



## **Numerical Heat Transfer**

# Chapter 13 Application examples of fluent for basic flow and heat transfer problem



#### Instructor Wen-Quan Tao; Qinlong Ren; Li Chen

CFD-NHT-EHT Center Key Laboratory of Thermo-Fluid Science & Engineering Xi'an Jiaotong University Xi'an, 2018-Dec.-19





数值传热学



主讲 陶文铨 辅讲 任秦龙,陈 黎 西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 2018年12月19日, 西安



**13.1 Heat transfer with source term** 

**13.2 Unsteady cooling process of a steel ball** 

**13.3 Lid-driven flow and heat transfer** 

**13.4 Flow and heat transfer in a micro-channel** 

**13.5** Flow and heat transfer in chip cooling

**13.6** Phase change material melting with fins



13.1 有内热源的导热问题 导热问题 13.2 非稳态圆球冷却问题 13.3 顶盖驱动流动换热问题 混合对流问题 13.4 微通道内流动换热问题 13.5 芯片冷却流动换热问题 微通道问题 13.6 肋片强化相变材料融化 相变传热



#### **Example 4: Fluid-solid interface**



## This wall type has fluid zone and solid zone on each side. This wall is called a "two-sided-wall".

#### When such kind wall is read into Fluent, a "shadow" (影子) zone is automatically created.





## There are three options for the temperature boundary conditions of such "two-sided-wall".

### Thermal Conditions



- Heat flux
- Temperature

Coupled

If you choose "Coupled", no additional information is required. The solver will calculate heat transfer directly from the solution of adjacent cells. Such wall is not a boundary. 》 西安交通大學



Its shadow created by Fluent



#### **Pressure outlet boundary condition**

| Pressure Outlet                                            | x |
|------------------------------------------------------------|---|
| Zone Name                                                  |   |
| out                                                        |   |
| Momentum Thermal Radiation Species DPM Multiphase UDS      |   |
| Gauge Pressure (pascal) 0 constant                         | • |
| Backflow Direction Specification Method Normal to Boundary | - |
| Average Pressure Specification                             |   |
| Target Mass Flow Rate                                      |   |
| OK Cancel Help                                             |   |

#### Gauge Pressure (表压)



For pressure outlet boundary condition, Fluent asks you to input a Backflow (回流) Total Temperature. However, it will play a role only if there is backflow. There is no information provided by Fluent Help File about what is the actual boundary condition for heat transfer.

| Pressure Outlet                  | ×                          |
|----------------------------------|----------------------------|
| Zone Name                        |                            |
| wall                             |                            |
| Momentum Thermal Radiation       | Species DPM Multiphase UDS |
| Backflow Total Temperature (k) 3 | 00 constant 👻              |
| Backflov                         | w Total Temperature        |
|                                  | OK Cancel Help             |





#### The problem has been asked by many users.

Someone indicate online that the actual value of temperature is calculated using the value of last time step, or by interpolating methods from values of neighboring nodes.







#### **Pressure in Fluent**

- Atmospheric pressure (大气压)
- Gauge pressure (表压): the difference between the true pressure and the Atmospheric pressure.
- Absolute pressure (真实压力): the true pressure
  - = Atmospheric pressure + Gauge pressure
- **Operating pressure (操作压力)**: the reference pressure (参考压力)
- In our teaching code, a reference pressure point is defined.





#### **Pressure in Fluent**

- Absolute pressure (真实压力): the true pressure
  - = **Reference Pressure** + **Relative Pressure**
- Static pressure (静压): the difference between true pressure and operating pressure.
- The same as relative pressure.
- Dynamic pressure (动压): calculated by  $0.5\rho U^2$
- Is related to the velocity.
- Total pressure (总压):
  - = Static pressure + dynamic pressure





#### **13.5** Flow and heat transfer in chip cooling

#### 芯片冷却流动换热问题

Focus: compared with previous examples, this example is a relatively realistic problem. The domain of this Example contains fluid, board (电路板) and chip (芯片).





#### **13.5** Flow and heat transfer in chip cooling

**Known**: Steady laminar flow and convective heat transfer around a board on top of which is a chip with source term. The domain and size is shown in Fig. 1. The boundary conditions are as follows:

■ Inlet: *u*---0.5m/s (constant)

*Т*---298К

- Pressure outlet: Gauge pressure (表压):0 Pa.
- Top and bottom boundary: 3<sup>rd</sup> boundary condition
   Heat transfer coefficient: *H*=1.5 W/(m<sup>2</sup>K);
   Free stream temperature: *T<sub>f</sub>*=298K.



CFD-NHT-EHT

- Chip-- a constant source term, 904055 W/m<sup>3</sup>
- Front surface and back surface---symmetry





#### **Find:** Temperature distribution in the domain.

**Solution:** 

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = 0$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho_f}\frac{\partial p}{\partial x} + \frac{\mu_f}{\rho_f}\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho_f}\frac{\partial p}{\partial y} + \frac{\mu_f}{\rho_f}\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

$$\frac{\partial(\rho_f C_{pf} u_f T_f)}{\partial x} + \frac{\partial(\rho_f C_{pf} v_f T_f)}{\partial y} = \lambda_f \left( \frac{\partial^2 T_f}{\partial x^2} + \frac{\partial^2 T_f}{\partial y^2} \right)$$

$$0 = \lambda_s \left( \frac{\partial^2 T_s}{\partial x^2} + \frac{\partial^2 T_s}{\partial y^2} \right) + s$$





#### **13.5.1 Start the Fluent software**

| Fluent Launcher                                                                                                            | - 0                                                                       | $\times$ |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|
| <b>ANSYS</b>                                                                                                               | Fluent Lau                                                                | ncher    |
| Dimension<br>2D<br>3D<br>Display Options<br>Display Mesh After Reading<br>Embed Graphics Windows<br>Workbench Color Scheme | Options Double Precision Meshing Mode Processing Options Serial Prarallel |          |
| Show More Options <u> D</u> K <u> D</u> efault                                                                             | <u>C</u> ancel <u>H</u> elp ▼                                             |          |

Choose 3-Dimension
 Choose display options
 Choose Serial
 processing option





#### 1st step: Read and check the mesh

The mesh is generated by pre-processing software such as ICEM and GAMBIT. The document is with suffix (后缀名) "xx.msh"



#### 1st step: Read and check the mesh

Mesh→Check

Check the quality and topological information of the mesh

```
Mesh Check
Domain Extents:
  x-coordinate: min (m) = 0.000000e+00, max (m) = 1.651000e-01
  y-coordinate: min (m) = 0.000000e+00, max (m) = 2.794000e-02
  z-coordinate: min (m) = -2.540000e-07, max (m) = 1.270000e-02
Unlume statistics:
  minimum volume (m3): 1.119834e-09
  maximum volume (m3): 7.845747e-09
    total volume (m3): 5.858386e-05
Face area statistics:
  minimum face area (m2): 8.370037e-07
  maximum face area (m2): 4.194085e-06
Checking mesh.....
Done.
```



#### **2st step: Scale the domain size**

General→Scale

**3st step: Choose the physicochemical model** 

*Re* number is calculated to determine the fluid state (laminar or turbulent)

$$\operatorname{Re}=\frac{\rho u l}{\mu}$$

The density of air is 1.29Kg/m<sup>3</sup>; the inlet velocity is 0.5m/s, characteristic length is about 2cm, and kinetic viscosity of air is 1.7894E-05. *Re* is 720 and thus flow is laminar.

















#### **Step 4: Define the material properties**

# If you calculate the density using the ideal gas law, the solver will compute the density according to ideal gas state equation.



#### **Define a new material as Chip:**

density 1000 kg/m<sup>3</sup>, Cp 500 J/(kg K) and thermal conductivity 1 W/(mK)

#### **Define a new material as Board:**

density 2000 kg/m<sup>3</sup>, Cp 600 J/(kg K) and thermal conductivity 0.1 W/(mK) 22/32



**Step 5: Define zone condition** 

Assign different regions with the corresponding materials.

For the chip, there is a source term with value of 904055 W/m<sup>3</sup>

| 💶 Solid                                                                          |                  |      |                          |       |
|----------------------------------------------------------------------------------|------------------|------|--------------------------|-------|
| Zone Name<br>cont-solid-chip                                                     | ]                |      |                          |       |
|                                                                                  | Energy sources   |      |                          | ×     |
| Material Name chip -                                                             | source           | term | Number of Energy sources |       |
| Mesh Motion     Fixed Values     Reference Frame     Mesh Motion     Source Terr | 1. (w/m3) 904055 |      | constant                 | •     |
| Energy 1 source Edit                                                             |                  |      |                          | 23/32 |

#### Inlet: *u* and *T* are specified.

| Velocity Inlet                                              |
|-------------------------------------------------------------|
| Zone Name                                                   |
| inlet                                                       |
| Momentum Thermal Radiation Species DPM Multiphase UDS       |
| Velocity Specification Method Magnitude, Normal to Boundary |
| u=0.5 Reference Frame Absolute                              |
| Velocity Inlet                                              |
| Zone Name                                                   |
| inlet                                                       |
|                                                             |
| Momentum Thermal Radiation Species DPM Multiphase UDS       |
| Temperature (k) 298 $T=298$ constant $\checkmark$           |



#### **Outlet:** pressure outlet, Gauge pressure as 0.

| Pressure Outlet                                      | ×              |
|------------------------------------------------------|----------------|
| Zone Name                                            |                |
| outlet                                               |                |
| Momentum Thermal Radiation Species DPM               | Multiphase UDS |
| Gauge Pressure (pascal)                              | constant       |
| Backflow Direction Specification Method Normal to Bo | undary 👻       |
| Radial Equilibrium Pressure Distribution             |                |
| Average Pressure Specification                       |                |
| Target Mass Flow Rate                                |                |
| OK                                                   |                |
|                                                      | 25/32          |

#### Top and bottom wall: convective boundary condition

| 💶 Wall                                                 |                                |               |                  | ×      |
|--------------------------------------------------------|--------------------------------|---------------|------------------|--------|
| Zone Name                                              |                                |               |                  |        |
| wall-board-bottom                                      |                                |               |                  |        |
| Adjacent Cell Zone                                     |                                |               |                  |        |
| cont-solid-board                                       |                                |               |                  |        |
| Momentum Thermal Rad                                   | liation Species DPM Multiphase | JDS Wall Film |                  |        |
| Thermal Conditions                                     |                                |               |                  |        |
| 🔘 Heat Flux                                            | Heat Transfer Coefficient (w/n | n2-k) 1.5     | constant         | •      |
| <ul> <li>Temperature</li> <li>Convection</li> </ul>    | Free Stream Temperatur         | e (k) 298     | constant         |        |
| Radiation                                              |                                | 250           |                  | •      |
| <ul> <li>Mixed</li> <li>via System Coupling</li> </ul> |                                | Wall Thic     | kness (in) 0     | P      |
| Material Name                                          | Heat Generation Rate (w        | /m3) 0        | constant         | •      |
| aluminum                                               | ← Edit                         | L             | Shell Conduction | Define |
|                                                        |                                |               |                  |        |
|                                                        | OK Can                         | cel Help      |                  |        |

- For the front and back boundaries, keep the default set up of Symmetry.
- For all the other "two-sidewalls" boundaries in the domain, keep the default set up for thermal conditions, namely "Coupled". For details of "Coupled" and "uncoupled" conditions, refer to Example 4 in Chapter 13.







#### There are many two-sided-wall in this Example.







#### **7st step: Define the solution**

# For algorithm and schemes, keep it as default. For more details of this step, one can refer to Example 1 of Chapter 13.

| Solution Methods               |   |   |
|--------------------------------|---|---|
| Pressure-Velocity Coupling     |   |   |
| Scheme                         |   |   |
| SIMPLE                         | - |   |
| Spatial Discretization         |   |   |
| Gradient                       |   |   |
| Least Squares Cell Based       | • |   |
| Pressure                       |   |   |
| Second Order                   |   |   |
| Momentum                       |   |   |
| Second Order Upwind            |   |   |
| Energy                         |   |   |
| Second Order Upwind            |   |   |
|                                |   |   |
|                                |   | - |
| Transient Formulation          |   |   |
|                                | - |   |
| Non-Iterative Time Advancement |   |   |
| Frozen Flux Formulation        |   |   |

#### **Algorithm:** simple

**Gradient:** Least Square Cell Based

#### **Pressure:** second order

**Momentum:** second order upwind

**Energy: second order Upwind** 



**7st step: Define the solution** 

For under-relaxation factor, keep it default. For more details, refer to Example 1.

**8st step: Initialization** 

Use the standard initialization, for more details of Hybrid initialization, refer to Example 1.

**Step 9: Run the simulation** 

**Step 10: Post-processing results** 



#### **Static Temperature(K) of back boundary**









同舟共济 渡彼岸!

People in the same boat help each other to cross to the other bank, where....





## **Numerical Heat Transfer**

# Chapter 13 Application examples of fluent for basic flow and heat transfer problem



#### Instructor Wen-Quan Tao; Qinlong Ren; Li Chen

#### CFD-NHT-EHT Center Key Laboratory of Thermo-Fluid Science & Engineering Xi'an Jiaotong University Xi'an, 2018-Dec.-19





数值传热学



主讲 陶文铨 辅讲 任秦龙,陈 鯬 西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 2018年12月19日, 西安

2/13



**13.1 Heat transfer with source term** 

**13.2 Unsteady cooling process of a steel ball** 

**13.3 Lid-driven flow and heat transfer** 

**13.4 Flow and heat transfer in a micro-channel** 

**13.5** Flow and heat transfer in chip cooling

**13.6 Phase change material melting with fins** 



13.1 有内热源的导热问题 导热问题 13.2 非稳态圆球冷却问题 13.3 顶盖驱动流动换热问题 混合对流问题 13.4 微通道内流动换热问题 13.5 芯片冷却流动换热问题 微通道问题 13.6 肋片强化相变材料融化 相变传热





#### Review



#### Patching (修补) Values in Selected Cells



#### Domain

**Sub-region need to Patch** 

- **1.** Define the sub-region
- 2. Use Patch to specify related variables.



CFD-NHT-EHT

#### For transient problem you have to

time stepping method, time step size, the max iteration per time step









## For fully implicit scheme, $\Delta t$ does not affect stability, but will affect the accuracy of the simulation results.

The following way is recommended by Fluent to set ∆t:

At each time step, the ideal iteration number is 5 10.

2. If Fluent needs more inner iteration step (>10) for convergence at each time step,  $\Delta t$  is too large.

**3.** If Fluent needs only a few iteration steps,  $\Delta t$  is too





#### **13.6** Phase change material melting with fins

#### 肋片强化相变材料融化传热问题

## Focus: compared with previous examples, the focus of this example is solid-liquid phase change heat transfer.



#### **13.6 Phase change material melting with fins**

**Known:** Paraffin RT50 is used as the phase change material, and internal copper fins are used to enhance the solid-liquid phase change inside the 3D square cavity.

| Property         Copper         RT50           ρ [kg/m³]         8954         880           C <sub>p</sub> [J/kg·K]         383         2000           k [W/m·K]         400         0.2 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_p \left[ J/kg \cdot K \right] \qquad 383 \qquad 2000$                                                                                                                                 |
| sp [] /                                                                                                                                                                                  |
| $k[W/m \cdot K] = 400 = 0.2$                                                                                                                                                             |
|                                                                                                                                                                                          |
| $\beta [K^{-1}]$ 1.67 × 10 <sup>-5</sup> 1 × 10 <sup>-3</sup>                                                                                                                            |
| $\mu [Pa \cdot s] - 0.0275$                                                                                                                                                              |
| $L\left[kJ/kg\right] - 168$                                                                                                                                                              |
| $T_m[K] - 322$                                                                                                                                                                           |

Assumption: (1) laminar flow, (2) incompressible fluid, (3) constant fluid properties except the density  $\rho$ , (4) negligible radiation heat transfer 9/13





**Find:** Temperature distribution and liquid fraction distribution in the domain.

**Governing equations:** 

**Continuity equation:** 

$$\frac{\partial u_i}{\partial x_i} = 0$$

**Momentum equations:** 

$$\rho \frac{D(u_i)}{Dt} = -\frac{\partial p}{\partial x_i} + \mu \frac{\partial^2 u_i}{\partial x_j \partial x_j} + F_i$$





#### **Energy equation for PCM:**

$$\frac{\partial(\rho h)}{\partial t} + \frac{\partial(u_i \rho c_{pf} T_f)}{\partial x_i} = k_f \left(\frac{\partial^2 T_f}{\partial x_i^2}\right)$$
Where *h* is the enthalpy, *T\_f* is the PCM temperature, *c\_{pf}* is PCM specific heat and *k\_f* is fluid thermal conductivity.

**Energy equation for the fins:** 

$$\rho_s c_{ps} \frac{\partial T_s}{\partial t} = k_s \left( \frac{\partial^2 T_s}{\partial x_i^2} \right)$$

where  $T_s$  is fin temperature and  $k_s$  is fin thermal conductivity 12/13







同舟共济 渡彼岸!

People in the same boat help each other to cross to the other bank, where....