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In the present paper, two kinds of microstructures are reconstructed for silica aerogels by diffusion-
limited cluster-cluster aggregation (DLCA) method and open-cell structure generation method. The dis-
crete ordinate method is adopted to solve radiative transfer equation, and the lattice Boltzmann method
(LBM) is adopted to solve the conduction-radiation equation to predict the effective thermal conductivity
considering the combined contribution of conduction and radiation. The partial bounce back scheme for
thermal LBM is extended to consider the thermal contact resistance between two contact components
with different thermal conductivity in aerogels. To validate the accuracy of the present model, some cor-
responding experimental measurements based on Hot Disk method are conducted. The results show that:
the open-cell structure is more suitable for the real aerogel microstructure than DLCA structure; the
effective thermal conductivity of the pure aerogel increases rapidly with temperature and is greatly sup-
pressed if additives are doped; the Rosseland equation will over-predict the effective thermal conductiv-
ity of pure aerogels, especially at high temperature, but it can be applied for aerogel composites if the
optical thickness assumption is satisfied; the thermal contact resistance in aerogels has a significant
influence on their effective thermal conductivity, and a larger thermal contact resistance leads to a smal-
ler effective thermal conductivity.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Silica aerogels are the typical nano-porous insulation materials
with high porosity, low density and extremely complicated struc-
ture. The pure aerogel is brittle and almost transparent to the
wavelength of 2–8 lm, and in practical application, some additives
(fibers and opacifiers) are adopted to enhance their mechanical
strength and extinction effect [1]. Much attention has been focused
on the estimation of the thermal conductivity of silica aerogels. In
general, the calculation models can be divided into three cate-
gories: theoretical model [2–4], experimental measurement [5–7]
and numerical method [8,9]. The effective thermal conductivity
of materials is closely associated with their microstructure, and a
proper reconstruction structure is required for the numerical
method. In the present paper, two different reconstruction meth-
ods, diffusion-limited cluster-cluster aggregation (DLCA) method
[10,11] and random generation growth method for open-cell (net-
like) structure [12], are adopted to regenerate the microstructure
of the silica aerogel. Meanwhile, the Hot Disk method is adopted
to measure the effective thermal conductivity of the silica aerogel,
and to decide which reconstruction method is more suitable for the
silica aerogel.

Radiation is the major contribution part of the effective thermal
conductivity of the silica aerogels at high temperature. Although
many researches have considered the influence of the radiation
on the effective thermal conductivity of the silica aerogel, they
assumed that the aerogels are optical thickness materials and
solved the Rosseland equation rather than the radiative transfer
equation [3,6,7]. Mendes et al. [13] pointed out that Rosseland
equation can only be applied for the optical thickness of materials
larger than 10. However, as for pure aerogel, especially at high
temperature, the optical thickness larger than 10 is not satisfied.
In addition, the discrete ordinate method (DOM) [14] is adopted
to solve the radiative transfer equation, and the lattice Boltzmann
method (LBM) is used to solve the energy transport equation with
the volumetric radiative source term obtained by solving the radia-
tive transfer equation [15]. In the present paper, the spectral
extinction coefficients of fibers and opacifiers are calculated by
Mie theory [16] rather than measured by Fourier transform infra-
red spectrometer [17].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.applthermaleng.2016.10.184&domain=pdf
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In analyzing the effective thermal conductivity of the engineer-
ing composite materials, the thermal contact resistance at the
interfaces are generally assumed negligible [18]. However, as for
aerogels, the negligible thermal contact resistance may overesti-
mate the effective thermal conductivity of the materials. Fig. 1(a)
[19] and (b) show the microstructure of the aerogels at the nanos-
cale level and microscale level, respectively. The solid skeleton of
the aerogel is made up of the aggregating nanoparticles. How the
nanoparticles aggregate to be a skeleton chain and whether the
neighboring nanoparticles contact well will significantly influence
the effective thermal conductivity of the aerogels. Furthermore, the
thermal contact resistance between the aerogel matrix and addi-
tives will also have effects on the effective thermal conductivity.
Among the previous studies, a partial bounce-back scheme for
thermal LBM was first proposed by Han et al. [20] to consider
the thermal contact resistance at the interface and then further
developed by Xie et al. [21]. However, those proposed methods
are only suitable for the case that the thermal conductivities of
the two components adjacent to the interfaces are the same. In
the present paper, we will extend this partial bounce-back scheme
to be applied for the case that the thermal conductivities of the two
components adjacent to the interfaces are different.

This paper is organized as follows. In Section 2, the LBM for
conduction-radiation energy transport equation, the DOM for
radiative transfer equation and the partial bounce back scheme
for considering the thermal contact resistance are presented. In
Section 3, the reconstruction method for aerogels, Mie theory for
extinction coefficient and Hot Disk method for determining
the effective thermal conductivity of aerogels are introduced. In
Section 4, the developed numerical method is adopted to predict
the effective thermal conductivities of aerogels. Finally, three
conclusions are drawn in Section 5.

2. Numerical method

The energy transport equation considering the volumetric
radiative heat transfer (conduction-radiation energy transport
equation) can be described as:

@T
@t

¼ k
qcp

� �
r2T � 1

ðqcpÞr � q*R ð1Þ

where T denotes the temperature; k is the thermal conductivity; qcp
is the volume specific capacity; and q

*

R is the radiative heat flux. The
calculation speed of the radiative transfer equation is much slower
than that of the diffusion equation because two additional angle
(a) Nanoscale level [19]

Fig. 1. Scanning electron microscope pictu
parameters are involved to fully describe the radiation at any posi-
tion in 3D space. To reduce calculation time, the thermal radiation is
assumed to be transferred only along z direction by neglecting the
temperature difference in x-y plane because other side surfaces are
assigned to be adiabatic. Mendes et al. [13] found that the results of
simplified homogeneous model (1D model) agree well with those of
detailed model (3D model) when predicting the effective thermal
conductivity of open-cell foams. The detailed model adopted the
blocked-off region approach [22] to obtain divergence of 3D radia-
tive heat flux in complex open-cell foam structure, and then solve
Eq. (1) to obtain the combined conduction-radiation effective ther-
mal conductivity of the 3D heterogeneous open-cell foams. On the
other hand, the simplified homogeneous model solves the 1D
conduction-radiation energy transport equation:

@T
@t

¼ keff;c
qcp

� �
@2T

@2x
� 1
ðqcpÞ

@q
*

R

@x
ð2Þ

where keff,c is the effective conductive thermal conductivity of the
3D heterogeneous conduction. In the present paper, we follow ideas
of the simplified homogeneous model. First, the LBM is used to
obtain the effective conductive thermal conductivity of the 3D
heterogeneous conduction, keff,c, by solving the 3D pure conduction
energy equation. Second, the DOM is adopted to obtain @q

*

R=@x by
solving the 1D radiative transfer equation. Finally, we use the
LBM to obtain the total heat flux (combined conductive and radia-
tive heat flux) by solving Eq. (2), and then obtain the combined
conduction-radiation effective thermal conductivity.

2.1. The LBM for 3D heterogeneous conduction

To obtain the value of keff,c, we should solve the pure conduction
equation in 3D heterogeneous material:

@TA

@t
¼ k

qcp

� �
A

r2T

@TB

@t
¼ k

qcp

� �
B

r2T
ð3Þ

where subscripts A and B represent different components. Instead of
solving the partial differential equation Eq. (3) directly, in the LBM,
the evolution equations for temperature distribution functions are
solved on lattices [23–25]. For each component, the evolution of
temperature distribution function is [26]:

f iðr
*þe

*

iDt; t þ DtÞ ¼ f iðr
*
; tÞ � Dt

s
½f iðr

*
; tÞ � f eqi ðr*; tÞ� ð4Þ
(b) Microscale level

res of the aerogel and its composites.



Fig. 2. Partial bounce-back scheme.
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where r
*

denotes the particle position; t is the real time; Dt is the
time step; fi is the temperature distribution function; and f eqi is
the equivalent distribution function. For the energy governing
equation, the D3Q19 model can be reduced to D3Q7 model without
loss of accuracy [25]. To save the computational time, we adopt the
D3Q7 model. The equivalent distribution function is defined as:

f eqi ¼ T
7
; i ¼ 0� 6 ð5Þ

In Eq. (4), e
*

i is the discrete velocity [26]:

e
*

i ¼
0 1 �1 0 0 0 0
0 0 0 1 �1 0 0
0 0 0 0 0 1 �1

2
64

3
75c ð6Þ

For each component in heterogeneous materials, the relations
between the relaxation time coefficients and thermal conductivi-
ties can be obtained by Chapman-Enskog expansion [26]:

sA ¼ 7
2

kA
ðqcpÞA

1
c2Dt

þ 0:5;

sB ¼ 7
2

kB
ðqcpÞB

1
c2Dt

þ 0:5
ð7Þ

where c is the lattice speed, and its value should be taken to ensure
the value of s within (0.5, 2) [26].

The local macroscopic temperature can be obtained by:

T ¼
X6
i¼0

f i ð8Þ

With the half lattice division treatment [27] for the interface,
we should only set [29]:

ðqcpÞA ¼ ðqcpÞB ¼ qcp ð9Þ
to ensure the heat flux continuity at the interface. The local conduc-
tive heat flux along z direction can be obtained by [26]:

qc;z ¼ �qcp
X
i

ei;zf i

 !
s� 0:5

s
ð10Þ

Then,

keff ;c ¼
R
qc;zdA

ADT=L
ð11Þ

For the 3D cubic unit cell structure, two opposite boundary sur-
faces along the z direction are set to be isothermal but at different
temperatures, and other surfaces are set to be adiabatic. For the
details of boundary condition treatments in the LBM, one can refer
to references [26,28].

2.1.1. Negligible thermal contact resistance (TCR) at the interface
If there is no TCR at the interface between two different compo-

nents, the continuity of the temperature and heat flux at the inter-
face should be satisfied. In the present paper, the interface is placed
at the middle of the lattice nodes. With the assumption of the
equality of qcp for different components, the continuity of temper-
ature and heat flux can be ensured.

2.1.2. Non-negligible thermal contact resistance (TCR) at the interface
If the TCR at the interface is non-negligible, the heat flux should

also be continuous but temperature will have a drop at the inter-
face. To consider the TCR at the interface for thermal LBM, a partial
bounce-back scheme [20,21] was proposed. However, previous
methods are only suitable for the case that the thermal conductiv-
ities of two components adjacent to the interface should be the
same. In the present paper, we will extend this partial bounce-
back scheme for the case that the thermal conductivities of compo-
nents adjacent to the interface can be different. The idea of the par-
tial bounce-back scheme is introducing a parameter d within (0,1)
to represent the portion that temperature distribution functions
bounces back from the interface when they try to stream through
the interface (as shown in Fig. 2, D3Q7 model):

f I5 ¼ df I6 þ ð1� dÞf J5 ð12Þ
where

f I6 ¼ f I6 �
1
sI

f I6 �
TI

7

 !

f J5 ¼ f J5 �
1
sJ

f J5 �
TJ

7

 ! ð13Þ

are the post-collision temperature distribution functions.
To obtain the relation between d and the TCR, we consider a 1D

heat conduction problem. Then, the TCR at the interface can be
obtained by the subtraction of the total thermal resistance
between nodes I and J and the per lattice grid thermal resistance:

Rc ¼ RT � Rg ð14Þ
and

Rg ¼ Dz=2
kI

þ Dz=2
kJ

¼ 7
4cqcp

1
sI � 0:5

þ 1
sJ � 0:5

� �
ð15Þ

If the heat conduction reaches the steady state, the following
relations will be satisfied if the equivalent distribution function
is defined by Eq. (5) [21].

f 0 ¼ f eq0 ¼ T
7
; f 1 ¼ f 3 ¼ f eq1 ¼ T

7
; f 2 ¼ f 4 ¼ f eq2 ¼ T

7
ð16Þ

From Eqs. (10) and (16), we have:

qz ¼ qcp f I6 � f I5
� �

c
sI � 0:5

sI
¼ qcp f J6 � f J5

� �
c
sJ � 0:5

sJ
ð17Þ

2
7 T

I ¼ f I5 þ f I6
2
7 T

J ¼ f J5 þ f J6

(
ð18Þ

Combining Eqs. (17) and (18) yields:
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f I6 ¼ TI

7 þ qz
2cqcp

sI
sI�0:5 ðaÞ

f I5 ¼ TI

7 � qz
2cqcp

sI
sI�0:5 ðbÞ

8<
: ð19Þ

and

f J6 ¼ TJ

7 þ qz
2cqcp

sJ
sJ�0:5 ðaÞ

f J5 ¼ TJ

7 � qz
2cqcp

sJ
sJ�0:5 ðbÞ

8<
: ð20Þ

Substituting Eqs. (13), (19.a) and (20.b) into the Eq. (12) yields:

f I5 ¼ d
TI

7
þ qz

2cqcp
sI � 1
sI � 0:5

" #
þ ð1� dÞ TJ

7
� qz

2cqcp
sJ � 1
sJ � 0:5

" #
ð21Þ

Combining Eqs. (19.b) and (21), we have

qz ¼
2
7
qcpcð1� dÞðTI � TJÞ

�
0:5

sI � 0:5
þ 0:5
sJ � 0:5

� �
ð1� dÞ þ 2d

� �
ð22Þ

The total thermal resistance is:

RT ¼ ðTI � TJÞ
qz

¼ 7
2qcpc

0:5
sI � 0:5

þ 0:5
sJ � 0:5

� �
þ 7d
qcpcð1� dÞ ð23Þ

Finally, we can obtain the relation between TCR and d:

Rc ¼ RT � Rg ¼ 7d
qcpcð1� dÞ ð24Þ
2.2. The discrete ordinate method (DOM) for radiative transfer
equation

For the absorbing, emitting and scattering medium, the radia-
tive transfer equation in any direction s can be described as
[29,30]:

dIðr*; s*Þ
ds

¼ �bIðr*; s*Þ þ bS ð25Þ

where I is the intensity, b is the extinction coefficient, and S is the
source term given by:

S ¼ ð1�xÞIbðr
*Þ þ x

4p

Z
X0¼4p

Iðr*; s*ÞUðr*; s0
*

; s
*ÞdX0 ð26Þ

where x is the scattering albedo, Uðr*; s0
*

; s
*Þ is the scattering phase

function. If the scattering is assumed to be isotropic,

Uðr*; s0
*

; s
*Þ ¼ 1. The source term becomes:

S ¼ ð1�xÞIbðr
*Þ þ x

4p

Z
X0¼4p

Iðr*; s*ÞdX0

¼ ð1�xÞIbðr
*Þ þ x

4p
G ð27Þ

where G is the incident radiation. In one-dimensional DOM, the
radiative transfer equation for isotropic scattering medium is [31]:

lm @Im

@z
¼ �bIm þ bð1�xÞIb þ b

x
4p

G ð28Þ

where l = cos a is the direction cosine. Integrating Eq. (28) over the
control volume cell yields [31]:

lm ImN � ImS
	 
 ¼ �bDzImP þ DzSmP ð29Þ

where ImN and ImS are the intensities at the north and south face of
control volume, respectively; ImP and SmP are the intensity and source
term at the center of control volume cell, respectively. A linear
relation is chosen for intensities at the same control volume cell
[32]:
ImP ¼ czI
m
N þ ð1� czÞImS ð30Þ

where cz is a constant, and 0:5 6 cz 6 1. Substituting Eq. (30) into
Eq. (29) yields [32]:

ImP ¼
lmImS =czþSmP Dz
lm=czþbDz ; l > 0

jlm jImN =czþSmP Dz
jlm j=czþbDz ; l < 0

8<
: ð31Þ

For the diffuse-gray boundary condition, the unknown bound-
ary intensities can be obtained by [31]:

Im ¼ erT4
b

p
þ 1� e

p

� �
2p
XM=2

i¼1

Im cos am sin am sin ðDamÞ ð32Þ

Once the intensities are obtained, the radiative heat flux can be
calculated by [31]:

q R ¼ 2p
Z p

a¼0
IðaÞ cosa sinada

� 2p
XM
m¼1

Im cosam sinam sinðDamÞ
ð33Þ

and the divergence of radiative heat flux required for Eq. (2) can be
obtained by [32]:

r � q*R ¼ bð1�xÞð4rT4 � GÞ ð34Þ
2.3. The LBM for conduction-radiation energy transport equation

With the keff,c obtained from Eq. (11) and the divergence of
radiative heat flux obtained from Eq. (34), a D1Q2 LB model is
adopted to solve 1D conduction-radiation energy transport equa-
tion (Eq. (2)). The evolution equation of the temperature distribu-
tion function is shown below [33]

f iðr
*þe

*

iDt; t þ DtÞ ¼ f iðr
*
; tÞ � Dt

s
½f iðr

*
; tÞ � f eqi ðr*; tÞ� � Dt

qcp
wi

@q
*

R

@x

ð35Þ
Here, wi ¼ 1=2, and [33]

s ¼ keff ;c
ðqcpÞ

1
c2Dt

þ 0:5 ð36Þ
2.4. Validation

The benchmarks of LBM with half lattice division scheme for
predicting the effective thermal conductivity of heterogeneous
materials [26,34], the LBM for conduction-radiation energy trans-
port equation [33] and the DOM for solving the radiative transport
equation [14] have been done in previous studies. To reduce the
length of this paper, their benchmark validations will not be shown
again. Here, only benchmarks of the partial bounce back scheme
for considering the TCR at the interface between two different
thermal conductivity components will be presented.

Consider a 3D pure conduction process through two contact
solid materials of different thermal conductivities with TCR at the
interface. Fig. 3(a) shows the schematic of the case (a cross section
of 3D cubic). The volumetric specific capacity of two components,
qcp, is chosen to be unity. The temperature distributions along
the centerline of 3D cubic for different d are shown in Fig. 3(b).
The theoretical solution of temperature drop at the interface and
effective thermal conductivity of this composite material are:

DT ¼ Rc
N�1
2

Dz
k1
þ Rc þ N�1

2
Dz
k2

ð37Þ



Fig. 3. Validation of partial bounce back scheme.
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ke ¼ 2l
l
k1
þ Rc þ l

k2

ð38Þ

where N is the number of lattice nodes and Rc is obtained from Eq.
(24). The grid independence of this case has been checked, and it is
found that N = 21 is enough. The accuracy of the partial bounce back
scheme is validated by the good agreement of theoretical and
numerical results shown in Table 1.
3. Application for silica aerogel and its composites

3.1. The reconstruction method

Silica aerogel is reported to be the open-cell (netlike) porous
material prepared by the sol-gel process [2]. To properly describe
how nanoparticles aggregate together, two reconstruction meth-
ods are adopted to reproduce the aerogels (at nanoscale level).
One is the diffusion-limited cluster-cluster aggregation (DLCA)
method [10,11], the other is the random generation growth
method for the open-cell porous material [12] (hereafter called
open-cell method). The DLCA method is widely used to reconstruct
the microstructures that are prepared by the sol-gel technique,
while the open-cell method is suitable for the open-cell porous
material which can ensure the solid skeleton of the material to
be continuous. The reconstructed unit cell structures based on
DLCA method and open-cell method are shown in Fig. 4(a) and
(b), respectively. Their grid numbers are all 100 � 100 � 100, and
each grid step is 4 nm. In the present paper, the numerical predic-
tions of conductive thermal conductivities of aerogels, keff,c, are
obtained based on these two reconstruction methods. As for aero-
gel composites doped with fibers and opacifiers, the reconstructed
unit cell structure is shown in Fig. 5 (at microscale level). The
matrix (white part in Fig. 5) is the pure aerogel. The grid number
is 100 � 100 � 100, and each grid step is 2 lm. As shown in
Table 1
Comparisons of theoretical solution and simulation results.

d Rc DT

m2 KW�1 Theoretical Numerical

0 0 0 0
50/57 0.05 0.2500 0.2501
100/107 0.1 0.4000 0.3999
250/257 0.25 0.6250 0.6250
1 Infinity 1.0000 1.0000
Fig. 5, the opacifiers are assumed to be spherical and randomly dis-
tributed in space, while the fibers are assumed to be randomly dis-
tributed in the plane vertical to the heat flux direction.

3.2. Mie theory for obtaining the extinction coefficient of aerogel
composites

Aerogel composites are doped with fibers and opacifiers to
enhance their extinction effects, and therefore reduce the radiative
heat flux at high temperature. If opacifiers are assumed to be
spherical, Mie theory can be applied to calculate the spectral
extinction coefficient of opacifiers [35]:

Qext ¼
2
x2

Re
X1
n¼1

ð2nþ 1Þðan þ bnÞ
" #

ð39Þ

bek;op ¼
3
2
Qext

/op

Dop
ð40Þ

If fibers are assumed to be infinite long and randomly dis-
tributed in the plane vertical to the heat flux direction, the spectral
extinction coefficient of fibers can be calculated by [3]:

QextðnÞ ¼
1
x

Re b0I þ 2
X1
n¼1

bnI

 !
þ Re a0II þ 2

X1
n¼1

anII

 !" #
ð41Þ

bek;f ¼
4/f

pDf
Qext ð42Þ

For more details of Mie theory, one can see reference [16].
The mean extinction coefficient of aerogel composites can be

obtained by [3]:

1
bT

¼
Z 1

0

1
bek

@Ebk

@Eb
dk ð43Þ
ke/(Wm�1 K�1)

Deviation Theoretical Numerical Deviation

0 1.3333 1.3333 0
0.04% 1.0000 0.9999 �0.01%
�0.025% 0.8000 0.8001 0.0125%
0 0.5000 0.5000 0
0 0 0 0



(a) DLCA structure (b) Open-cell structure 

Fig. 4. Reconstructed unit cell for pure aerogel.

Fig. 5. Reconstructed unit cell of the aerogel composites.
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bek ¼ bek;a þ bek;op þ bek;f ð44Þ
where bek;a, bek;op, bek;f are the spectral extinction coefficients of pure
aerogels, opacifiers and fibers, respectively. In the present paper,
the spectral extinction coefficient of the pure aerogel is obtained
from reference [36], while the spectral extinction coefficients of
fibers and opacifiers are obtained according to Mie theory.

3.3. The thermal conductivity of components in aerogels

To determine the effective thermal conductivity of the silica
aerogel, one should first determine the thermal conductivity of
gas and solid in aerogels. The gas thermal conductivity in nanopor-
ous aerogels can be calculated by [37]:

kg ¼ 60:22� pT�0:5

0:25qaSa=/a þ 4:01� 104 � pT�1 ð45Þ

where p is the pressure; T is the temperature; and Sa is the specific
surface area given by [6]:

Ss ¼ ð324:3=qa þ 5:03Þ � 105 ð46Þ
/a is the porosity, defined as:

/a ¼ 1� qa=qbulk ð47Þ
where qa is the density of the pure aerogel, and qbulk is the bulk den-
sity of the silicon dioxide.

The solid thermal conductivity of the bulk silicon dioxide can be
obtained by [3]:

kbulk ¼0:7526þ3:1286�10�3T�4:5242�10�6T2þ3:525�10�9T3

ð48Þ
The size of solid particle is of the same order as the phonon

mean free path, and therefore the nanoscale size effect on the ther-
mal conductivity should be considered [8]:

ks ¼ 3a
3aþ 8l

kbulk ð49Þ

where a is the size of the solid particle, and l is the phonon mean
free path.

The fiber is made of the silicon dioxide, and its thermal conduc-
tivity is shown in Eq. (48). As for opacifiers (SiC) in aerogel compos-
ites, their thermal conductivities variation with temperature can
be obtained from reference [38].

3.4. Thermal conductivity measurement for aerogels and its
composites

In the present paper, a thermal constants analyser (Hot Disk TPS
2500s) [39,40] is adopted to measure the effective thermal conduc-
tivity of aerogels and their composites. During the measurement,
Hot Disk probe operates as the heat source as well as the temper-
ature sensor. The Hot Disk probe should be placed between two
identical specimen halves. A heat pulse is then supplied by the
probe to generate a dynamic temperature field within specimens.
The temperature increment of the Hot Disk probe surface facing
specimens depends on the thermal properties of specimens, and
it can be expressed as [40]:

DTðsÞ ¼ P0

p3=2rk
DðsÞ ð50Þ

After dealing with the record temperature increase curve, one
can determine the thermal conductivity and thermal diffusivity
of the specimen simultaneously.

The effective thermal conductivities of aerogel and aerogel
composites are measured at different gas pressure and tempera-
ture. We put the specimens in a tube heating furnace in which
temperature can be adjusted from room temperature to 1000 K
and pressure can be controlled from 0.01 Pa to 1 MPa by a con-
nected molecular vacuum pump and high pressure gas source.



Fig. 7. Comparisons of effective thermal conductivity between numerical results
and experimental data.
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4. Results and discussion

To solve Eq. (2), we need some input parameters, such as the
conductive thermal conductivity of 3D heterogeneous conduction
keff,c, extinction coefficient b and the divergence of radiative heat

flux r � q*R. Mie theory is adopted to obtain the extinction coeffi-
cient of aerogels and their composites. LBM is adopted to obtain
the conductive thermal conductivity of 3D heterogeneous conduc-
tion keff,c. DOM is adopted to obtain the radiative heat flux and its

divergence r � q*R. Once the temperature field is converged, the
effective thermal conductivity of the aerogels and their composites
can be obtained by:

ke ¼ qtL=DT ¼ ðqc þ qrÞL=DT ð51Þ

where qt is the total heat flux of conduction and radiation, and DT is
the temperature difference. The flowchart of the numerical proce-
dures is presented in Fig. 6. The simulations were performed at
the high performance computer at the Key Laboratory of Thermo-
Fluid Science & Engineering of MOE of Xi’an Jiaotong University.
The CPU is the Intel Xeon E5-2680 V2, and the typical running time
for a single case is about 8 h.
4.1. Comparison with experimental data

The numerical predictions of the total effective thermal conduc-
tivity of aerogels based on two kinds of reconstructed unit cell
structures are compared with experimental data measured by
Hot Disk method, as shown in Fig. 7. It can be seen that the numer-
ical predictions based on the open-cell (netlike) structure agree
more well with experimental data than those based on the DLCA
structure. At ambient temperature, the thermal radiation through
aerogels can be neglected, and therefore the effective thermal con-
ductivity of aerogels depends on the heat transfer quantity through
the solid skeleton when the gas pressure approaches zero.
Although both reconstructed structures can ensure the nanoparti-
cles aggregating to be continuously connected chains, their heat
transfer channels numbers are much different. For DLCA method,
Fig. 6. Flowchart of numerical procedures.
there only exists one cluster when the reconstruction process is
over. It means that heat flux path from top to bottom through
the solid skeleton is only single channel and extremely long. As
for the reconstructed structure obtained by open-cell method,
there exists lots of continuous solid skeleton chains from top to
bottom along the heat transfer direction. As a result, the numerical
predictions of effective thermal conductivities at low pressure
based on the DLCA structure almost approach zero while those
obtained based on the open-cell method approach a certain value.
The open-cell microstructure is more suitable for the real structure
of aerogels in the present study, and it well simulates the
aggregating process of the neighboring nanoparticles linking to
be particle-particle contact chains. Furthermore, we adopt the
partial bounce-back scheme to mimick the TCR between the
nanoparticles of the open-cell microstructure. The numerical
results of open-cell structure with d = 0, d = 0.15 and d = 0.60 are
shown in Fig. 7. d represents the portion bounces back from the
interface of two contact nanoparticles. Here, d = 0.15 represents
Rc = 1.372 � 10�9 m2 KW�1, and d = 0.6 represents Rc = 1.167 �
10�8 m2 KW�1. It can be seen that a lager TCR between two aggre-
gating nanoparticles will lead to a smaller effective thermal con-
ductivity, and the numerical results with d = 0.15 have a better
agreement with experimental data than those obtained with
d = 0 and d = 0.6. We suppose that the aerogels made by the same
manufacturing process have the similar microstructures, and
therefore choose d = 0.15 for other samples. It is found that using
d = 0.15 to determine the effective thermal conductivity of the
aerogel composites also fits the experimental data well (see
Fig. 9(b)).

4.2. The effect of temperature on pure aerogels

The variations of the effective thermal conductivity of pure
aerogels with temperature at the density of 114 kg/m3 and
185 kg/m3 are shown in Figs. 8(a) and (b), respectively. Based on
the optical thickness assumption, the Rosseland equation [6]

kr ¼ 16
3b

rT3 ð52Þ

is widely used to obtain the radiative thermal conductivity of aero-
gels and aerogel composites, and then the total effective thermal
conductivity of aerogels is the summation of the conductive ther-
mal conductivity, keff,c, and radiative thermal conductivity, kr. It
can be seen from Fig. 8 that the results obtained by Rosseland equa-



Fig. 8. Variations of effective thermal conductivities with temperature.

Fig. 9. Effect of additives of aerogel composites on effective thermal conductivity.
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tion will over-predict the thermal conductivity, especially at high
temperature. It is because the extinction coefficient of pure aero-
gels, b, is not big enough to satisfy the optical thickness assumption
for the Rosseland equation and b decreases rapidly with the increas-
ing temperature. However, the numerical predictions obtained by
solving radiative transfer equation agree well with the existing
experimental data in the temperature range from 300 K to 723 K
[6]. It should be noted that the experimental data in reference [6]
did not contain data over 750 K. We can also see that the effective
thermal conductivities of pure aerogels increase rapidly when tem-
perature increases, especially at high temperature. It is because the
radiation rapidly increases with temperature and even becomes
dominant at high temperature. Aerogels with larger density have
a larger extinction coefficient and a smaller radiative thermal con-
ductivity. Therefore, the effective thermal conductivity of the pure
aerogel with density of 185 kg/m3 is smaller than that of 114 kg/
m3 at high temperature.

4.3. The effect of doped additives on aerogel composites

Fibers and opacifiers are doped in aerogels to improve the
extinction effect of the materials. Comparisons of spectral extinc-
tion coefficients between the pure aerogels and their composites
are shown in Fig. 9(a). It can be seen that spectral extinction coef-
ficients of aerogels within wavelength of 2–8 lm is greatly
improved when additives (fibers and opacifiers) are doped. There-
fore, the mean extinction coefficients of aerogel composites are
much larger than those of the pure aerogel.

The doped opacifiers and fibers also enhance the heat conduc-
tion in aerogels because the thermal conductivities of opacifiers
and fibers are larger than those of the aerogel matrix. To consider
the effect of additives on the insulation performance of aerogels,
the numerical predictions of the effective thermal conductivities
of aerogel composites are conducted based on the reconstructed
unit cell structure as shown in Fig. 5. Fig. 9(b) shows the compar-
isons of the total effective thermal conductivities of aerogel com-
posites between experimental data and numerical predictions at
different temperature. The experimental data are measured by
Hot Disk method. The information of the measured aerogel com-
posites is presented in Fig. 8(b). It can be seen that doped additives
can significantly decrease the total effective thermal conductivity
of aerogels, especially at high temperature. It is because the doped
additives can greatly improve the mean extinction coefficients of
aerogel composites and therefore reduce the radiative thermal
conductivity at high temperature. In Fig. 9(b), the results obtained
by Rosseland equation (Eq. (52)) are compared with numerical
results. It can be seen that they fit rather well. The reasons can
be attributed to the great improvement of the extinction coeffi-
cient and the optical thickness assumption is now satisfied for
the Rosseland equation.



Fig. 10. The effect of TCR on effective thermal conductivity of aerogel composites.
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4.4. The effect of thermal contact resistance

The effect of the TCR in the open-cell structure for pure aerogels
has been considered in Section 4.1. As shown in Fig. 7, the TCR
between contact nanoparticles will have a significant influence
on the effective thermal conductivity of pure aerogels. The value
of the effective thermal conductivity of pure aerogels with
Rc = 1.167 � 10�8 m2 K W�1 (d = 0.60) between two contact
nanoparticles is only 58.8% of those without TCR (d = 0) at vacuum.
As for aerogel composites, the effect of the TCR at the interface of
the aerogel matrix and additives are shown in Fig. 10. In this case,
d = 0.95 represents Rc = 8.867 � 10�7 m2 KW�1; d = 0.99 represents
Rc = 4.619 � 10�6 m2 K W�1; d = 0.999 represents Rc = 4.662 �
10�5 m2 K W�1. The numerical results of Rc = 4.662 � 10�5

m2 KW�1 have a rather good agreements with experimental data,
while numerical results without TCR will over-predict the effective
thermal conductivity about 6%.

5. Conclusions

In the present paper, the combination of DOM and LBM is
adopted to numerically predict the total effective thermal conduc-
tivity of aerogels and their composites considering the combined
effect of conduction and radiation. Numerical predictions of the
total effective thermal conductivity of pure aerogel are based on
two kinds of reconstructed microstructure. Meanwhile, the Hot
Disk method is adopted to measure the effective thermal conduc-
tivity. The influences factors on the effective thermal conductivity
of the aerogels and their composites are then investigated. We con-
clude that:

1. The reconstructed microstructure obtained by random genera-
tion growth method for open-cell structure is more suitable
for the aerogel structure than that obtained by the diffusion-
limited cluster-cluster aggregation method; the effective ther-
mal conductivity of pure aerogels increases rapidly with tem-
perature. If additives (fibers and opacifiers) are doped in
aerogels, the effective thermal conductivity of aerogel compos-
ites will be greatly impressed, especially at high temperature.

2. Rosseland equation will over-predict the effective thermal con-
ductivity of pure aerogels, especially at high temperature, while
it can be applied for aerogel composites if the optical thickness
assumption is satisfied;

3. The thermal contact resistance between two contact nanoparti-
cles will have a significant influence on the effective thermal
conductivity of the pure aerogel; a larger TCR will lead to a
smaller effective thermal conductivity of pure aerogels; as for
the aerogel composites, numerical results without TCR will
over-predict the effective thermal conductivity about 6%.
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