ~ (0, Jat = puar PP oty Bl

| Uniform grid | Super-script “t” is
|
3. Diffusion term temporary rée¢glected.
Taking explicit step-wise variation of o with

time, vyields:

t+At

rj[< = (), 1t =TIED): - (o), I

Further, assuming linear-wise variation of ¢ with space

(G o ewT 34/47
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uniform Super-script “t”
‘ ‘ — TAt Pe — 205 + Py IS temporary

} AX neglected!

4. Source term

Assuming explicit step wise with time and step-
wise variation with space:

t+At e
Sdxdt =S (AX), At
]

S ---averaged one over space.
I% HHHHHHHHHH 35/47
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t+At — ¢P ¢|t5 _ ¢\/tv

+ pu =
Dividing both p At P 2AX
sides by AtAX t _ ot t
R4 2A¢P2+‘AN +5',0(At, AX?)
X

For the uniform grid system, the results are the same
as that from Taylor expansion, which reads:

1
¢in+ _ ¢in 1 ol ¢iil _ ¢irll _ FDM IR
P P = are a kind of brothers:
At 2AX
i i i they usually have the
T G — 20, + 0., +S" O(At sz) same TE and can help
AX? . ’ each other!

(B, SooeenT 36/47
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2.3.4 Discussion on profile assumptions in FVM

1. In FVM the only purpose of profile is to derive the
discretization equations; Once they have been
established, the function of profile is fulfilled (585%) .

2. The selection criterion (#£H)|) of profile is easy to
be implemented and good numerical characteristics;

Consistency (Ppi) among different terms is not
required.

3. In FVM profile is indeed the scheme (Z4#%=.) .

2.3.5 Discretization equation by balance method

(B, SooeenT 37/47
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‘Brief review of 2018-09-12 lecture key points

1.Elliptic vs. parabolic PDF (Math viewpoint)

ag, +bg, +Ch, +dp +ep, + To=

a,b,c,d,e, f canbe functionof X, Y,
, <0 Elliptic |#RER | (
b —4ac{

g(x,y)

1 i)

=0 Parabolic‘ A ‘ GaFR=Z)

Elliptic Parabolic
solved , |

simul- NN N

ey taneously e KRN

Cru-Nni1-En
CENTER

solved
line by
line!

38/87
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2. Conservative vs. non-conservative (Physical VP)
Conservative: convective term is expressed by

divergence form(gf BER,).

Non-conservative: convective term is not expressed
by divergence form.

3. Relationship with numerical solution

Elliptic: solved simultaneously for whole domain!

Parabolic: solved by marching forward method!

Discretization eqgs. from conservative PDE may
guarantee the conservation feature of the numerical
solution.

Disc. eqgs. from non-conservative PDE can not
guarantee!
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4. Procedures for implementing CV method
1) Integrating conservative PDE over a CV,;

2) Selecting profiles for dependent variable and its 1%t
derivative;

3) Completing integral and rearranging algebraic equations
5. Two major profiles and their role

1) Two major profiles: piece-wise linear and step-wise;
2) The only purpose of profile is to derive discretization egs.
Consistency Is not required.

3) Profile in space is actually the scheme for convection and
diffusion terms, especially important for convection term.

4) Profile in time leads to explicit and implicit scheme in the
determination of space derivatives.

% CENTER TvI "'7
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1. Major concept : Applying the conservative law directly
to a CV, viewing the node as its representative ({t3%)

2. 1-D diffusion-convection problem with source term
Writing down balance equation for AX and At

p(de ™ —gp)Ax = p[(Ug), — (UP)JAL  (450y. (o,
‘Transient ‘ ‘Convection _‘

(f—i)(u—%—)

+[( ¢) _( ¢) ]At+§tAXAt i—1 P+ 1

‘lefusmn ‘ ‘Source ‘ __I%/ﬂ

By selecting the profile of dependent variable 1,

with space, the discretization equation can be obtained.
(G o ewT 41/47
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2.3.6 Comparisons of two ways

Content ' FDM FVM
1. Error analysis i Easy : Not easy; via FDM
2 Physical concept : Not clear | Clear
- |
e oy | ey
4. Conservation : Not : May be guaranteed
feature of ABEs 1 guaranteed !

FVVM has been the 15t choice of most commercial
_software.

CENTER
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First Home Work

Homework of Chapter 1,2
Problem 1 was assigned in Chapter 1
2—3, 2—4, 2-5, 2-11
Please hand in on Sept.26, 2018

Please finish your homework independently !!!

Following textbook in English is available in our library:
Versteeg H K, Malalsekera W. An introduction to
computational fluid dynamics. The finite volume
method. Essex: Longman Scientific & Technical, 1995

(G o ewT 43/47
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Problem 2-3 In the following non-linear equation of u, 77 is
constant, AU 821

“x Tox
Obtain its conservation form and its discretization equation
by the control volume integration method.

Problem 2-4
Using the control volume integration method discretize the 1-D heat

conduction equation given below.

"

L1fdr

+5=0 i :
rdr\ dr , where S 15 constant.

&

Also discrefize the non-conservative form, as given below, of 1-D

equation by using Taylor series expansion method.

CED-NHT.EHT 44/47
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Express the both results as: adple = aply +agly +b
where “ 5 15 known but not contains 7, 7, and T, . Moreover,

check for the case of constant properties and vmiform grids that

these two results are the same or not?

Problem 2-5 On a uniform grid system, adopt Taylor series

expansion method to obtain the following FD form of 0’4
OXoy

52¢ _ ¢|+1,j+1 o ¢|+1,j—1 o ¢|—1,j+1 + 1-1,j-1
OXOY AAXAY

I% CFD-NHT-EHT 45/47
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Problem 2-11 Derive following 3rd-order biased({)

difference form for % ;
OX
5¢ . 4¢|+1 T 6¢| _12¢|—1 T 2¢|—2
O X 12AX

(G o ewT 46/47
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Je] AfFE L5
JEWEIFE !

People in the same
boat help each
other to cross to the

(B, e 47/47
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