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a b s t r a c t 

Fluid-thermal interaction plays an important role in the design and development of hypersonic vehi- 

cles. Among the different ways to couple the flow field with the material thermal response, the loosely 

coupled quasi-static method is widely used. In this paper, deviation formulas based on one-dimensional 

model are derived for uncoupled method and loosely coupled quasi-static method to estimate the struc- 

tural temperature deviations at the stagnation point in different forward time steps. To verify the formu- 

las, fluid-thermal coupling numerical simulations are conducted for 2-D and 3-D hypersonic fluid-thermal 

interaction problems. The results show that the temperature deviation formulas agree quite well with the 

deviations from numerical simulation. The derived deviation formulas can serve as some guidance for se- 

lecting an appropriate forward time step for the loosely coupled quasi-static method. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Due to the severe aerodynamic heating, thermal protection sys-

tems (TPS) for hypersonic vehicles are very important. In the de-

sign of the TPS, flow-thermal analysis methods are usually used to

obtain an accurate and quick prediction of the structural tempera-

tures. Traditionally, the prediction has been accomplished by using

the uncoupled flow-thermal analysis method [1] . The recognized

shortcoming of this approach is ignoring the effects of the bound-

ary heat flux variation. Actual fluid-thermal interaction is a multi-

field coupled physical problem. The difficulty of solving this prob-

lem is that physically the fluid and thermal structure have very

different time scales. Usually, the characteristic time of the ther-

mal response in the structure is much larger than that of the fluid

flow process. Thus, the quite different time steps are required to

accurately compute fluid and thermal responses. Currently, there

are two partitioned ways to couple the flow field with the struc-

ture thermal response. One is the fully transient method, which

advances the flow field and thermal structure response in real time

at each time step [2] . The other is loosely coupled quasi-static
Abbreviations: AHP, aerodynamically heated panels; AUSMPW, advection up- 

wind splitting method by pressure-based weight function; CFD, computational fluid 

dynamics; CSD, computational structural dynamics; CTD, computational thermo- 

dynamics; FEM, finite element method; OREX, orbital reentry experiments; TPS, 

thermal protection systems. 
∗ Corresponding author. 

E-mail address: wqtao@mail.xjtu.edu.cn (W.-Q. Tao). 
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ethod, which assumes that the hypersonic flow reaches a steady

tate in each forward time step. This assumption is based on the

dea that the characteristic time of the fluid flow is several orders

f magnitude smaller than that of the thermal structure response

3] . Therefore, the flow behavior approaches a steady state much

ore rapidly than the thermal response of the structure. Consid-

ring both computational cost and accuracy, the loosely coupled

uasi-static approach is more widely adopted than the fully tran-

ient method. 

In 1988, Thornton and Dechaumphai studied flow-thermal-

tructural interaction for aerodynamically heated panels (AHP) by

sing the loosely coupled method [1] . In the study, hypersonic

ow was considered to be in quasi-static state. Since then dif-

erent practices were adopted in literatures, only some typical

orks are mentioned here. Conti and Groener used the fully tran-

ient method to couple the flow field with the material response

hich involved ablation and shape change [4] . In the fully tran-

ient method, the flow field, material response and body shape

ere advanced in real time at each time step. Chen et al. imple-

ented the loosely coupled quasi-static approach in the design of

PS of spacecraft [5] . For most of the trajectory points, the hyper-

onic flow was assumed in a quasi-static state and the flow solu-

ions were obtained by using GIANTS codes. It is worth mentioning

hat this study [5] firstly indicated that the coupling method can

e applied to the design of TPS of spacecraft. Yamamoto and Yosh-

oka coupled the CFD FVM solver with a thermal response FEM

olver in a loosely coupled manner to obtain the material tem-

erature of orbital reentry experiments (OREX) [6] . Hassan et al.

http://dx.doi.org/10.1016/j.compfluid.2017.03.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.03.017&domain=pdf
mailto:wqtao@mail.xjtu.edu.cn
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Nomenclature 

Latin symbols 

a acoustic speed, m/s 

c specific heat, J/(kg K) 

e total energy, J/kg 

M Mach number 

p pressure, Pa 

q x , q y x and y components of heat flux, W/m 

2 

Q heat flux, W/m 

2 

T temperature, K 

u, v x and y components of velocity, m/s 

x, y cartesian coordinates, m 

Greek symbols 

α thermal diffusivity, m 

2 /s 

γ specific heat ratio 

δ thickness, m 

�t time step of discrete equation, s 

�τ s forward time step, s 

ε relative deviation of excess temperature 

θ excess temperature, K 

λ thermal conductivity, W m 

-1 K 

-1 

μ dynamic viscosity, Pa s 

ρ density, kg/m 

3 

τ time, s 

Subscripts 

f fluid domain 

s solid domain 

W wall 

∞ freestream 

0 initial 

τ /1 uncoupled 

τ /N loosely coupled 

Dimensionless numbers 

Fo Fourier number 

Pr Prandtl number 

sed the loosely coupled fluid/thermal method for predicting the

blation of hypersonic vehicles [7] . They coupled a fluid flow code

nd a thermal response code through mass and energy balances

t a common interface. At a trajectory point, the fluid flow code

as used to obtain a steady-state flow field solution. Löhner et al.

tudied the fluid-structure-thermal interaction problems by using a

oosely coupled method through uniting CFD, Computational Struc-

ural Dynamics (CSD) and Computational Thermo-Dynamics (CTD)

odes [8] . Kuntz et al. presented an iterative method which was

btained by coupling the CFD code with the structural thermal re-

ponse code to predict the ablation of hypersonic vehicle [9] . At a

rajectory point, the steady-state flow field solution was obtained

sing the SACCARA code. Tran and Farhat used an integrated fluid-

tructure-thermal solver to analyze the aerodynamic heating of

ing section of the F-16 fighter plane [10] . Culler and McNamara

dopted a two-way coupled method to analyze the fluid-thermal-

tructural coupling problem [11,12] . Crowell et al. coupled the aero-

ynamic CFD model and the heat transfer FEM model by using a

oosely coupled partitioned scheme [13] . Ostoich et al. studied the

oupled fluid-thermal response of spherical dome in a Mach 6.59

aminar boundary layer [14] . Zhang et al. used a loosely coupled

ethod to couple the CFD solver with a thermo-structural dynam-

cs FEM solver [15] . For each flight trajectory point, the steady-state

FD solver was used to get aerothermal loads. 

Even though quite a few studies have been conducted on the

ncoupled method and loosely coupled quasi-static method, there
re few studies on the evaluation indicator to estimate the devia-

ions caused by using the uncoupled method and loosely coupled

uasi-static method. Practically, the accuracy estimation is very im-

ortant and useful to determine an appropriate forward time step

or obtaining predicted results with a specified deviation. As a first

tep in the study of this aspect, in this paper formulas will be

erived for both uncoupled approach and loosely coupled quasi-

tatic approach to estimate the deviations of structural temper-

tures at the stagnation point. To verify those formulas, coupled

uid-thermal problems are numerically studied on flow over a 2-

 cylinder, a cone at Mach 6.47 and Mach 8 and a 3-D sphere at

ach 9.86. For the cases studied, the derived formulas for the es-

imation of deviation is quite successful. However, more research

ork is needed for applying this method to more complicated sit-

ations. 

. Governing equations 

.1. Governing equations for aerothermodynamics in the fluid domain 

The compressible Navier–Stokes (N–S) equations for two-

imensional aerodynamic flow can be described as follows: 

∂U 

∂τ
+ 

∂ F 1 (U ) 

∂x 
+ 

∂ F 2 (U ) 

∂y 
= 

∂ F υ1 (U ) 

∂x 
+ 

∂ F υ2 (U ) 

∂y 
(1) 

here the vector U signifies the conservative variables. The vector

n the present work is 

 = [ ρ, ρu, ρv , ρe ] T (2) 

Here, u and v are the x and y components of the velocity, re-

pectively, and e is the energy per unit volume. The inviscid fluxes

 1 and F 2 are 

 1 (U ) = 

⎛ 

⎜ ⎝ 

ρu 

ρu 

2 + p 
ρv u 

u (ρe + p) 

⎞ 

⎟ ⎠ 

, F 2 (U ) = 

⎛ 

⎜ ⎝ 

ρv 
ρu v 
ρv 2 + p 
v (ρe + p) 

⎞ 

⎟ ⎠ 

(3)

The corresponding viscous flux vectors are 

 υ1 (U ) = 

⎛ 

⎜ ⎝ 

0 

σxx 

σxy 

−q x + u σxx + v σxy 

⎞ 

⎟ ⎠ 

, F υ2 (U ) = 

⎛ 

⎜ ⎝ 

0 

σyx 

σyy 

−q y + u σyx + v σyy 

⎞ 

⎟ ⎠ 

(4) 

Here, q x and q y are the x and y components of the heat flux,

espectively, and σ is the viscous stress tensor of the fluid. It is

ssumed that the fluid behaves like a calorically perfect gas. The

ressure p can be calculated as follows: 

p = (γ − 1) ρ[ e − ( u 

2 + v 2 ) / 2] (5)

The dynamic viscosity of the air is determined by the following

utherland formula. 

= 1 . 458 × 10 

−6 T 3 / 2 

T + 110 . 4 

(6) 

The thermal conductivity of the air can be calculated as λ f =
 p μ/P r. For the air, the Prandtl number Pr is taken as 0.72. 

.2. Governing equations for structure thermal response 

The structure thermal response is governed by the energy con-

ervation equation which can be written in the following form: 

s c s 
∂T 

∂τ
= 

∂ 

∂x 

(
λs 

∂T 

∂x 

)
+ 

∂ 

∂y 

(
λs 

∂T 

∂y 

)
(7) 

here ρs is the material density, c s is the material specific heat, λs 

s the material thermal conductivity. 
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Fig. 1. Schematic of coupling relationship between the fluid and solid domains. 
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2.3. Interface coupling conditions 

As illustrated in Fig. 1 , the temperature and heat flux between

the structure and fluid must be equal at the boundary, so the fol-

lowing conditions must be satisfied: 

T s = T f (8)

λs ∇ T s · �
 n s = −λ f ∇ T f · �

 n f (9)

Here, all of the variables are at the fluid-solid interface, T s and

∇T s are structure temperature and its gradient, T f and ∇T f are fluid

temperature and its gradient, � n s and 

�
 n f are the unit normals of the

structural and fluid boundaries. 

3. Coupling procedure 

3.1. Coupling analysis strategy 

According to references [15–17] , the coupled simulation can be

divided into monolithic and partitioned approaches. In the mono-

lithic approach, the equations are solved simultaneously. For the

partitioned approach, the fluid and structure thermal response are

calculated separately and coupled by exchanging the information

at the interfaces in boundary condition treatments. This approach

is adopted in this paper. Generally, different strategies used to de-

termine the forward time steps of flow and structure thermal anal-

ysis give rise to different partitioned method. 

As shown in Fig. 2 , when conducting fluid-thermal interaction

simulation, the structural wall temperature T W 0 is imposed on the

solid-fluid interface at the initial time, and the steady-state CFD

solver is carried out to generate aerothermal load (wall heat flux

Q W 0 ). The wall heat flux Q W 0 is imposed on fluid-solid interface.

For the uncoupled method, the transient thermal solver for the

solid structure is used until the flight time ends, meaning that

the heat flux Q W 0 is kept unchanged during the entire simula-

tion period. For the loosely coupled quasi-static method, the tran-

sient thermal solver is employed, for a time interval �τ s after

which time the wall temperature rises to T W 1 . The steady-state

CFD solver is then carried out at the updated wall temperature

to generate a new aerothermal load (wall heat flux Q W 1 ); This

procedure is repeated until the flight time ends. The fully tran-

sient method is quite similar to the loosely coupled quasi-static

method with following differences. One difference is that the heat

flux is obtained by using an unsteady CFD solver, and the other is

�τs = �τ f [2] . Among the three methods, the uncoupled one has

the minimal computational cost but the worst accuracy, the fully
ransient method has the best accuracy but the maximum compu-

ational cost. The computational cost and accuracy of the loosely

oupled quasi-static method are between these two methods. As

n appropriate balance between computational cost and accuracy,

he loosely coupled quasi-static method is widely used. The key is

o select an appropriate forward time step such that both the accu-

acy and computational cost can be well balanced. In the follow-

ng we will first analyze one-dimensional unsteady heat conduc-

ion problem to get the analytical expression for the excess tem-

erature. Based on this results further discussion is conducted to

nally obtain some guidance for selecting the appropriate forward

ime step. 

.2. Transient conduction analysis 

As shown in Fig. 2 , the thermal problem of the solid zone is

 transient conduction issue with a given heat flux at the bound-

ry. Usually, the structure is isothermal at the initial time with-

ut a heat source. The analytical transient heat conduction solution

or the complicated practical structure is difficult to obtain. How-

ver, the transient heat conduction process in different geometries

as very similar variation trends of their excess temperature, as it

an be observed from the Heisler charts for three 1-D geometries

plate, cylinder and sphere) [18] . To simplify the analytical process,

e will adopt a one-dimensional model with the same boundary

ondition to analyze the above-mentioned deviation. As illustrated

n Fig. 3 , for the one-dimensional model with the given boundary

eat flux condition, the wall temperature at the left interface can

e calculated using a Green function method as follows [19] : 

 W 

(τ ) = T 0 + 

1 

ρs c s 

∫ τ

0 

Q W 

(t) G (x = 0 , τ | x ′ = 0 , t) χdt (10)

here T 0 is the initial temperature, Q W 

( t ) is the boundary heat

ux, G ( x, τ | x ′ , t ) is the Green function of this problem, and χ is

he Sturm–Liouville weight function. For a flat plate, χ is equal

o 1. 

For a limited thickness flat plate as illustrated in Fig. 3 , the one-

imensional transient conduction can be mathematically described

s follows: 

∂T 

∂τ
= αs 

∂ 2 T 

∂ x 2 
, 0 < x < δ, τ > 0 

C1 : −λs 
∂T 

∂x 
| x =0 = Q W 

(τ ) 

C2 : −λs 
∂T 

∂x 
| x = δ = 0 

C : T (x, τ = 0) = T 0 (11)

For this problem, its Green function is [20] : 

 (x, τ | x ′ , t) = 

1 

δ
+ 

2 

δ

∞ ∑ 

m =1 

exp 

[
−m 

2 π2 αs (τ − t) 

δ2 

]

× cos 
mπx ′ 

δ
cos 

mπx 

δ
(12)

If the boundary heat flux is constant, the excess temperature at

he left boundary can be obtained as follows: 

(τ ) = T (0 , τ ) − T 0 = 

Q W 

δ

λs 

( 

F o + 

2 

π2 

∞ ∑ 

m =1 

1 − e −m 

2 π2 F o 

m 

2 

) 

(13)

here Fo is the Fourier number, defined by F o = 

αs τ
δ2 . To simplify

he expression, G (x = 0 , τ | x ′ = 0 , t) is abbreviated as G ( τ ; t ). Fol-

owing further analysis is based on the above 1-D model. 



S. Guo et al. / Computers and Fluids 149 (2017) 194–204 197 

Fig. 2. The process of uncoupled and loosely coupled method. 

Fig. 3. One dimensional model of transient conduction. 

Fig. 4. Different boundary heat flux. 
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. Relative deviation of excess temperature at the stagnation 

oint 

As shown in Fig. 4 , Q W 

( t ) represents the actual heat flux at the

uid-solid interface, and Q WN ( t ) is the heat flux at fluid-solid in-

erface when using the loosely coupled quasi-static method. When

sing the uncoupled fluid-thermal analysis, the boundary heat flux

s Q W 1 ( t ) = Q W 0 . Let T W τ 1 be the wall temperature at time τ for

he uncoupled method. Q W τ 1 is the boundary heat flux obtained

y using the steady-state CFD solver at the updated wall tempera-

ure T . 
W τ 1 
.1. Relative deviation of excess temperature for uncoupled method 

According to the solution of one-dimensional transient conduc-

ion ( Eq. (10) ), relative deviation of excess temperature for the un-

oupled approach at time τ can be described as follows: 

 τ/ 1 = 

θ1 (τ ) − θ (τ ) 

θ (τ ) 
= 

∫ τ
0 [ Q W 0 − Q W 

(t)] G (τ ; t) χdt 

θ (τ ) ρs c s 
(14) 

here θ ( t ) is the actual excess temperature at the boundary and

1 ( t ) is the excess temperature at the boundary when using uncou-

led method. Usually, there is an approximate linear relationship

etween Q W 

( t ) and T W 

( t ) [21] at the stagnation point as follows:

 W 

(t) ≈ A + B T W 

(t) (15)

Thus the relative deviation can be written: 

 τ/ 1 = 

− ∫ τ
0 Bθ (t) G (τ ; t) χdt 

θ (τ ) ρs c s 
(16) 

By using the mean value theorem of integrals, the above equa-

ion can be written as: 

 τ/ 1 = 

−ξB 

∫ τ
0 G (τ ; t) χdt 

ρs c s 
(17) 

here the parameter ξ has the following mathematical expression:

= 

∫ τ
0 θ (t) G (τ ; t) dt 

θ (τ ) 
∫ τ

0 G (τ ; t) dt 
(18) 

For the uncoupled method, through Eqs. (10) and (15) one can

btain 

 τ

0 

G (τ ; t) χdt = 

θ1 (τ ) ρs c s 

Q W 0 

(19) 

 = 

−Q W 0 + Q W τ1 

θ1 (τ ) 
(20) 

By substituting Eqs. (19) and (20) into Eq. (17) , the relative de-

iation of the uncoupled method at the stagnation point can be

ritten as follows: 

 τ/ 1 = ξ
Q W 0 − Q W τ1 

Q W 0 

(21) 

Usually, Q W 0 and Q W τ 1 can be obtained from numerical simu-

ation when using the uncoupled method, and ξ can be calculated

y Eq. (18) . 

If θ ( t ) is a monotonically increasing function, it can be obtained

hat ξ ≤ 1. Thus, the relative deviation has the following relation-

hip. 

 τ/ 1 ≤ Q W 0 − Q W τ1 

Q W 0 

. (22) 
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For the sustained hypersonic flight within the atmosphere, usu-

ally, the wall temperature function is a monotonically increasing

one. Therefore, the above condition can be easily met. 

For the exact expression of ξ of an arbitrary body, the actual

excess temperature and Green function are required. Unfortunately,

θ ( t ) is unknown and the expression of G ( τ ; t ) can be very complex.

Here, the one-dimensional model of a finite thickness flat plate as

shown in Fig. 3 is used to calculate ξ . By substituting Eqs. (12) and

(13) into Eq. (18) , ξ can be obtained as follows: 

ξ f lat = 

∫ τ
0 θ f lat (t) G f lat (τ ; t) dt 

θ f lat (τ ) 
∫ τ

0 G f lat (τ ; t) dt 

= 

αs τ
2 δ2 + 

2 αs 

δ2 

∑ ∞ 

m =1 

∫ τ
0 t e 

−m 

2 π2 αs 
δ2 (τ−t) dt + 

2 
π2 

∑ ∞ 

n =1 

∫ τ
0 

1 −e 
−n 2 π2 αs 

δ2 
t 

n 2 
dt [ 

αs 

δ2 τ + 

2 
π2 

∑ ∞ 

n =1 
1 −e 

−n 2 π2 αs 
δ2 

τ

n 2 

] [ 
τ + 

2 δ2 

αs π2 

∑ ∞ 

m =1 
1 −e 

−m 2 π2 αs 
δ2 

τ

m 

2 

] 

+ 

4 
π2 

∑ ∞ 

n =1 

∑ ∞ 

m =1 

∫ τ
0 

1 −e 
−n 2 π2 αs 

δ2 
t 

n 2 
e −m 

2 π2 αs 
δ2 (τ−t) dt [ 

αs 

δ2 τ + 

2 
π2 

∑ ∞ 

n =1 
1 −e 

−n 2 π2 αs 
δ2 

τ

n 2 

] [ 
τ + 

2 δ2 

αs π2 

∑ ∞ 

m =1 
1 −e 

−m 2 π2 αs 
δ2 

τ

m 

2 

] 
(23)

The convergence of the infinite series in Eq. (23) can

be proved theoretically as follows. All the infinite series in

the two terms of Eq. (23) are related with the follow-

ing three types: 
∑ ∞ 

n =1 

∫ x 
0 

1 −e −n 2 Ax 

n 2 
dx , 

∑ ∞ 

n =1 

∫ x 
0 x 

′ e −n 2 A (x −x ′ ) dx ′ and∑ ∞ 

m =1 

∑ ∞ 

n =1 

∫ x 
0 

e −m 2 A (x −x ′ ) 
n 2 

d x ′ . For the first type, it can be shown that∑ ∞ 

n =1 

∫ x 
0 

1 −e −n 2 Ax ′ 
n 2 

dx ′ = 

∑ ∞ 

n =1 
x 

n 2 
+ 

−1 
A n 4 

+ 

e −n 2 Ax 

A n 4 
, where A is a positive

constant. While the second type has following relationship with

the first one: 
∑ ∞ 

n =1 

∫ x 
0 x 

′ e −n 2 A (x −x ) ′ dx ′ = 

1 
A 

∑ ∞ 

n =1 

∫ x 
0 

1 −e −n 2 Ax 

n 2 
dx ′ . For

the third type, 
∑ ∞ 

m =1 

∑ ∞ 

n =1 

∫ x 
0 

e −m 2 A (x −x ′ ) 
n 2 

d x ′ = 

∑ ∞ 

m =1 

∑ ∞ 

n =1 
1 −e −A m 2 x 

A m 

2 n 2 
. 

From calculus it is known that for the infinite series 
∑ ∞ 

n =1 a n , it

is convergent if a n equals to 1 
n , 

1 
n 2 

or 1 
n 4 

. Thus, the infinite series

in Eq. (23) are convergent. 

So, we can obtain the numerical solution of ξ flat . By fitting the

numerical solution of Eq. (23) , the approximate function of ξ flat can

be obtained as follows: 

ξ f lat ≈ 0 . 706 − 0 . 208 e −1 . 68 /F o (24)

In the above approximate function, the range of Fo is from 10 –4 

to 50. The value of R-square which is used to evaluate the fitting

quality is 0.989. So, ɛ τ /1 of the uncoupled approach can be esti-

mated as : 

ε τ/ 1 ≈ (0 . 706 − 0 . 208 e −1 . 68 /F o ) 
Q W 0 − Q W τ1 

Q W 0 

(25)

4.2. Relative deviation of excess temperature for loosely coupled 

quasi-static method 

When using the loosely coupled quasi-static fluid-thermal anal-

ysis, the boundary heat flux is Q WN ( t ). At time τ , the relative de-

viation of excess temperature for the loosely coupled quasi-static

method can be described as follows: 

ε τ/N = 

θN (τ ) − θ (τ ) 

θ (τ ) 
= ε τ/ 1 (1 − β) (26)

where 

β = 

θ1 (τ ) − θN (τ ) 

θ1 (τ ) − θ (τ ) 
(27)
F

According to Eq. (10) , β can be calculated as follows: 

= 

∫ τ
0 [ Q W 0 − Q W N (t)] G (τ ; t) χdt ∫ τ
0 [ Q W 0 − Q W 

(t)] G (τ ; t) χdt 
(28)

As illustrated in Fig. 4 , it is assumed that the boundary heat

ux Q WN ( t ) is a step-wise approximation along the curve of Q W 

( t ).

y substituting Eq. (15) into Eq. (28) , β can be written as: 

= 

∫ τ
0 [ Q W 0 − Q W N (t)] G (τ ; t) χdt ∫ τ
0 [ Q W 0 − Q W 

(t)] G (τ ; t) χdt 

= 

∑ N 
i =1 [ Q W 0 − Q Wi ] 

∫ τi 

τi −1 
G (τ ; t) χdt ∫ τ

0 [ A + B T W 0 − A − B T W 

(t)] G (τ ; t) χdt 

= 

∑ N 
i =1 −Bθ ( τi −1 ) 

∫ τi 

τi −1 
G (τ ; t) χdt ∫ τ

0 −Bθ (t) G (τ ; t) χdt 
= 

∑ N 
i =1 θ ( τi −1 ) 

∫ τi 

τi −1 
G (τ ; t) dt ∫ τ

0 θ (t) G (τ ; t) dt 

(29)

here N = τ/ �τs 

For the exact expression of β of an arbitrary body, the actual

xcess temperature and Green function are needed. Again, the one-

imensional model as described in Eq. (11) is approximately used

o calculate β . By substituting Eqs. (12) and (13) into Eq. (29) , it

an be obtained that β is a function of Fo and N . The range of β
alue is given as follows: 

 − 1 

N 

≤ β ≤ 1 (30)

So it can be obtained that: 

 τ/N ≤ ε τ/ 1 /N (31)

. Numerical methodology 

Numerical solutions for some typical geometries will be taken

s references by which the above revised deviation formulas can be

ompared. In this section, the numerical methodology is presented

or solving the fluid and structural thermal response problem, and

n the next section numerical results will be presented. The gov-

rning equations for aerothermodynamics and structural thermal

esponse are solved using the finite volume method. The transient

erm is advanced by using a third-order Runge–Kutta scheme [22] .

he following time marching scheme is adopted. 

U 

(1) = U 

n + �t R h ( U 

n ) 

U 

(2) = 

3 

4 

U 

n + 

1 

4 

U 

(1) + 

1 

4 

�t R h ( U 

(1) ) 

 

(n +1) = 

1 

3 

U 

n + 

2 

3 

U 

(2) + 

2 

3 

�t R h ( U 

(2) ) (32)

Here, the time step �t which is used in the above equation to

olve Eq. (1) or (7) is different from the forward time step �τ s 

as shown in Fig. 2 ). The forward time step can be regarded as the

ime interval of exchanging the information at the interfaces. 

For the N-S equations, AUSMPW + scheme is used to discretize

he convective flux, the viscous flux is computed using second-

rder central scheme. The AUSMPW + scheme is an improvement

f AUSMPW scheme. The purpose of the AUSMPW scheme is

o combine the advantage of AUSM + and AUSMD/V. In order to

chieve this purpose, a pressure-based weight function is used.

ut the weight function is quite complicated. In the AUSMPW + ,

he weight function is simplified. The AUSMPW + scheme has been

sed widely for the last fifteen years. 

When using AUSMPW + scheme, the numerical convective flux

t the cell interface can be written as follows [23] : 

¯ + ¯ − + −

 1 / 2 = M L a 1 / 2 �L + M R a 1 / 2 �R + (P L P L + P R P R ) (33) 
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Table 1 

The simulation conditions of Case 1. 

Properties Values 

Solid density ρs , kg/m 

3 8030 

Solid specific heat capacity c s , J/(kg K) 502.48 

Solid thermal conductivity λs , W/(m K) 16.27 

Initial free-stream T ∞ , K 241.5 

Initial free-stream Ma ∞ 6.47 

Initial free-stream P ∞ , Pa 648.13 

Table 2 

The simulation conditions of Case 2. 

Properties Values 

Solid density ρs , kg/m 

3 7910 

Solid specific heat capacity c s , J/(kg K) 460 

Solid thermal conductivity λs , W/(m K) 36.5 

Initial free-stream T ∞ , K 125.07 

Initial free-stream Ma ∞ 8.0 

Initial free-stream P ∞ , Pa 855.0 

Table 3 

The simulation conditions of Case 3. 

Properties Values 

Solid density ρs , kg/m 

3 8030 

Solid specific heat capacity c s , J/(kg K) 502.48 

Solid thermal conductivity λs , W/(m K) 16.27 

Initial free-stream T ∞ , K 48.88 

Initial free-stream Ma ∞ 9.86 

Initial free-stream P ∞ , Pa 59.92 

Fig. 5. Geometric dimensions and computational meshes. 

6

 

c  

F  

t  

i  

6  

c  

a  

m  
(a) for M 1/2 ≥ 0 

M̄ 

+ 
L 

= M 

+ 
L 

+ M 

−
R 

· [(1 − w )(1 + f R ) − f L ] 

M̄ 

−
R 

= M 

−
R 

· w (1 + f R ) 
(34) 

(b) for M 1/2 < 0 

M̄ 

+ 
L 

= M 

+ 
L 

· w (1 + f L ) 

M̄ 

−
R 

= M 

−
R 

+ M 

+ 
L 

· [(1 − w )(1 + f L ) − f R ] 
(35) 

here 

 ( p L , p R ) = 1 − min 

(
p L 
p R 

, 
p R 
p L 

)3 

(36) 

The details of M 

±, P ±
L/R 

, f L / R can be found in [23] . In one dimen-

ion, � = (ρ, ρu, ρH) T and P = (0 ,p, 0) T . 

The left and right states �L , �R are obtained by using the third-

rder MUSCL scheme [23] . 

�L = �i + 

1 

4 

[ (
1 − 1 

3 

)
∇ + 

(
1 + 

1 

3 

)
�

] 
i 

R = �i +1 −
1 

4 

[ (
1 − 1 

3 

)
∇ + (1 + 

1 

3 

) �
] 

i +1 

�i = m inmod [ ( �i +1 − �i ) , α( �i − �i −1 )] 

∇ i = m inmod [ ( �i − �i −1 ) , α( �i +1 − �i )] (37) 

in mod (a, b) = sign (a ) max [0 , min (asign (b) , bsign (a ))] , 1 ≤ α ≤
(38) 

For the structured body-fitted coordinate grids, Jacobi transfor-

ation is used to obtain the gradient of variable. The formulas can

e written as follows [24] : 

∂φ

∂x 
= 

∂φ

∂η
ηx + 

∂φ

∂κ
κx (39) 

∂φ

∂y 
= 

∂φ

∂η
ηy + 

∂φ

∂κ
κy (40) 

here ηx , ηy , κx , κy can be calculated by: 

x = J −1 y κ , ηy = −J −1 x κ , κx = −J −1 y η, κy = J −1 x η (41)

here J is the Jacobi factor, whose definition is: 

 = x ηy κ − x κy η (42) 

For the unstructured grids, the gradient of variable is calculated

sing Gauss-Green reconstruction gradient method. For a control

olume, the average gradient is calculated by the following expres-

ion [25] : 

φ = 

1 

�V 

Num _ Face ∑ 

m =1 

(
φ· → 

S 

)
m 

(43) 

here (φ· → 

S ) m 

is the product at the interface numbered by m . In

his formula, the value of φ at the interface is calculated using

rithmetic mean of two adjacent units. 

. Numerical results and discussion 

To verify Eqs. (21) and (31) , some 2-D and 3-D fluid-thermal

oupling numerical simulations are studied. For the 2-D simula-

ion, the hypersonic flows passing over a cylinder and a cone are

onsidered. For each flow, two cases are calculated with Mach 6.47

nd Mach 8, respectively. The structural thermal physical proper-

ies and initial free-stream conditions for Case 1 and Case 2 are

iven in Tables 1 and 2 , respectively. For the 3-D simulation, the

ypersonic flow passing over a sphere is studied. The simulation

onditions are given in Table 3 . In the comparison, the thermal re-

ponses calculated by the fully transient method are treated as the

xact solution. 
.1. The geometric shape and computational meshes 

For the 2-D simulations, the two geometric shapes and the

omputational meshes used in the simulations are illustrated in

igs. 5 and 6 , respectively. For the hollow cylinder shown in Fig. 5 ,

he outer radius is 38.1 mm. The thickness of the cylinder wall

s 12.7 mm. In the fluid domain, a structured grid system with

1 × 61 nodes is used in this simulation. In the boundary layer,

lustered grid points are set for sufficient resolution. For the cone,

s illustrated in Fig. 6 , the total length is 50 mm. In the fluid do-

ain, a structured mesh with 61 × 101 nodes is used. In the solid
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Fig. 6. Geometric dimensions and computational meshes. 

Fig. 7. Geometric dimensions and computational meshes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Grid independence test in fluid domain. 

Fig. 9. Grid independence test in solid domain. 
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domain, an unstructured mesh is used. In those simulations, the

initial structure temperature is 294.4 K. 

For the 3-D simulations, the geometric shape and computa-

tional mesh are shown in Fig. 7 . The radius of the sphere is

38.1 mm. In the fluid domain, 21,780 grid cells are used. In the

solid domain, the initial temperature is 300 K. 

The above meshes have been examined by grid independence

tests. Taking the 2-D cylinder simulation for example, the grid in-

dependence tests under the Case 1 simulation condition for the

fluid and solid regions are shown in Figs. 8 and 9 , respectively.

In the test simulations for fluid, the wall temperature is set to

294.4 K. Q W 0 is the wall heat flux at the stagnation point when

the hypersonic flow reaches a steady state. The difference in Q W 0 

among the third mesh which is used in the following fluid simula-

tion and the last one is about 0.1%. So, the third mesh can be re-

garded as one that can provide grid independent solutions. In the

test simulations for the solid, the wall heat fluxes obtained from

the above simulation are set to the left boundary. θ is the excess

temperature at the left boundary when τs = 100 s . The difference
n θ between the last two meshes is about 0.006%. So, the fifth

esh is used in the following solid simulation. 

Initially, the structures are in uniform isothermal condition.

ext, the hypersonic flow reaches a steady state under the ini-

ial and boundary conditions. The distributions of temperature and

ach number within the flow field of Case 1 of flow over the

ylinder are illustrated in Fig. 10 as an example. After that, the

uid-thermal coupling numerical simulations are carried out. Tak-

ng the 3-D simulation for example, the temperature field on the

olid domain obtained by using the fully transient method at time

1.9 s is shown in Fig. 11 . For the other situations, similar distribu-

ions are obtained. For the simplicity of presentation, they are not

hown here. We will focus on the accuracy analysis of the derived

eviation prediction equations 

.2. Relative deviation of the uncoupled approach at the stagnation 

oint 

The uncoupled method is used to calculate the wall tempera-

ures for different flight times ( τ end ). The relative deviations of ex-

ess temperature at the stagnation point then can be obtained by

omparing the uncoupled results with the fully transient method. 
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Fig. 10. Temperature and Mach distributions within the fluid. 

Fig. 11. Temperature distributions of the sphere. 
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For the cylinder, the deviations resulting from numerical simu-

ation and from the formula for Case 1 and Case 2 are illustrated

n Figs. 12 and 13 , respectively. For the cone, they are illustrated in

igs. 14 and 15 , respectively. The results of the sphere are shown in

ig. 16 . In those figures, the black line represents the relative de-

iation between the uncoupled simulation and fully transient sim-

lation. The relative deviation of uncoupled method in Eq. (21) is

hown by the red line for the flat case. 

From those figures, it can be seen that all the deviations ob-

ained by numerical simulation are lower than those obtained from

heoretical formula of one-dimensional model in which ξ is equal

o 1. This fact coincides with the previous theoretical analysis. 

Those figures show that the results predicted by the formula

n which ξ = ξ f lat agree well with the numerical simulation. As

hown in Tables 1–3 , Case 1, Case 2 and Case 3 have different

tructural thermal physical properties and initial free-stream con-
itions. It can be found that the theoretical formulas derived by

dopting flat plate model ( ξ = ξ f lat ) can adapt to the structural

hermal properties and flow conditions studied. In addition, it may

e noted that from Figs. 12 to 16 , appreciable deviation between

= ξ f lat and ξ = 1 can be observed. This implies that for the flat 

ase θ ( t ) is actually a monotonically increasing function of t , thus

eplacing the instant value of θ ( t ) by its maximum value θ ( τ ) must

ead to great differences. It is also interesting to point out that

rom these figures it can be seen that the deviation of the cone

s greater compared with the cylinder. This is caused by different

eometries between the cone and cylinder. The radius of the cone

s 8 mm ( Fig. 6 ), which is smaller than the radius of the cylinder

38.1 mm, Fig. 5 ). Usually, at the same initial free-stream condi-

ions, the smaller the radius, the bigger the wall heat flux at the

tagnation point. So the different boundary heat fluxes at the stag-

ation points lead to different deviations. 
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Fig. 12. Relative deviation of Case 1 of the cylinder. 

Fig. 13. Relative deviation of Case 2 of the cylinder. 

Fig. 14. Relative deviation of Case 1 of the cone. 

Fig. 15. Relative deviation of Case 2 of the cone. 

Fig. 16. Relative deviation of Case 3 of the sphere. 
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.3. Relative deviation of loosely coupled quasi-static method at the 

tagnation point 

The loosely coupled quasi-static method is used for different

orward time steps ( �τ s ). At flight time τend = 50 s , the tempera-

ures are compared with the fully transient method. For the cylin-

er, the relative deviation obtained by numerical simulation and

he formula for Case 1 and Case 2 are illustrated in Figs. 17 and

8 , respectively. For the cone, the relative deviation obtained by

umerical simulation and the formula for Case 1 and Case 2 are il-

ustrated in Figs. 19 and 20 , respectively. The results of the sphere

re shown in Fig. 21 . In these figures, N = 

50 s 
�τs 

. It can be seen that

he results of numerical simulation are less than 

ε 50 s/ 1 

N , which is in

uite good agreement with the theoretical analysis. 

When using the loosely coupled quasi-static method, usually

here is no criterion to determine how large the values of for-

ard time steps �τ s should be. Often it was determined by a trial

nd error practice. However, the values of �τ s are quite important.

sually, the bigger the value of �τ s , the worse the simulation pre-

ision and the less the computational cost. When �τs = τ , the
end 
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Fig. 17. Relative deviation of Case 1 of the cylinder. 

Fig. 18. Relative deviation of Case 2 of the cylinder. 

Fig. 19. Relative deviation of Case 1 of the cone. 

Fig. 20. Relative deviation of Case 2 of the cone. 

Fig. 21. Relative deviation of the sphere. 

l  

m  

c  

v  

w  

t  

d  

F  

p  

t

7

 

a  

m  

f  

m  

r  

fl  

m  
oosely coupled quasi-static method is equivalent to the uncoupled

ethod which has the minimal computational cost but worst ac-

uracy. From the above results, it can be seen that the relative de-

iation of the loosely coupled quasi-static method reduced rapidly

hen N is small, then with the increase of N, the relative devia-

ion reduces very slowly. In the large N region, there is tremen-

ous computational cost to obtain a small increase in accuracy.

igs. 17–21 therefore provide some guidance for selecting an ap-

ropriate forward time step in order to make a good balance be-

ween computational cost and accuracy. 

. Conclusion 

Through analyzing the features of unsteady heat conduction of

 one-dimensional model, theoretical formulas are derived to esti-

ate the structural temperature deviations at the stagnation point

or the uncoupled and loosely coupled quasi-static fluid-thermal

ethods. The fluid-thermal coupling numerical simulation is car-

ied out to verify the present estimation formulas on hypersonic

ow over a 2-D cylinder, cone and a 3-D sphere. For the uncoupled

ethod, the results of the simulation agree well with the formula
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in which ξ = ξ f lat . For the loosely coupled quasi-static method, the

deviation of the numerical simulations are less than ɛ τ /1 / N which

is consistent with the theoretical analysis. The derived deviation

estimation formulas provide some guidance to select an appropri-

ate forward time step for the loosely coupled quasi-static method

with a specified prediction error. 

Lastly, additional research is required before it is recommended

that one implement this estimation method to significantly more

complex problems. For example, when analyzing a complete hy-

personic vehicle, the effects of the complex vehicle shape and the

fluid-flow boundary conditions which vary with the transient tra-

jectories on the estimation formulas should be studied. 
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