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Chapter 2 Discretization of Computational 
Domain and Governing Equations
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2.1 Grid Generation

2.1.1 Task, method and classification

1. Task of domain discretization

Discretizing the computational domain into a 

number of sub-domains which are not overlapped(重叠) 

and can completely cover the computational domain.

Four kinds of information can be obtained:

(1) Node（节点) :the position at which the values of 

dependent variables are solved;

(2) Control volume (CV,控制容积) : the minimum volume 

to which the conservation law is applied;

(3) Interface（界面) :boundary of two neighboring 

（相邻的）CVs.
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(4) Grid lines（网格线) : Curves formed by connecting 

two neighboring nodes.

2. Classification of domain discretization method

(1)According to node relationship:  structured (结构化）
vs. unstructured（非结构化）

(2) According to node position：inner node vs. outer 
node 

2.1.2 Expression of grid system (网格系统表示)

Grid line－solid line；Interface-dashed line（虚线）；

xDistance between two nodes－

The spatial relationship between two neighboring 

nodes, the influencing coefficients, will be decided in the 

procedure of  equation discretization.

xDistance between two interfaces－
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2.1.3 Introduction to  different  types of grid system 

and generation method

（1） Structured grid (结构化网格)：Node position 

layout（布置）is in order,  and fixed for the entire 

domain.

Interface

Gridline

Distance between nodes

Distance between interfaces
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（2） Unstructured grid (非结构化网格)：Node position 
layout(布置) is in disorder, and may change from node to 
node. The generation and storage of the relationship of 
neighboring nodes are the major work of grid generation.

Structured（a)
Structured（b)

Un-structured

5 elements

6 neighboring 
elements
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Both structured and unstructured grid layout (节点
布置) have two practices.

（3）Outer node and inner node for structured grid

(a) Outer node method：Node is positioned at the 
vertex of a sub-domain(子区域的角顶)；The interface 
is between two nodes；Generating procedure：Node 
first and interface second---called  Practice A， or 
cell-vertex method (单元顶点法).

Sub-D

CVCartesian Cylindrical Polar
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(b) Inner node method：Node is positioned at the 

center of sub-domain; Sub-domain is identical to 

control volume; Generating procedure: Interface 

first ad node second, called  Practice B, or cell-

centered （单元中心法）.

Sub-domain is the control volume

1 radian

（1弧度）

Axe

斧头
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Generating procedure of Practice B
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Boundary point has half CV. Boundary point has zero CV.

(b) Practice B is more feasible（适用） for non-uniform 

grid layout.

Practice BPractice A

Practice BPractice A

2.1.4 Comparison between Practices A and B

(a) Boundary nodes have different CV.
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(c) For non-uniform grid layout, Practice A can 

guarantee the discretization accuracy of interface 

derivatives （界面导数）.

( )
( )

E P
e

ex x

  



 



( )

( )

E P
e

ex x

  



 




2nd-order accuracy Lower than 2nd order accuracy

Interface in middle Interface is biased（偏置）
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2.1.5 Grid-independent solutions

Grid generation is an iterative procedure（迭代
过程）; Debugging (调试）and comparison are often 

needed. For a complicated geometry grid generation 

may take a major part of total  computational time. 

The appropriate grid fineness(细密程度) is such

that the numerical solutions are nearly independent

on the grid numbers. Such numerical solutions are

called grid-independent solutions (网格独立解). This

is required for publication of a paper.

Grid generation method has been developed as a 

sub-field of numerical solutions (Grid generation 

techniques).
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Int. Journal 

Numerical Methods 

in Fluids, 1998, 28: 

1371-1387。

Int. Journal 

Heat & Fluid Flow, 

1993, 14(3):246-

253。
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International Journal of 

Heat Mass Transfer, 

2007, 50:1163-1175
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2.2.1 1-D model equation

2.2.2 Taylor expansion and polynomial 

fitting （多项式拟合）methods 

2.2.3  FD form of 1-D model equation

2.2.4 FD form of polynomial fitting

2.2 Taylor Expansion and Polynomial Fitting 

for equation discretization

/
/


MOE KLTFSE

17/47

2.2 Taylor Expansion and Polynomial Fitting 

for Equation discretization

2.2.1 1-D model equation (一维模型方程）

1-D model equation has four typical terms  : 
transient term, convection term, diffusion term and 
source term. It is specially designed for discussion of 
discretization methods.

Non-cons.

Conserva

-tive

( )
( )u S

t x x x


  


   
   

   

( ) ( )
( )

u
S

t x x x


      
   

   

For FDM

For FVM

Small but complete---“麻雀虽小，五脏俱全！”

SourceTrans Conv. Diffus.
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2.2.2 Taylor expansion for FD form of 

derivatives

1. FD form of 1st order derivative

2

,,

2

2
( 1, ) ( , ) ) .....

2!
)i in n

x
i n i n x

xx


 

  
     






2

, ,2

( 1, ) ( , )
) ( ) ...

2
i n i n

i n i n x

x x x

       
  

  

with respect to (对于）point 

(i,n)：

( , )x tExpanding at（i+1,n)
t

 
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,

( 1, ) ( , )
) ( )i n

i n i n
O x

x x

    
  

 

( )O x is called truncation error （截断误差）:

,)i n
x





( 1, ) ( , )i n i n

x

  


0x With replacing by

1
,) ) , ( )

n n
n i i

i n i O x
x x x

  


 

  
 

Forward difference：

by approximateReplacing analytical solution ( , )i n

 K xwill lead to an error

of x

The exponent (指数) of       is called order of TE(截差的阶

数) .  

x

（向前差分）

where K is independent

----mathematical meaning of ( )O x

value       ,   yields:
n

i
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Backward difference： 1
,) , ( )

n n

i i
i n O x

x x

  
 

 

Central difference： 1 1
,

2) , ( )
2

n n

i i
i n O x

x x

   
 

 

2. Different FD forms of 1st ad 2nd order derivatives

Stencil (格式图案) of FD expression

For the node where FD form is constructed

 For nodes which are used in the construction

（向后差分）

（中心差分）
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Table 2 in the textbook
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Rule of thumb (大拇指原则）for judging correction 

of a FD form ：

（1) Dimension (量纲) should be consistent(一致);

（2) Zero derivatives of any order for a uniform field.
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2.2.3 Discretized form of 1-D model equation by FD

1. Time level at which spatial derivatives are determined

显式

explicit

( )O t

隐式

implicit

( )O t

t

Taylor expansion with respect to this time level

Crank-Nicolson
2( )O t

C-N格式

tt
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2. Explicit scheme of 1-D model equation

1

1 1 1 1

2

22
,

2
( , )

n n n n n n n
ni i i i i i i
iu S

x
x

t x
O t

      
 



      
   

  
 

2

( , 1) ( , ) ( 1, ) ( 1, )

2

( 1, ) 2 ( , ) ( 1, )
( , ) HO

i n i n i n i n
u

t x

i n i n i n
S i n

x
T

   
 

  

    
 

 

   
  



Analytical

form

Finite difference form
Explicit in space derivatives

Forward in

time, ( )t
Central in

space,
2( )x

Central in

space,
2( )x

TE. of FD 

equation
2( , )O t x 

Forward time & central space--FTCS
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2.2.4 Polynomial fitting for FD of derivatives

Assuming a local profile (型线)for the function studied:

• Local linear function－leading to 1st-order FD

expressions

0( , )x x t a bx   

Set the origin (原点) at 0x ，yields:

1, ,n n

i ia a b x     

b
x


 


1

n n

i i

x

  



1

n

i a

x

  




Notes to Section 2.2
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2. Local quadratic function (二次函数）－leads to 

2nd order FD expressions

2

0( , )x x t a bx cx    

2

1 ,n

i a b x c x       2

1

n

i a b x c x      ,n

i a 

1 1 ,
2

n n

i ib
x

  




1 1 ,
2

n n

i ib
x x

    
 

 

2

1 1

2 2

2
2 ,

n n n

i i ic
x x

      
 

 

Set the origin (原点) at 0x ，yields:

1 1

2

2

2

n n n

i i ic
x

    



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3. Polynomial fitting used for treatment (处理）of B.C.

[Exam.2－1] Known： ,1 ,2 ,3, ,i i iT T T

Find: wall heat flux in y-direction with 2nd-

order accuracy.

Solution：Assuming a quadratic temp. 

function at y＝0
2( , ) ,T x y a by cy  

3( )O y
2 2

,1 ,2 ,3, , 2 4i i iT a T a b y c y T a b y c y          

Yield： ,1 ,2 ,33 4

2

i i iT T T
b

y

  




0 ,1 ,2 ,3) (3 4 )
2

b y i i i

T
q b T T T

y y


 


     

 
-Then：

2, ( )O y

End of Notes
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2.3.1 Procedures for implementing (实行）CV method

2.3 Control Volume and Heat Balance Methods for 

Equation Discretization

2.3.2 Two conventional profiles(型线）

2.3.3 Discretization of 1-D model eq. by CV method

2.3.4 Discussion on profile assumptions in FVM

2.3.5 Discretization equation by balance(平衡）method

2.3.6 Comparisons between two methods
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1. Integrating (积分）conservative PDE over a CV

2. Selecting (选择) profiles for dependent variable (因变量）
and its 1st derivative

3. Completing integral and rearranging algebraic equations

2.3.2 Two conventional profiles (shape function)

Profile is a local variation pattern of dependent variables

with space coordinate.

Originally (本来) shape profile (形函数） is to be 

solved; here it is to be assumed!

2.3 Control Volume and Heat Balance Methods for 

Equation Discretization

2.3.1 Procedures for implementing CV method
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Variation with spatial coordinate

piece-wise linear step-wise approximation

Profile(形函数) Profile

分段线性 阶梯逼近
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Variation with time

分段线性

piece-wise linear

阶梯逼近

step-wise approximation




Implicit Explicit




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Integrating conservative GE over a CV within [t, 

t +       ] ，t ( ) ( )
( )

u
S

t x x x


      
   

   

2.3.3 Discretization of 1-D model eq. by CV method

yields:

( ) [( ) ( ) ]

e t t

t t t

e w

w t

dx u u dt     


     

[( ) ( ) ]

t t t t e

e w

t t w

dt S dxdt
x x



 
 

 
  

   

To complete the integraton we need the profiles 

of the dependent variable and its 1st derivative.
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1. Transient term

Assuming  the step-wise approximation for       

with space:



( ) ( )

e

t t t t t t

P P

w

dx x         

2. Convective term

Assuming the explicit step-wise approximation 

for        with time:

[( ) ( ) ] [( ) ( ) ]

t t

t t

e w e w

t

u u dt u u t     


   
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[( ) ( ) ] ( )
2 2 2

t t E P P W E W
e wu u t u t u t

     
    

  
      

Uniform grid

3. Diffusion term

Taking  explicit step-wise variation of          with 

time, 
x





[( ) ( ) ] [( ) ( ) ]

t t

t t

e w e w

t

dt t
x x x x

   


   
     

   

Further, assuming linear-wise variation of      with space

[( ) ( ) ] ( )
2 2 2

t t E P P W E W
e wu u t u t u t

     
    

  
      

Further, assuming linear-wise variation of      with space

Super-script “t” is 

temporary neglected!

yields:
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[( ) ( ) ] [ ]
( ) ( )

t t E P P W
e w

e w

t t
x x x x

        
     

   

2E P Wt
x

   
 



uniform


4. Source term

Assuming explicit step wise with time and step-

wise variation with space:

( )

t t e
t

P

t w

Sdxdt S x t



   
S ---averaged one over space.

Super-script “t” 

is temporary

neglected!
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2

2
( , )

2

2
,

t t t t t

P P E W

t t t
t

E P W O t

u
t x

x
xS

   
 

  

  
 

 




 





1

1 1

1 1

2

2

2

(
2

, , )

n n n n

i i i i

n n n
ni i i
i

u

S
x

x

t x

O t

   
 

  



 

 

 
 

 

 
 


 

For the uniform grid system, the results are the same

as that from Taylor expansion, which reads:

Dividing both 

sides by ：t x 

FDM and FVM 

are a kind of brothers: 

they usually have the 

same TE and can help 

each other!
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2.3.4 Discussion on profile assumptions in FVM

1. In FVM the only purpose of profile is to derive the 

discretization equations; Once they have been 

established, the function of profile is fulfilled (完成）.

2. The selection criterion (准则） of profile is easy to 
be implemented and good numerical characteristics; 
Consistency (协调) among different terms is not 
required.

3. In FVM profile is indeed the scheme（差分格式）.

2.3.5 Discretization equation by balance method
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1.Elliptic vs. parabolic PDF（Math viewpoint）

Brief review of 2018-09-12 lecture key points

( , )xx xy yy x yd e f ga c x yb          

, , , , ,ba c d e f , ,x y can be function of 

38/87

2 4b ac
抛物型Parabolic （边界层）

椭圆型Elliptic （回流型）

 

Elliptic



Parabolic

0

= 0

solved 

simul-

taneously

solved 

line by

line!
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2. Conservative vs. non-conservative (Physical VP)

Conservative：convective term is expressed by 

divergence form(散度形式).

Non-conservative： convective term is not expressed 

by divergence form.

3. Relationship with numerical solution

Elliptic: solved simultaneously for whole domain!

Parabolic: solved by marching forward method!

Discretization eqs. from conservative PDE may 

guarantee the conservation feature of the numerical 

solution. 

Disc. eqs. from non-conservative PDE can not 

guarantee!
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1) Integrating conservative PDE over a CV;

2) Selecting profiles for dependent variable and its 1st 

derivative;

3) Completing integral and rearranging algebraic equations

4. Procedures for implementing CV method

5. Two  major profiles and their role

1) Two major profiles: piece-wise linear and step-wise;

2) The only purpose of profile is to derive discretization eqs.

Consistency is not required.

3) Profile in space is actually the scheme for convection and

diffusion terms, especially important for convection term.

4) Profile in time leads to explicit and implicit scheme in the

determination of space derivatives.
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2. 1-D diffusion-convection problem with source  term

( ) [( ) ( ) ]

[( ) ( ) ]

t t t t t

P P w e

t
t t

e w

x u u t

t S x t
x x

     

 

     

 
     

 

By selecting the profile of dependent variable 

with space, the discretization equation can be obtained.



Convection

Diffusion

Transient

Source

Writing down balance equation for and             x t

1. Major concept：Applying the conservative law directly 

to a CV, viewing the node as its representative  (代表）
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2.3.6 Comparisons of two ways

Content FDM FVM  

1.

2.                                                            

3.                                                                      

4. 

FVM has been the 1st choice of most commercial 
software.

Error analysis Easy Not easy;

Physical concept Not clear Clear

Variable length

step(变步长)
Not easy Easy

Conservation

feature of ABEs

Not

guaranteed
May be guaranteed

via  FDM
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First Home Work

Please hand in on Sept.26, 2018

Homework of Chapter 1,2

2－3， 2－4， 2－5， 2－11

Following textbook in English is available in our library: 

Versteeg H K, Malalsekera W. An introduction to 

computational fluid dynamics. The finite volume 

method. Essex: Longman Scientific & Technical， 1995

Problem 1 was assigned in Chapter 1

Please finish your homework independently !!!
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Problem 2-3 In the following non-linear equation of  u,     is 

constant,



Obtain its conservation form and its discretization equation 

by the control volume integration method.

2

2

u u
u

x x


 


 

Problem 2-4

/
/


MOE KLTFSE

45/47

Problem 2-5 On a uniform grid system, adopt Taylor series 

expansion method to obtain the following FD form of  
2

x y



 
2

1, 1 1, 1 1, 1 1, 1

4

i j i j i j i j

x y x y

    

 

         


 
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Problem 2-11  Derive following  3rd-order biased(偏) 

difference form for       :
x





1 1 24 6 12 2

12

i i i i

x x

   


    




/
/


MOE KLTFSE

47/47

同舟共济
渡彼岸!

People in the same 
boat help each 
other to cross to the 
other bank, where….
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