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ABSTRACT 
Anisotropy problems are widely encountered in practical applications. In the 
present paper, a parallel and scalable multigrid (MG) method combined with 
the high-order compact difference scheme is employed to solve an 
anisotropy model equation on a rectangular domain. The present method 
is compared with the MG combined with the standard central difference 
scheme. Numerical results show that the MG method combined with the 
high-order compact difference scheme is more accurate and efficient than 
the MG with the standard central difference scheme for solving anisotropy 
elliptic problems. MG components (restriction, prolongation, relaxation, 
and cycling) and the corresponding parallelism characteristics are also 
discussed. 
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1. Introduction 

Numerical solution of anisotropy elliptic diffusion problems is frequently encountered in computa-
tional fluid dynamics. In the view of the discretization process, the sources of the anisotropy 
discrete algebraic equation step from two aspects: varying coefficients and grid stretching. First, 
the anisotropy term describes the properties of materials of being directionally dependent [1]. Heat 
conduction, for example, is anisotropy in the cases of fiber-reinforced composites. The longitudinal 
thermal conductivity of the unidirectional carbon fiber-reinforced plastic with a fiber volume 
fraction of 60% can be greater than that in transverse direction by 50 times [2]. Second, uniform 
grids discretization is inappropriate for many physical problems involving boundary layers. To get 
an accurate solution on a limited number of grids, grid points are clustered inside the boundary 
layers which are featured by large gradients [3,4]. As a result, the nonuniform distributions of grids 
also introduce anisotropy in a discrete algebraic equation. In recent years, a number of studies 
about anisotropy elliptic diffusion problem have been published. Wang et al. [5] proposed a new 
combined procedure IEFEM (radiative integral equation and finite element method) for solving 
radiative heat transfer in anisotropic scattering media. This new IEFEM scheme has prefer to 
geometry adaptability and can predict the anisotropy radative heat transfer accurately. To remove 
angular false sacttering, Hunter and Guo [6] implemented four higher-order quadrature sets for 
calculation of radiative transfer in a three-dimensional cubic enclosure containing participating 
media. A proper phase-function normalization is implemented to efficiently obtain accurate results. 
Tsai et al. [7] adopted a coordinate transformation (CT) method to investigate the microscale 
anisotropic thin-film heat conduction surrounded by an ultrafast pulse laser heating. Three 
different models are used to study the influence of thermal properties on the anisotropic heat 
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conduction. Guedri et al. [8] compared FTn finite volume method (FTn FVM) with standard FVM 
for transient radiative transfer in anisotropically scattering medium. It is found that FTn FVM can 
largely reduce the ray effects and obtain more accurate results than standard FVM. Also, using the 
same spatial discretization scheme, FTn FVM has higher convergence rate than the standard FVM 
[8]. More recently, Liu et al. [9] derived a direct numerical finite volume scheme for anisotropic 
diffusion problems on skewd meshes. Compared with balance-point method and adaptive method, 
the direct method has the least convergence time [9]. 

High-order compact (HOC) schemes in combination with a variety of solution strategies have 
drawn much attention in international computational community in the past two decades [10–15]. 
Following is a brief review for papers published since 2000. Gupta and Zhang [10] presented a multi-
grid solving strategies of 3D convection–diffusion equation approximated by a fourth-order HOC 
scheme. Zhang et al. [11] poposed a new fourth-order 15 points HOC difference scheme for the 
3D convection–diffusion equation. In [11], Zhang et al. adopted a parallelization mulitigrid (MG) 
method to accelarate solution process. Wang and Zhang [12] developed a sixth-order HOC solution 
procedure to solve 2D poisson equation. The studies mentioned above [10–12] are all based on 
uniform mesh size discretization. A transformation-free HOC scheme on nonuniform grids for a 
steady 2D convection–diffusion equation has been studied by Kalita et al. [13]. And then Ge and 
Cao [14] introduced a MG method based on [13] to accelerate the solution process. Prieto et al. 
[15] compared two robust multigrid methods for anisotropy elliptic equations. But the accuracy of 
the discretization operator they adopted is only second order. 

In this paper, HOC difference schemes are adopted to solve anisotropy diffusion equations with 
the advantages of high accuracy and compact scheme stencils for nonuniform grid network. A parallel 
scalable MG method is developed to solve the resulting sparse linear equations, and the numerical 
properties are discussed. 

The rest of the paper is organized as follows: In Section 2, a mathematical model of anisotropy 
problems and HOC difference scheme are described. In Section 3, a parallel scalable MG algorithm 
combined with HOC is presented. The simulation results are presented in Section 4, and finally, some 
conclusions are given in Section 5. 

2. Mathematical model and HOC discretization 

A 3D anisotropy diffusion equation with Dirichlet boundary condition studied in this paper is given 
by the following equations: 

e
q2/

qy2 þ
q2/

qx2 þ
q2/

qz2

� �

¼ s x; y; zð Þ; x; y; zð Þ 2 X; ð1Þ

/ x; y; zð Þ ¼ constant; x; y; zð Þ 2 qX ð2Þ

Nomenclature 

anb coefficients of the neighbor grid points 
ap coefficient of the master grid point 
e absolute maximum errors 
Ep parallel efficiency 
M convergence rate 
n grid number 
r residual at fine grid point 
R residual at coarse grid point 
s source function 
Sp speed up 
v grid volume at fine grid point 

V grid volume at coarse grid point 
δ difference operator 
ε constant 
Φ solution variable 
η constants 
λ grid stretching parameter  

Subscripts 
i,j,k number index 
x, y, z coordinate variables   
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where Ω is a rectangular domain ((x, y, z)∈[0, 2]�[0, 2η]�[0, 2]) and ∂Ω is the boundary of the 
domain. The source function s(x, y, z) and the solution variable ϕ(x, y, z) are smooth and differenti-
able. In the present paper, a source term of following form: 

s x; y; zð Þ ¼ � 2þ
e

g2

� �

p2 sin
p

g
y

� �

sin pxð Þ sin pzð Þ ð3Þ

is assumed. Then, for the boundary condition of ϕ(x,y,z)¼0 following analytical solution of Eq. (1) 
can be obtained: 

/ x; y; zð Þ ¼ sin
p

g
y

� �

sin pxð Þ sin pzð Þ ð4Þ

This analytical solution will be used to compare the accuracy of difference schemes. 
Cell-centered grids in which the grid points are placed at the centers of the cells are used in 

this paper. We divide the computed domain Ω into sub-intervals by the points 
0 ¼ x0; x1; . . . ; xnx � 1; xnx ¼ 2; 0 ¼ z0; z1; . . . ; znz � 1; znz ¼ 2, and 0 ¼ y0; y1; . . . ; yny� 1; yny ¼ 2g:

Nonuniform grid is used by the following stretching function: 

xi ¼ 2�
i

nx
þ

kx

nx
� sin

p � i
nx

� �� �

; 0 � i � nx ð5aÞ

zk ¼ 2�
i

nz
þ

kz

nz
� sin

p � k
nz

� �� �

; 0 � k � nz ð5bÞ

yj ¼ 2g�
i

ny
þ

ky

ny
� sin

p � j
ny

� �� �

; 0 � j � ny ð5cÞ

Parameters λx, λy, and λz are used to control grid clustering (Figure 1 for illustration). Its absolute 
value ranges from � 1 to 1 and grids are tuned to be uniform when λx¼λy¼λz¼0. 

The forward and backward difference step lengths are, respectively, defined by xf¼xiþ1� xi and 
xb¼xi� xi� 1 in the x-direction. And similarly, yf, yb, zf, zb can be defined (Figure 2). Kalita et al. 
[13] proposed a transformation-free HOC scheme for the steady 2D convection–diffusion equation 
on nonuniform gird. Following the same procedure, by means of Taylor series expansion, HOC 

Figure 1. Nonuniform grid illustration in an x-y plane, nx¼ny¼30, λx¼λy¼0.5.  
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scheme on nonuniform grids for the 3D anisotropy diffusion equation, Eq. (1), is written as 
�

d2
x þ d2

z þ ed2
y þ Hxdx d2

z þ ed2
y

� �
þHzdz d2

x þ ed2
y

� �

þ Hydy d2
x þ d2

z
� �

þ Kx þ Kzð Þd2
xd

2
z þ eKx þ Ky

� �
d2

xd
2
y þ eKz þ Ky

� �
d2

yd
2
z

�

/i;j;k ¼ Si;j;k

ð6Þ

where H, K, and S are given by 

Hx ¼
1
3

xf � xb
� �

; Hy ¼
1
3

yf � yb
� �

; Hz ¼
1
3

zf � zb
� �

ð7aÞ

Kx ¼
1

12
x2

b þ x2
f � xbxf

� �
; Ky ¼

1
12

y2
b þ y2

f � ybyf

� �
;

Kz ¼
1

12
z2

b þ z2
f � zbzf

� � ð7bÞ

and 

Si;j;k ¼

�

1þ Hxdx þ Hzdz þ Hydy þ Kx � 1:5H2
x

� �
d2

x þ Ky � 1:5H2
y

� �
d2

y þ Kz � 1:5H2
z

� �
d2

z

�

si;j;k

ð7cÞ

In the x-direction, finite difference operators δx and d2
x are defined by 

dx/i;j;k ¼
/iþ1;j;k � /i� 1;j;k

xf þ xb
;

d2
x/i;j;k ¼

2
xf þ xb
� �

/i� 1;j;k

xb
þ

/iþ1;j;k

xf
�

1
xb
þ

1
xf

� �

/i;j;k

� � ð8Þ

Finite difference operators in the y- and z-direction can be defined similarly. 
For convenient expression, first- and second-order difference operator δx and d2

x can be 
rewritten as 

dx/i;j;k ¼ Lx/i� 1;j;k þ Rx/iþ1;j;k;

d2
x/i;j;k ¼ Ax/i� 1;j;k þ Bx/i;j;k þ Cx/iþ1;j;k

ð9Þ

Figure 2. Nonuniform grid compact scheme stencil: (a) x-y plane; (b) z direction.  
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Lx ¼ �
1

xb þ xf
; Rx ¼

1
xb þ xf

; Ax ¼
2

xb þ xf
� �

xb
;

Bx ¼ �
2

xbxf
; Cx ¼

2
xb þ xf
� �

xf

ð10Þ

Similarly, dy; d
2
y and dz; d

2
z can be defined. 

Substituting operator formulas Eq. (8) into Eq. (6), considering node numbering shown in 
Figure 3, 19 points HOC scheme for the 3D anisotropy diffusion equation, Eq. (1), on nonuniform 
grids can be derived as follows: 

X

nb¼1 �18
anb/nb � ap/i;j;k ¼ rhsi;j;k ð11Þ

The coefficients anb(nb¼1 ∼18), ap, and rhsi, j, k are given as:  

a1 ¼ HyLyAz þ eHzLzAy þ Ky þ eKz
� �

AyAz;

a2 ¼ HxLxAz þHzLzAx þ Kx þ Kzð ÞAxAz;

a3 ¼ Az þHzLz Bx þ eBy
� �

þ Kx þ Kzð ÞBxAz þ Ky þ eKz
� �

ByAz;

a4 ¼ HxRxAz þHzLzCx þ Kx þ Kzð ÞCxAz;

a5 ¼ HyRyAz þ eHzLzCy þ Ky þ eKz
� �

CyAz;

a6 ¼ eHxLxAy þ HyLyAx þ eKx þ Ky
� �

AxAy;

a7 ¼ eAy þ HyLy Bx þ Bzð Þ þ eKx þ Ky
� �

BxAy þ Ky þ eKz
� �

AyBz;

a8 ¼ eHxRxAy þ HyLyCx þ Ky þ eKx
� �

CxAy;

a9 ¼ Ax þHxLx Bz þ eBy
� �

þ Ky þ eKx
� �

AxBy þ Kx þ Kzð ÞAxBz;

a10 ¼ Cx þ HxRx Bz þ eBy
� �

þ Ky þ eKx
� �

CxBy þ Kx þ Kzð ÞCxBz;

Figure 3. Grid points labeling of the 19-point HOC difference scheme stencil.  
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a11 ¼ eHxLxCy þ HyRyAx þ Ky þ eKx
� �

CyAx;

a12 ¼ eCy þHyRy Bx þ Bzð Þ þ eKx þ Ky
� �

BxCy þ Ky þ eKz
� �

CyBz;

a13 ¼ eHxRxCy þ HyRyCx þ Ky þ eKx
� �

CyCx;

a14 ¼ HyLyCz þ eHzRzAy þ Ky þ eKz
� �

AyCz;

a15 ¼ HxLxCz þ HzRzAx þ Kx þ Kzð ÞAxCz;

a16 ¼ Cz þ HzRz Bx þ eBy
� �

þ Kz þ Kxð ÞCzBx þ Kx þ eKzð ÞCzBy;

a17 ¼ HxRxCz þ HzRzCx þ Kz þ Kxð ÞCzCx;

a18 ¼ HyRyCz þ eHzRzCy þ Ky þ eKz
� �

CyCz;

ap ¼ Bx þ Bz þ eBy þ eKx þ Ky
� �

BxBy þ Ky þ eKz
� �

ByBz þ Kx þ Kzð ÞBxBz 

rhsi;j;k ¼ HxLx þ Kx � 1:5H2
x

� �
Ax

� �
si� 1;j;k þ HxRx þ Kx � 1:5H2

x
� �

Cx
� �

siþ1;j;k

þ HyLy þ Ky � 1:5H2
y

� �
Ay

h i
si;j� 1;k þ HyRy þ Ky � 1:5H2

y

� �
Cy

h i
si;jþ1;k

þ HzLz þ Kz � 1:5H2
z

� �
Az

� �
si;j;k� 1 þ HzRz þ Kz � 1:5H2

z
� �

Cz
� �

si;j;kþ1

þ 1þ Kx � 1:5H2
x

� �
Bx þ Ky � 1:5H2

y

� �
By þ Kz � 1:5H2

z
� �

By

h i
si;j;k:

ð12Þ

3. Parallel scalable MG method 

Multigrid method as a well-known and most efficient algorithm has been widely applied to solve the 
discretized elliptic partial differential equations. MG algorithms include four basic components: 
restriction, prolongation, relaxation operator, and cycling method. Unlike other iterative methods, 
the convergence speed of MG method is independent of the discretization mesh size [16,17]. A 
geometry parallel MG method on cell-centered grids is adopted in the present paper. With the aid 
of message passing interface (MPI) library [18], an MG program can run on multiple cores under 
the context of a distributed memory environment. To achieve scalability and good parallel perfor-
mance, each component of MG needs to be chosen carefully. In the following section, MG compo-
nents and corresponding parallelism will be discussed. 

Grid partitioning is a natural choice of geometric MG approach and one-dimensional (1D) spatial 
partitioning is employed in the present study. For a 3D problem, the dimension of communication 
messages between processors is two. MG is intrinsically hard to parallel in comparison with other 
iterative algorithms because of that data-parallelism is different on every grid levels. The ratio of com-
munication to the computing time decreases as grids become coarser. The problem of the communi-
cation overhead at the coarsest grid needs to be treated carefully. At the coarsest grid, when number 
of grids is lower than number of processors, only one processor is responsible for the computation 
and other processors remain idle. Figure 4 exemplifies a 1D grid partitioning for four processors. 
When grid level goes down to the coarsest, the number of grids is only half of the number of proces-
sors. As a result, three processors keep idle at the coarsest grid level. A parallel V cycle has advantage 
over W and other parallel cycles because less often the coarse girds are processed in one MG cycle. 
Then, V cycle is adopted in the present MG algorithm. 
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Restriction operators are used to transfer residuals on fine grids to coarse grids. For cell-centered 
discretization, eight-point average restriction operator is frequently used to calculate the residuals on 
coarse grids. To evaluate the residuals with more accuracy on coarse grids, a volume weighting eight- 
point average restriction operator is adopted on nonuniform grids. Figure 5 shows the restriction 
operators on nonuniform grids in the context of different coarsening strategies. Ri, j, k is residual 
at coarse grid point (i, j, k) and rn(n¼1 ∼8) are corresponding fine grid points residuals. Vi, j, k repre-
sents grid volume at coarse grid point and vn(n¼1 ∼8) is grid volume at fine grid points. It is to be 
noticed that the closer the distance from fine grid point to coarse grid point (with small volume), the 
more contributions to the residuals. So the weighting coefficient is given by vn/V, and this idea is 
similar to the area law for 2D MG method [19]. The weighting restriction operator on nonuniform 
grids for different choices of coarse grids can be calculated as following: 

Figure 5. Schematic diagram of a restriction operator on nonuniform grids: (a) standard coarsening; (b) 2D semi-coarsening; and 
(c) 1D semi-coarsening.  

Figure 4. Grids partitioned for four processors and corresponding to 16 finest grid points.  
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Figure 5 að Þ standard coarsening : Ri;j;k ¼
1
V

X8

n¼1
vnrn ð13aÞ

Figure 5 bð Þ2D semi-coarsening : Ri;j;k ¼
1
V

X4

n¼1
vnrn ð13bÞ

Figure 5 cð Þ1D semi-coarsening : Ri;j;k ¼
1
V

X2

n¼1
vnrn ð13cÞ

Restriction calculations at different grids are independent of each other; even message communi-
cation is not needed except the coarsest grid level in Figure 4. 

Prolongation operators are used to interpolate residuals from coarse grids to fine grids. Trilinear 
prolongation (TP) is used for standard coarsening MG. Bilinear prolongation (BP) and linear 
prolongation (LP) are used for 2D semi-coarsening and 1D semi-coarsening MG, respectively. 
Prolongation calculations at different grid points are also independent of each other; but unlike 
restriction operators, message communication is needed. Compared with constant prolongation oper-
ator that simply assigns the values of coarse grids to the corresponding fine grids (i.e., direct injec-
tion), present prolongation operators are more accurate and they can reduce the numbers of MG 
iterations drastically. Section 4.3 will give a result for example. 

Relaxation operators are the crucial MG component with regard to parallelism. Under different 
circumstances, four colors point-successive over relaxation (SOR) and line-SOR are adopted in 
MG algorithm. The colored point-SOR relaxation is easy to parallel since the grids with each color 
can be updated independently. Line-SOR relaxation needs to solve a linear tridiagonal equation 
(TDE) within each relaxation. Divide and conquer (DAC) algorithm is very useful to solve TDE 
on parallel computers because of high efficiency and flexibility [20], so it is adopted in this paper. 
The details of the DAC algorithm can be referred to paper [20]. 

All programs are running on the SUGON cluster of our research group [21]. SUGON consists of 
32 compute nodes; for each node, there are 16 cores 2.6GHz central processing unit (CPU) and 32 GB 
RAM. 

4. Numerical results 

4.1. Accuracy comparison 

At first, HOC difference scheme accuracy on nonuniform grids is compared with standard central 
difference scheme. The analytical solution of Eq. (1) (ε¼η¼1) is taken as the reference. Uniform girds 
and a nonuniform with λx ¼ 0.5, λy ¼ � 0.5, λz ¼ 0.3 are adopted. All multigrid iterative procedures 
are terminated by stopping criterion 2 of [22], that is, ~rk k � stop tol � rhsi;j;k

�
�

�
�, where ~rk k is the 

Euclidean norm (two-norm) of the residual vector and stop_tol is 10� 10. Convergence rate M is 
calculated as [13] 

M ¼
logðe1=e2Þ

logðN2=N1Þ
ð14Þ

where e1 and e2 are the absolute maximum errors estimated for two different grids with N1 and N2 
grid points. 

Table 1 compares the absolute maximum errors on different grids for two difference schemes. It is 
obvious that convergence rate of HOC difference scheme is greater than or a least equal to 4 regard-
less of grid stretching. Errors of HOC scheme are smaller than that of standard central difference 
scheme with the same grid size. Also from Table 1, we can see that absolute maximum errors are 
increasing when grid is stretched for all difference schemes. 
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And then taking the analytical solution of Eq. (1) as the references with ε ¼ 103 and η ¼ 0.1, 
λx ¼ λy ¼ λz ¼ 0, in which anisotropy is caused by large coefficient in y-direction. Table 2 gives errors 
obtained from the HOC difference schemes for different grid sizes. As shown in the table, the rate of 
convergence is nearly equal to 3 which is still better than standard central difference scheme. 

4.2. Parallel performance comparison 

Parallel performance of the HOC scheme is compared with standard central difference scheme in this 
section. We choose ε¼η¼1 and nx¼64, ny¼128, nz¼32 in Eq. (1). A multigrid V(3,1) cycle is adopted 
in both schemes and also the same restriction and prolongation operators and the same convergence 
criterion are used. For the 19-point HOC scheme, four-color SOR relaxation can decouple the grids 
completely [13]. And for the 7-point central difference scheme, only the red-black two-color SOR 
relaxation is needed to parallelize. To achieve a good efficiency on a parallel computer, the ratio 
between computation time tcomp and communication time tcomm should be large. The number of 
communication messages of the HOC scheme is two times of the second-order central difference 
scheme. At the meantime, in one iteration, operators of 19-points HOC scheme are nearly three times 
as much as 7-point central difference scheme [10]. Figure 6 displays the relationship between the 
number of cores and speed up Sp, and the relationship between the number of cores and parallel 

Table 2. Comparison of errors on uniform grids with ε¼103 and η¼0.1. 
Grid 

Error Rate nx ny nz  

16  8 10  1.04�10� 1  

32  16 20  1.33�10� 2  2.97 
64  32 40  1.88�10� 3  2.82   

Figure 6. Comparison of the parallel performance of two different schemes: (a) numbers of cores vs. speed up; (b) numbers of 
cores vs. parallelization efficiency.  

Table 1. Comparison of errors on uniform and nonuniform grids, η¼ε ¼ 1. 

Grid Uniform grids Nonuniform grids 

nx ny nz 

Standard central scheme HOC compact scheme Standard central scheme HOC compact scheme 
Error Rate Error Rate Error Rate Error Rate  

16 8 10  2.98�10� 2   3.75�10� 3   5.86�10� 2   1.53�10� 2  

32 16 20  7.84�10� 3  1.93  1.62�10� 4  4.53  1.58�10� 2  1.89  9.49�10� 4  4.01 
64 32 40  2.01�10� 3  1.96  8.02�10� 6  4.34  3.92�10� 3  2.01  3.89�10� 5  4.61   
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efficiency Ep, defined by 

Sp ¼
T 1ð Þ
T pð Þ

ð15Þ

Ep ¼
Sp

p
� 100% ð16Þ

where T(p) is computing time for a given problem which runs on p cores. The HOC difference 
scheme with MG shows noticeably better parallel performance than central difference scheme with 
MG. Table 3 gives the CPU time in seconds with two different difference schemes, the HOC differ-
ence scheme takes up more time owing to more iteration per grid point. In the following, two special 
cases will be studied in detail with different parameters of ε and η. 

4.3. Case 1 

Consider Eq. (1) with ε¼10� 3 and η¼2. If Eq. (1) is used to solve heat conduction in solid, then ε 
is the coefficient of thermal conductivity. ε¼10� 3 means thermal resistance is very large in the 
y-direction. Variable Ф changes faster in the x- and z-directions, and slower in the y-direction. Then, 
grid numbers are set to nx¼256, nz¼512, and ny¼32. In this case, it cannot be treated efficiently with 
pointwise relaxation and standard coarsening. The reason is that pointwise relaxation performances 
badly in the non-dominant direction, that is, in the y-direction. Semi-coarsening in the x- and z- 
directions, combined with four-color relaxation, is appropriate for the present case. MG grid levels 
were 8 and then the coarsest grid is 4�8�32. Started with zero initial guess, computation will con-
verge in 20 MG V(2,1) iterations when stop_tol is reduced by 10� 10. Figure 7 shows the variation of 

Table 3. The CPU time in seconds with two different difference schemes. 

Number of cores 
CPU time (s) 

Central difference scheme HOC difference scheme  

1  0.88  1.65 
2  0.50  0.88 
4  0.31  0.49 
8  0.19  0.27 
16  0.13  0.16 
32  0.08  0.11 

HOC, high-order compact.   

Figure 7. Numbers of cores vs. parallelization efficiency for case 1.  
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parallelization efficiency along with numbers of cores. It can be seen that as the numbers of cores 
increases, parallelization efficiency decreases. For the numbers of cores ranging from 2 to 32, the cor-
responding parallelization efficiency decreases from 69 to 32%. 

Table 4 gives the comparison between MG with semi-coarsening strategy and other methods. The 
maximum number of iterations is set to 20,000. Point-SOR iteration (relaxation factor is 1.5) is not 
converged. CPU time cost of MG with standard coarsening is 10,408s, that is much higher than 
alternation line-SOR iteration (2,092s) and tremendously higher than MG with semi-coarsening in 
the x- and z-directions (17.4s). Failure and inferior of standard coarsening and point-SOR relaxation 
are obvious. 

In addition, accuracy of prolongation operator will have a strong influence on MG algorithm 
convergence. If constant prolongation operator is adopted in the present case, the CPU cost of a 
single core is 60.5s, which is more than three times as CPU cost as bilinear prolongation (17.4s). 

4.4. Case 2 

Consider Eq. (1) with ε¼103 and η¼2. In the present case, it has a strong coupling of variable Ф in the 
y-direction. To get an accurate resolution of variable Ф, we set larger numbers of grids in the regions 
of larger gradients, that is, ny¼512, nx¼64, and nz¼32. Semi-coarsening in y-direction along with 
line-SOR relaxation in the y-direction is adopted in the present computation. Line-SOR relaxation 
is parallelled by DAC method. MG grid levels were 6 and the coarsest grid is 16�64�32. The vari-
ation of parallelization efficiency with respect to numbers of cores is presented in Figure 8. In the 
present case, the amount of massage communication is constant in all the grid levels. Then, the ratio 
between tcomp and tcomm drastically decreases as MG levels go down to the coarsest grid. From 
Figure 8, parallelization efficiency decreases from 91 to 23% as numbers of cores increases. Table 5 
shows that the cost of CPU time varies with CPU cores. From Table 5, it can be observed that the 
present MG algorithm is still scalable although parallel efficiency is very low at 32 CPU cores (about 
25% as shown in Figure 8). 

Table 4. Number of iterations and the CPU time in seconds for case 1. 
Point-SOR Alternation line-SOR MG with standard coasening MG with semi-coarsening in the x- and z-directions 

Iteration CPU Iteration CPU Iteration CPU Iteration CPU  
Not converged 1,788 2,092 17,536 10,408 20 17.4 

SOR, successive over relaxation; MG, multigrid.   

Figure 8. Numbers of cores vs. parallelization efficiency for case 2.  
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5. Conclusion 

The objective of this paper is to develop a multigrid algorithm to solve anisotropy elliptic diffusion 
problems. MG components on nonuniform grids and corresponding parallelism characteristics are 
discussed. Different semi-coarsening strategies and relaxation operators are adopted for diverse ani-
sotropy applications. Numerical results show that MG method combined with the HOC difference 
scheme is very accurate and efficient, and easy to parallelize by the aid of MPI. 
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