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a b s t r a c t

Based on the structure of the full unit cell which is formulated by three translational symmetries, three
further 180� rotational symmetries of three-dimensional (3D) four-directional braided composites are
clarified in this paper. It is for the first time that each rotational symmetry is used to reduce the full unit
cell to a half, quarter, and eighth size. The corresponding boundary conditions for thermal analysis are
derived precisely according to each rotational transformation. The effective thermal conductivities of
composites with different fiber volume fractions and interior braiding angles are calculated by the full,
quarter and eighth unit cells. In order to confirm the significance of accurate boundary conditions, addi-
tional comparison calculations with adiabatic boundary conditions are conducted and the result reveals
that inappropriate boundary conditions may lead to an un-neglectable error in the prediction of thermal
conduction behaviours. The numerical model is validated by good agreement between the numerical
results and the available experimental ones.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Three-dimensional (3D) braided composite has been widely
studied for its excellent mechanical performance and industry
application potential [1–4]. During the production of the compos-
ite, the 3D textile should be braided first by a particular braiding
process and then solidified with matrix and finally form the com-
posite. The well-known four-step braiding can fabricate 3D four-
directional [5], five-directional [6], six-directional and even
seven-directional braided textiles [7]. The microstructure of 3D
four-directional braided preform and especially the yarns’ spatial
configuration are analyzed and illustrated according to the braid-
ing process in [5,6]. For the braided composite which is often a
periodic structure, its performance is often studied by taking only
a representative volume element (unit cell) into account. A unit
cell formulated based on the microstructure analysis and the
related numerical simulation is a very effective approach used in
the study of composites’ performance including elastic and shear
modulus [8–11], and failure behaviours [12,13]. Similarly, thermal
performance of 3D four-directional braided composites can be cal-
culated in the same way [14–17].
As discussed above, the formulation of a unit cell is based on the
analysis of the composite microstructure, more specifically it is the
geometric symmetries exist in the composite structure that should
be identified and analyzed. There are three types of symmetries in
the nature, i.e., translations along an axis, reflections about a plane
and rotations about an axis. The formulation of a unit cell has two
steps: identifying symmetries presented in the composite and
deriving corresponding boundary conditions. In relevant works
about particle reinforced composites [18], unidirectional fiber rein-
forced composites [19,20], and several types of woven composites
[21–24] symmetries are fully exploited to formulate unit cells of
different sizes. However, most studies focus on the mechanical
problems and only the corresponding mechanical boundary condi-
tions for unit cells are derived. The thermal problems need thermal
boundary conditions. The authors’ previous work [25] should be
the first time for using unit cells of different sizes to predicting
the effective thermal conductivity of plain woven composites,
and three reducing-size unit cells are formulated according to
translational, reflectional and 180� rotational symmetries and the
related thermal boundary conditions are precisely derived. Accord-
ing to the authors’ knowledge, for 3D four-directional braided
composites most previous works [14–17,26,27] built unit cells by
utilizing only the translational symmetries no matter whether it
was stated in the papers. A unit cell formulated by translational
symmetries can be called a full unit cell.
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In the present work, it is for the first time that three 180� rota-
tional symmetries exhibited in the full unit cell are clarified based
on the microstructure analysis, and three half, quarter and eighth
unit cells are formulated according to the three rotational transfor-
mations. Thermal boundary conditions of the unit cells are derived
step by step. Numerical models based on the full, quarter and
eighth unit cells are established to predict the temperature distri-
butions and the effective thermal conductivities of 3D four-
directional braided composites.

2. The formulation of unit cells

Fig. 1(a) shows the schematic diagram of the full unit cell UC1,
and Fig. 1(b) displays the symmetry of several braiding yarns’ ori-
entation and will be discussed later. As shown in Fig. 1, the full unit
cell UC1 depicted by black lines is defined by the domain 0 6 x 6 a
& 0 6 y 6 b & 0 6 z 6 h, the quarter unit cell UC2 depicted by red
lines is defined by the domain 0 6 x 6 a/2 & 0 6 y 6 b/2 & 0 6 z 6 h,
(a) Geometrical model 

(b) The symmetry of braiding yarns’ orientation

Fig. 1. The full unit cell UC1.
while the eighth unit cell UC3 depicted by blue lines is defined by
the domain 0 6 x 6 a/4 & 0 6 y 6 b/2 & 0 6 z 6 h. After a 180� rota-
tion of UC1 about axis X1 = (x, b/2, h/2) a half cell shown in Fig. 2
can be formulated, and after a 180� rotation of the half cell about
axis Y1 = (a/2, y, h/2), a quarter unit cell UC2 shown in Fig. 3 can
be formulated. After a 180� rotation of UC2 about axis Z1 = (a/4,
b/4, z) an eighth unit cell UC3 can be ultimately formulated and
shown in Fig. 4. For the complexity of the geometric structure, it
would be necessary to further illustrate three rotational symme-
tries exhibited in 3D four-directional braided composite.

Before the illustration of the composites’ rotational geometric
symmetries, the coordinate transformations resulted from a 180�
rotation about the axes should be clarified first. It is clear that an
arbitrary node M = (x1, y1, z1) will be transformed to node M0 =
(x1, b � y1, h � z1) by a 180� rotation about axis X1 = (x, b/2, h/2),
to node M00 = (a � x1, y1, h � z1) by a 180� rotation about axis Y1 =
(a/2, y, h/2) and to node M0 00 = (a/2 � x1, b/2 � y1, z1) by a 180� rota-
tion about axis Z1 = (a/4, b/4, z). At this condition the rotational
geometric symmetries presented in 3D four-directional braided
composite can be further illustrated by transformations of two typ-
ical braiding yarns L1 and L2 (a half segment of the long yarn) in
UC2 as shown in Fig. 1(b). The braiding yarns can be expressed
by the coordinates of the start and end points of each yarn, the blue
hexagonal and the red circular points in the figures are assumed to
be the start point and the end point, respectively. Then we have
L1 = (0, b/8, h/2) � (a/2, b/8, h) and L2 = (a/8, 0, 0) � (a/8, b/2, h/2).
With a 180� rotation about X1 = (x, b/2, h/2), yarn L1 will be trans-
formed to L01 = (0, 7b/8, h/2) � (a/2, 7b/8, 0), with a 180� rotation
about Y1 = (a/2, y, h/2), yarn L1 will be transformed to L001 = (a, b/8,
h/2) � (a/2, b/8, 0), and with a 180� rotation about Z1 = (a/4, b/4,
z), yarn L1 will be transformed to L01

00 = (a/2, 3b/8, h/2) � (0, 3b/8,
h). L2 will be transformed to L20 = (a/8, b, h) � (a/8, b/2, h/2), L002 =
(7a/8, 0, h) � (7a/8, b/2, h/2) and L02

00 = (3a/8, b/2, 0) � (3a/8, 0,
h/2) by the three 180� rotations, respectively. The coordinate trans-
formations of the two braiding yarns are summarized in Table 1.
Fig. 2. The half cell.



Fig. 4. The eighth unit cell UC3.

Fig. 3. The quarter unit cell UC2.
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All the corresponding yarns discussed here can be found in UC1

and are marked in Figs. 1–3. It should be noted that yarns L2 and L02
are two half segments of the long yarn (a/8, b, h) � (a/8, 0, 0). In
addition, all the other yarns in UC2 have their corresponding
symmetric yarns after the 180� rotational transformations about
axes X1 and Y1, while every yarn in UC3 also has its corresponding
symmetric yarn after the transformations about axis Z1, and they
will not be stated here for simplicity.

In the later discussion the boundary conditions derivation of the
half cell is detailed described, while that of UC2 and UC3 have a
more concise description. In this work, UC1, UC2 and UC3 are used
to conduct numerical simulations and predict the effective thermal
conductivities of the composite.
3. Boundary conditions of the full unit cell UC1

UC1 is formulated by three translational transformations in x, y
and z directions and the so-called periodic boundary conditions
can be adopted in three cases, i.e., the calculation of effective ther-
mal conductivity in three directions kxx, kyy and kzz as follows:

For the calculation of kxx, the temperature gradient in x direc-
tion, To

x ¼ DT=a is adopted, and the boundary conditions can be
described as:

Tð0;y1 ;z1Þ � Tða;y1 ;z1Þ ¼ DT; Tðx1 ;0;z1Þ � T ðx1 ;b;z1Þ

¼ 0; Tðx1 ;y1 ;0Þ � T ðx1 ;y1 ;hÞ ¼ 0 ð1Þ
For the calculation of kyy, we have boundary conditions:

Tð0;y1 ;z1Þ � Tða;y1 ;z1Þ ¼ 0; Tðx1 ;0;z1Þ � T ðx1 ;b;z1Þ

¼ DT; Tðx1 ;y1 ;0Þ � T ðx1 ;y1 ;hÞ ¼ 0 ð2Þ
For the calculation of kzz, we have boundary conditions:

Tð0;y1 ;z1Þ � Tða;y1 ;z1Þ ¼ 0; Tðx1 ;0;z1Þ � T ðx1 ;b;z1Þ
¼ 0; Tðx1 ;y1 ;0Þ � T ðx1 ;y1 ;hÞ ¼ DT ð3Þ

where a, b and h in the subscripts are the length, width and height
of the unit cell as shown in Fig. 1. In addition, boundary conditions
of nodes on vertices and edges which can be derived from Eqs. (1) to
(3) are detailed described in Reference [16]. DT in this paper is
assumed to be 20 �C.

It should be noted that boundary conditions of UC2 and UC3

discussed later are derived based on that of UC1.
4. Relative temperature relations resulted from 180� rotational
transformations

Before the derivation of boundary conditions of UC2 and UC3,
the symmetric and antisymmetric thermal stimuli should be stated
first. As introduced in the authors’ previous work [25], the heat flux
parallel to the rotation axis can be considered as symmetric ther-
mal stimulus (STS), while the one perpendicular to the rotation
axis can be considered as antisymmetric stimulus (ATS). Take the
half cell which is formulated by a rotational transformation about
axis X1 as an example, for the calculation of kxx the heat flux is par-
allel to axis X1 and thus can be considered as a symmetric thermal
stimulus, while for the calculation of kyy and kzz the heat flux is per-
pendicular to axis X1 and thus can be considered as an antisym-
metric thermal stimulus. Under these two conditions, the relative
temperature relations between the corresponding symmetric
nodes M and M0 can be described as:

STS : TM � TO ¼ TM0 � TO0 ð4Þ

ATS : TM � TO ¼ TO0 � TM0 ð5Þ



(a) Rotational symmetry and two types of thermal stimuli

(b) Temperature fields under symmetric thermal stimulus

(c) Temperature fields under antisymmetric thermal stimulus

Fig. 5. Relative temperature relations resulted from 180� rotational transformation.

Table 2
The relative temperature relations between symmetric nodes in different cases.

Rot. axes Nodes coordinates Cal.

X1 = (x, b/2, h/2) (half cell) M = (x1, y1, z1)?M0 = (x1, b � y1, h � z1) kxx
kyy
kzz

Y1 = (a/2, y, h/2) (UC2) M = (x1, y1, z1) ?M00 = (a � x1, y1, h � z1) kxx
kyy
kzz

Z1 = (a/4, b/4, z) (UC3) M = (x1, y1, z1)?M0 00 = (a/2 � x1, b/2 � y1, z1) kxx
kyy
kzz

Table 1
The coordinate transformations of the braiding yarns L1 and L2.

180� rotational axes X1 = (x, b/2, h/2) Y1 = (a/2, y, h/2) Z1 = (a/4, b/4, z)

M = (x1, y1, z1) M0 = (x1, b � y1, h � z1) M00 = (a � x1, y1, h � z1) M0 00 = (a/2 � x1, b/2 � y1, z1)
L1 = (0, b/8, h/2) � (a/2, b/8, h) L01 = (0, 7b/8, h/2) � (a/2, 7b/8, 0) L001 = (a, b/8, h/2) � (a/2, b/8, 0) L01

00 = (a/2, 3b/8, h/2) � (0, 3b/8, h)
L2 = (a/8, 0, 0) � (a/8, b/2, h/2) L02 = (a/8, b, h) � (a/8, b/2, h/2) L002 = (7a/8, 0, h) � (7a/8, b/2, h/2) L02

00 = (3a/8, b/2, 0) � (3a/8, 0, h/2)
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where TM , TO, TM0 and TO0 are the temperatures of each node, respec-
tively. TO and TO0 can be considered as reference temperatures. It is
clear that when the arbitrary node M is locating on a boundary
plane, Eqs. (4) or (5) can be used to derive boundary conditions of
this plane.

Fig. 5 shows the confirmation of Eqs. (4) and (5) by a simple
calculation case. Fig. 5(a) shows the structure which has a 180�
rotational symmetry and the two types of thermal stimuli, and
Figs. 5(b) and (c) show the temperature fields that resulted from
different thermal stimuli. In Fig. 5(a) the thick red dash line is
the rotational axis and ‘‘TS” means thermal stimulus. The arbitrary
nodeM and the reference node O and their corresponding symmet-
ric nodes after rotational transformation M0 and O0 can be found in
the figure. The blue prism region (see Fig. 5(a)) has a thermal con-
ductivity of 1 W/(m�K), while the rest region has a value of 10 W/
(m�K). Two cases of calculations have been conducted, i.e., the heat
flux in x- and z-direction which can be considered as symmetric
and antisymmetric thermal stimuli, respectively, and the obtained
temperature fields are displayed in Fig. 5(b) and (c), respectively. In
the calculations, q = 10W/m2 on the boundary planes in the
calculation direction and boundary conditions of other planes
are adiabatic. The calculated temperature fields of planes z = h/2
are displayed in Figs. 5(b) and (c). It is clear that the relative
temperature relations described by Eqs. (4) and (5) are satisfied by
temperature distributions shown in Figs. 5(b) and (c), respectively.

All the later derivation of boundary conditions is based on Eqs.
(4) and (5). However, as summarized in Table 2, different unit cells
and simulation cases corresponding to different equations because
of their specific conditions of thermal stimulus. The boundary con-
ditions of each unit cell are derived separately in following sec-
tions. Although the following derivation process seems to be
complicated and tedious, if one can do the derivation himself along
with the process described in this paper, the derivation would be
easy to understand for sure.

5. Boundary conditions of the half unit cell

In order to have a clear description, the boundaries of unit cells
are denoted by numbers as shown in Fig. 6. In the figure, the hol-
low circles with numbers represent vertices, the black circles with
numbers represent edges, while P1 to P8 represent the boundary
planes. P3, P7 and P8 denote boundary planes in the same direction
of half cell, UC2 and UC3, respectively.
cases Thermal stimulus Relative temperature relations BC of UC1

STS Eq. (4) Eq. (1)
ATS Eq. (5) Eq. (2)
ATS Eq. (5) Eq. (3)
ATS Eq. (5) Eq. (1)
STS Eq. (4) Eq. (2)
ATS Eq. (5) Eq. (3)
ATS Eq. (5) Eq. (1)
ATS Eq. (5) Eq. (2)
STS Eq. (4) Eq. (3)



Fig. 6. Boundaries of the half cell, UC2 and UC3.
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As can be seen in Figs. 1 and 2, the half cell is formulated by a
180� rotation about X1 axis which generates boundary planes
P1 = ((0, a/2), b/2, z) and P2 = ((0, a/2), 0, z) (see Fig. 2). Boundary
conditions of boundary planes P3 (x = a), P4 (x = 0), P5 (z = h) and
P6 (z = 0) are the same with that of UC1. As discussed above the
assumed arbitrary node M = (x1, y1, z1) in the half cell can be trans-
formed to nodeM0 = (x1, b � y1, h-z1). Taking node O = (0, 0, 0) as an
example, it will be transformed to O0 = (0, b, h) as shown in Fig. 1
and Fig. 2. In this work the boundary conditions are derived in
three cases, i.e. the calculation of effective thermal conductivity
in x direction kxx, in y direction kyy and in z direction kzz.

5.1. The calculation of kxx

As shown in Table 2, in this case the boundary conditions for
planes P3 to P6 are presented in Eq. (1). Therefore, only boundary
planes P1 = ((0, a/2), b/2, z) and P2 = ((0, a/2), 0, z) need to be con-
sidered. As shown in Table 2 the heat flux can be considered as a
symmetric thermal stimulus. The relative temperature relations
between the assumed arbitrary node M = (x1, y1, z1) and the trans-
formed node M0 = (x1, b � y1, h � z1) can be described by Eq. (4).

5.1.1. Boundary conditions of plane P1
When it comes to the boundary plane P1 = ((0, a/2), b/2, z), we

can have nodes M = (x1, b/2, z1) and M0 = (x1, b/2, h � z1). TM and
TM0 can be respectively represented by Tðx1 ;b=2;z1Þ and T ðx1 ;b=2;h�z1Þ.
With additional temperature relations between the reference
nodes TO¼ð0;0;0Þ ¼ T ð0;b;0Þ ¼ TO0¼ð0;b;hÞ (obtained from Eq. (1)), Eq. (4)
becomes the boundary conditions of boundary plane P1:

Tðx1 ;b=2;z1Þ ¼ T ðx1 ;b=2;h�z1Þ ð6Þ
5.1.2. Boundary conditions of plane P2
On the other hand, when the node comes to the boundary plane

P2 = ((0, a/2), 0, z), we can haveM = (x1, 0, z1) andM0 = (x1, b, h � z1).
TM and TM0 can be represented by Tðx1 ;0;z1Þ and Tðx1 ;b;h�z1Þ, respec-
tively. With additional TO¼ð0;0;0Þ ¼ Tð0;b;0Þ ¼ TO0¼ð0;b;hÞ, Eq. (4)
becomes:

Tðx1 ;0;z1Þ ¼ Tðx1 ;b;h�z1Þ ð7Þ
It is obvious that Tðx1 ;b;h�z1Þ represents temperature of a node not

located in the half cell so the boundary condition needs more
derivation. Considering the periodic boundary conditions
described in Eq. (1), we can easily have:
Tðx1 ;0;h�z1Þ ¼ Tðx1 ;b;h�z1Þ ð8Þ
Based on Eqs. (7) and (8), boundary conditions of plane P2 can

be described as:

Tðx1 ;0;z1Þ ¼ Tðx1 ;0;h�z1Þ ð9Þ
5.1.3. Boundary conditions of the half cell
Based on Eqs. (1), (6) and (9), boundary conditions of the half

cell for the calculation of effective thermal conductivities in x
direction can be summarized as:

P1 : Tðx1 ;b=2;z1Þ ¼ Tðx1 ;b=2;h�z1Þ;

P2 : Tðx1 ;0;z1Þ ¼ Tðx1 ;0;h�z1Þ;

P4 � P3 : Tð0;y1 ;z1Þ � T ða;y1 ;z1Þ ¼ DT;

P6 � P5 : Tðx1 ;y1 ;0Þ � T ðx1 ;y1 ;hÞ ¼ 0

ð10Þ
5.2. The calculation of kyy

In this case, as listed in Table 2 boundary conditions for planes
P3 to P6 are presented in Eq. (2). The heat flux can be considered as
an antisymmetric thermal stimulus and the relative temperature
relation between M = (x1, y1, z1) and M0 = (x1, b � y1, h � z1) is
described by Eq. (5).

5.2.1. Boundary conditions of plane P1
When it comes to the boundary plane P1 (plane: y = b/2), TM and

TM0 can be respectively represented by Tðx1 ;b=2;z1Þ and T ðx1 ;b=2;h�z1Þ,
with the additional temperature relation between the reference
nodes TO¼ð0;0;0Þ ¼ T ð0;b;0Þ þ DT ¼ TO0¼ð0;b;hÞ þ DT (obtained from Eq.
(2)), Eq. (5) becomes the boundary conditions of boundary plane
P1:

Tðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ ¼ 2T ð0;0;0Þ � DT ð11Þ
where Tð0;0;0Þ represents the temperature of reference node O = (0, 0,
0).

5.2.2. Boundary conditions of plane P2
When node M comes to the boundary plane P2 (plane: y = 0), TM

and TM0 can be respectively represented by T ðx1 ;0;z1Þ and Tðx1 ;b;h�z1Þ;
Eq. (5) becomes:

Tðx1 ;0;z1Þ þ Tðx1 ;b;h�z1Þ ¼ 2T ð0;0;0Þ � DT ð12Þ
As discussed above, T ðx1 ;b;h�z1Þ represents temperature of a node

not located in the half cell so the boundary condition needs more
derivation. Considering the periodic boundary conditions
described in Eq. (2), we can have:

Tðx1 ;0;h�z1Þ ¼ Tðx1 ;b;h�z1Þ þ DT ð13Þ
Based on Eqs. (12) and (13), boundary conditions for plane P2

can be described as:

Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ ¼ 2T ð0;0;0Þ ð14Þ
5.2.3. Boundary conditions of the half cell
Based on Eqs. (2), (11) and (14), the boundary conditions of the

half cell for the calculation of effective thermal conductivities in y
direction can be summarized as:

P1 : Tðx1 ;b=2;z1Þ þ T ðx1 ;b=2;h�z1Þ ¼ 2Tð0;0;0Þ � DT;

P2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ ¼ 2Tð0;0;0Þ;

P4 � P3 : Tð0;y1 ;z1Þ � T ða;y1 ;z1Þ ¼ 0;
P6 � P5 : Tðx1 ;y1 ;0Þ � T ðx1 ;y1 ;hÞ ¼ 0

ð15Þ

In this equation, node O = (0, 0, 0) can be considered as a refer-
ence node.
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5.3. The calculation of kzz

In this case, as listed in Table 2 boundary conditions for plane P3
to P6 are presented in Eq. (3). The heat flux can be considered as an
antisymmetric thermal stimulus and the relative temperature rela-
tion betweenM = (x1, y1, z1) andM0 = (x1, b � y1, h � z1) is described
by Eq. (5).

5.3.1. Boundary conditions of plane P1
When node M comes to the boundary plane (plane: y = b/2),

with additional TO¼ð0;0;0Þ ¼ T ð0;b;0Þ ¼ TO0¼ð0;b;hÞ þ DT (obtained from
Eq. (3)) we can have boundary conditions defined by Eq. (11).

5.3.2. Boundary conditions of plane P2
When node M comes to the boundary plane P2 (plane: y = 0), TM

and TM0 can be respectively represented by Tðx1 ;0;z1Þ and T ðx1 ;b;h�z1Þ;
then Eq. (5) has a form of Eq. (12), and considering the periodic
boundary conditions described in Eq. (3), we can have:

Tðx1 ;0;z1Þ ¼ Tðx1 ;b;h�z1Þ ð16Þ
It should be noted that Eq. (16) has the same form with Eq. (8)

although they are derived from different equations. Based on Eqs.
(12) and (16), boundary conditions for plane P2 can be described
as:

Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ ¼ 2Tð0;0;0Þ � DT ð17Þ
5.3.3. Boundary conditions of the half cell
Based on Eqs. (3), (11) and (17) the boundary conditions of the

half cell for the calculation of effective thermal conductivities in z
direction can thus be summarized as:
Table 3
The derivation process of boundary conditions of UC2.

Cal. cases Boundary planes B

kxx P1, P2, P5, P6 E
P
P
P

P4 = (0, (0, b/2, z))
8>><
>>:
)

P7 = (a/2, (0, b/2), z)
�

)
kyy P1, P2, P5, P6 E

P
P
P

P4 = (0, (0, b/2, z))
8>><
>>:
)

P7 = (a/2, (0, b/2), z)
�

)
kzz P1, P2, P5, P6 E

P
P
P

P4 = (0, (0, b/2, z))
8<
:
)

P7 = (a/2, (0, b/2), z)
�

)

P1 : Tðx1 ;b=2;z1Þ þ T ðx1 ;b=2;h�z1Þ ¼ 2Tð0;0;0Þ � DT;

P2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ ¼ 2Tð0;0;0Þ � DT;

P4 � P3 : Tð0;y1 ;z1Þ � T ða;y1 ;z1Þ ¼ 0;

P6 � P5 : Tðx1 ;y1 ;0Þ � T ðx1 ;y1 ;hÞ ¼ DT

ð18Þ
6. Boundary conditions of the quarter unit cell UC2

The quarter unit cell UC2 (see Fig. 3) will be formulated by a fur-
ther rotational transformation, i.e., a 180� rotation about Y1 axis
and generates a new boundary plane P7 = (a/2, (0, b/2), z). In this
case, the boundary conditions for planes P1 (y = b/2), P2 (y = 0), P5
(z = h) and P6 (z = 0) are presented in Eqs. (10), (15) and (18),
respectively. Therefore, only boundary planes P7 = (a/2, (0, b/2), z)
and P4 = (0, (0, b/2, z)) need to be considered. The reference node
O = (0, 0, 0) will be transformed to O00 = (a, 0, h) as shown in
Figs. 1 and 2. The derivation of boundary conditions is in much a
similar way with that of the half cell. And a concise derivation pro-
cess is summarized in Table 3.

In ANSYS, nodes on vertices and edges of unit cells should be
considered separately to avoid the redundant constraints that
may influence the proper operation. Therefore, based on equations
in Table 3 boundary conditions of UC2 for calculations of kxx, kyy and
kzz can be finally summarized as Eqs. (19)–(21), respectively. The
vertices and edges of unit cell are shown in Fig. 6, and the edges
are classified into three groups in these equations according to
their directions.

For the calculation of kxx:
oundary conditions

q: ð10Þ !
1 : Tðx1 ;b=2;z1Þ � Tðx1 ;b=2;h�z1Þ ¼ 0
2 : Tðx1 ;0;z1Þ � Tðx1 ;0;h�z1Þ ¼ 0
6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ 0
Eq: ð5Þ ! TM � TO ¼ TO00 � TM00 !
Tð0;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ TO00¼ða;0;hÞ � Tða;y1 ;h�z1Þ
Eq: ð1Þ ) TO ¼ Tða;0;0Þ þ DT ¼ TO00 þ DT
Eq: ð1Þ ) Tð0;y1 ;h�z1Þ ¼ Tða;y1 ;h�z1Þ þ DT
Tð0;y1 ;z1Þ þ Tð0;y1 ;h�z1Þ ¼ 2TO¼ð0;0;0Þ
Eq: ð5Þ ! Tða=2;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ TO00¼ða;0;hÞ � Tða=2;y1 ;h�z1Þ
Eq: ð1Þ ) TO ¼ Tða;0;0Þ þ DT ¼ TO00 þ DT
Tða=2;y1 ;z1Þ þ Tða=2;y1 ;h�z1Þ ¼ 2TO¼ð0;0;0Þ � DT

q: ð15Þ !
1 : Tðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ � 2Tð0;0;0Þ ¼ 0
6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ 0
Eq: ð4Þ ! TM � TO ¼ TM00 � TO00 !
Tð0;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ Tða;y1 ;h�z1Þ � TO00¼ða;0;hÞ
Eq: ð2Þ ) TO ¼ Tða;0;0Þ ¼ TO00

Eq: ð2Þ ) Tða;y1 ;h�z1Þ ¼ Tð0;y1 ;h�z1Þ
Tð0;y1 ;z1Þ ¼ Tð0;y1 ;h�z1Þ
Eq: ð4Þ ! Tða=2;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ Tða=2;y1 ;h�z1Þ � TO00¼ða;0;hÞ
Eq: ð2Þ ) TO ¼ Tða;0;0Þ ¼ TO00

Tða=2;y1 ;z1Þ ¼ Tða=2;y1 ;h�z1Þ

q: ð18Þ !
1 : Tðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ DT
Eq: ð5Þ ! Tð0;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ TO00¼ða;0;hÞ � Tða;y1 ;h�z1Þ
Eq: ð3Þ ) TO ¼ Tða;0;0Þ ¼ TO00 þ DT
Eq: ð3Þ ) Tða;y1 ;h�z1Þ ¼ Tð0;y1 ;h�z1Þ
Tð0;y1 ;z1Þ þ Tð0;y1 ;h�z1Þ ¼ 2Tð0;0;0Þ � DT

Eq: ð5Þ ! Tða=2;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ TO00¼ða;0;hÞ � Tða=2;y1 ;h�z1Þ
Eq: ð3Þ ) TO ¼ Tða;0;0Þ ¼ TO00 þ DT
Tða=2;y1 ;z1Þ þ Tða=2;y1 ;h�z1Þ ¼ 2TO¼ð0;0;0Þ � DT
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Boundary planes :
P1 : T ðx1 ;b=2;z1Þ � Tðx1 ;b=2;h�z1Þ ¼ 0
P2 : T ðx1 ;0;z1Þ � Tðx1 ;0;h�z1Þ ¼ 0
P4 : T ð0;y1 ;z1Þ þ Tð0;y1 ;h�z1Þ � 2TO¼ð0;0;0Þ ¼ 0
P7 : T ða=2;y1 ;z1Þ þ Tða=2;y1 ;h�z1Þ � 2TO¼ð0;0;0Þ ¼ �DT
P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ 0
Vertices :
T1¼ð0;0;0Þ ¼ Tð0;0;0Þ; T2¼ð0;b=2;0Þ � Tð0;0;0Þ ¼ 0;
T3¼ð0;b=2;hÞ � Tð0;0;0Þ ¼ 0; T4¼ð0;0;hÞ � Tð0;0;0Þ ¼ 0;
T5¼ða=2;0;0Þ � Tð0;0;0Þ ¼ �DT=2; T6¼ða=2;b=2;0Þ � T ð0;0;0Þ ¼ �DT=2;
T7¼ða=2;b=2;hÞ � Tð0;0;0Þ ¼ �DT=2; T8¼ða=2;0;hÞ � T ð0;0;0Þ ¼ �DT=2
Edges parallel to z axis :
T9¼ð0;0;z1Þ � Tð0;0;0Þ ¼ 0; T11¼ð0;b=2;z1Þ � Tð0;0;0Þ ¼ 0;
T14¼ða=2;b=2;z1Þ � Tð0;0;0Þ ¼ �DT=2; T17¼ða=2;0;z1Þ � Tð0;0;0Þ ¼ �DT=2
Edges parallel to y axis :
T10¼ð0;y1 ;0Þ � Tð0;0;0Þ ¼ 0; T12¼ð0;y1 ;hÞ � Tð0;0;0Þ ¼ 0;
T16¼ða=2;y1 ;0Þ � T ð0;0;0Þ ¼ �DT=2; T18¼ða=2;y1 ;hÞ � Tð0;0;0Þ ¼ �DT=2
Edges parallel tox axis :
T13¼ðx1 ;b=2;0Þ � T15¼ðx1 ;b=2;hÞ ¼ 0; T19¼ðx1 ;0;0Þ � T20¼ðx1 ;0;hÞ ¼ 0

ð19Þ
For the calculation of kyy:

Boundary planes :
P1 : T ðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ � 2Tð0;0;0Þ ¼ �DT

P2 : T ðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ � 2Tð0;0;0Þ ¼ 0
P4 : T ð0;y1 ;z1Þ � Tð0;y1 ;h�z1Þ ¼ 0
P7 : T ða=2;y1 ;z1Þ � Tða=2;y1 ;h�z1Þ ¼ 0
P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ 0
Vertices :
T1¼ð0;0;0Þ ¼ Tð0;0;0Þ; T2¼ð0;b=2;0Þ � Tð0;0;0Þ ¼ �DT=2;
T3¼ð0;b=2;hÞ � Tð0;0;0Þ ¼ �DT=2;
T4¼ð0;0;hÞ � Tð0;0;0Þ ¼ 0; T5¼ða=2;0;0Þ � Tð0;0;0Þ ¼ 0;
T6¼ða=2;b=2;0Þ � Tð0;0;0Þ ¼ �DT=2;
T7¼ða=2;b=2;hÞ � Tð0;0;0Þ ¼ �DT=2; T8¼ða=2;0;hÞ � Tð0;0;0Þ ¼ 0
Edges parallel to z axis :
T9¼ð0;0;z1Þ � Tð0;0;0Þ ¼ 0; T11¼ð0;b=2;z1Þ � Tð0;0;0Þ ¼ �DT=2;
T14¼ða=2;b=2;z1Þ � Tð0;0;0Þ ¼ �DT=2; T17¼ða=2;0;z1Þ � Tð0;0;0Þ ¼ 0
Edges parallelto y axis :
T10¼ð0;y1 ;0Þ � T12¼ð0;y1 ;hÞ ¼ 0; T16¼ða=2;y1 ;0Þ � T18¼ða=2;y1 ;hÞ ¼ 0
Edges parallel to x axis :
T13¼ðx1 ;b=2;0Þ � Tð0;0;0Þ ¼ �DT=2; T15¼ðx1 ;b=2;hÞ � T ð0;0;0Þ ¼ �DT=2;
T19¼ðx1 ;0;0Þ � Tð0;0;0Þ ¼ 0; T20¼ðx1 ;0;hÞ � Tð0;0;0Þ ¼ 0

ð20Þ
For the calculation of kzz:

Boundary planes :

P1 : Tðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ � 2T ð0;0;0Þ ¼ �DT
P2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ � 2T ð0;0;0Þ ¼ �DT
P4 : Tð0;y1 ;z1Þ þ Tð0;y1 ;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
P7 : Tða=2;y1 ;z1Þ þ Tða=2;y1 ;h�z1Þ � 2T ð0;0;0Þ ¼ �DT
P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ DT

Vertices :

T1¼ð0;0;0Þ ¼ T ð0;0;0Þ; T2¼ð0;b=2;0Þ � Tð0;0;0Þ ¼ 0;

T3¼ð0;b=2;hÞ � Tð0;0;0Þ ¼ �DT=2;
T4¼ð0;0;hÞ � Tð0;0;0Þ ¼ �DT=2; T5¼ða=2;0;0Þ � Tð0;0;0Þ ¼ 0;

T6¼ða=2;b=2;0Þ � Tð0;0;0Þ ¼ 0;

T7¼ða=2;b=2;hÞ � Tð0;0;0Þ ¼ �DT=2; T8¼ða=2;0;hÞ � Tð0;0;0Þ ¼ �DT=2
Edges parallel to z axis :

T9¼ð0;0;z1Þ þ T9¼ð0;0;h�z1Þ � 2Tð0;0;0Þ ¼ �DT;

T11¼ð0;b=2;z1Þ þ T11¼ð0;b=2;h�z1Þ � 2T ð0;0;0Þ ¼ �DT;
T14¼ða=2;b=2;z1Þ þ T14¼ða=2;b=2;h�z1Þ � 2T ð0;0;0Þ ¼ �DT;
T17¼ða=2;0;z1Þ þ T17¼ða=2;0;h�z1Þ � 2T ð0;0;0Þ ¼ �DT;
Edges parallel to y axis :

T10¼ð0;y1 ;0Þ � Tð0;0;0Þ ¼ 0; T12¼ð0;y1 ;hÞ � Tð0;0;0Þ ¼ �DT;
T16¼ða=2;y1 ;0Þ � Tð0;0;0Þ ¼ 0; T18¼ða=2;y1 ;hÞ � Tð0;0;0Þ ¼ �DT
Edges parallel to x axis :

T13¼ðx1 ;b=2;0Þ � Tð0;0;0Þ ¼ 0; T15¼ðx1 ;b=2;hÞ � Tð0;0;0Þ ¼ �DT;
T19¼ðx1 ;0;0Þ � Tð0;0;0Þ ¼ 0; T20¼ðx1 ;0;hÞ � Tð0;0;0Þ ¼ �DT

ð21Þ
7. Boundary conditions of the eighth unit cell UC3

An eighth unit cell UC3 (see Fig. 4) will be formulated by a fur-
ther 180� rotational transformation of UC2 about Z1 axis (see Fig. 3),
and this process also generates a new boundary plane P8 = (a/4, (0,
b/2), z). In this case, the boundary conditions for planes P1 (y = b/2),
P2 (y = 0), P4 (x = 0), P5 (z = h) and P6 (z = 0) are presented in Eqs.
(19)–(21), respectively. Therefore, only boundary conditions of
plane P8 = (a/4, (0, b/2), z) need to be derived. The reference node
O = (0, 0, 0) will be transformed to O0 00 = (a/2, b/2, 0) as shown in
Fig. 3. Based on Eqs. (1) to (5) (see Table 2) and Eqs. (19) to (21)
the derivation process can be concisely summarized in Table 4.

Based on equations in Table 4, considering the separate con-
straint equations of nodes on vertices and edges, boundary condi-
tions of UC3 for calculations of kxx, kyy and kzz can be finally
summarized as Eqs. (22)–(24), respectively. Although boundary
conditions of planes P1, P2, P4, P5 and P6 of UC3 have the same forms
with UC2, they are still displayed in Eqs. (22)–(24).

For the calculation of kxx:

Boundary planes :
P1 : Tðx1 ;b=2;z1Þ � T ðx1 ;b=2;h�z1Þ ¼ 0
P2 : Tðx1 ;0;z1Þ � Tðx1 ;0;h�z1Þ ¼ 0
P4 : Tð0;y1 ;z1Þ þ Tð0;y1 ;h�z1Þ � 2TO¼ð0;0;0Þ ¼ 0
P8 : Tða=4;y1 ;z1Þ þ Tða=4;b=2�y1 ;z1Þ � 2Tð0;0;0Þ ¼ �DT=2
P6 � P5 : Tðx1 ;y1 ;0Þ � T ðx1 ;y1 ;hÞ ¼ 0
Vertices :
T1¼ð0;0;0Þ ¼ Tð0;0;0Þ; T2¼ð0;b=2;0Þ � Tð0;0;0Þ ¼ 0; T3¼ð0;b=2;hÞ � Tð0;0;0Þ ¼ 0;
T4¼ð0;0;hÞ � Tð0;0;0Þ ¼ 0;
T5¼ða=4;0;0Þ þ T6¼ða=4;b=2;0Þ � 2Tð0;0;0Þ ¼ �DT=2;
T7¼ða=4;b=2;hÞ þ T8¼ða=4;0;hÞ � 2Tð0;0;0Þ ¼ �DT=2
Edges parallel to z axis :
T9¼ð0;0;z1Þ � Tð0;0;0Þ ¼ 0; T11¼ð0;b=2;z1Þ � Tð0;0;0Þ ¼ 0;
T14¼ða=4; b=2; z1Þ þ T17¼ða=4;0;z1Þ ¼ 2Tð0;0;0Þ � DT=2;
Edges parallel to y axis :
T10¼ð0;y1 ;0Þ � Tð0;0;0Þ ¼ 0; T12¼ð0;y1 ;hÞ � Tð0;0;0Þ ¼ 0;
T16¼ða=4;y1 ;0Þ þ T16¼ða=4;b=2�y1 ;0Þ ¼ 2Tð0;0;0Þ � DT=2;
T18¼ða=4;y1 ;hÞ þ T18¼ða=4;b=2�y1 ;hÞ ¼ 2Tð0;0;0Þ � DT=2
Edges parallel tox axis :
T13¼ðx1 ;b=2;0Þ � T15¼ðx1 ;b=2;hÞ ¼ 0; T19¼ðx1 ;0;0Þ � T20¼ðx1 ;0;hÞ ¼ 0

ð22Þ



Table 4
The derivation process of boundary conditions of UC3.

Cal. cases Boundary planes Boundary conditions

kxx P1, P2, P4, P5, P6 Eq: ð19Þ !
P1 : Tðx1 ;b=2;z1Þ � Tðx1 ;b=2;h�z1Þ ¼ 0
P2 : Tðx1 ;0;z1Þ � Tðx1 ;0;h�z1Þ ¼ 0
P4 : Tð0;y1 ;z1Þ þ Tð0;y1 ;h�z1Þ � 2TO¼ð0;0;0Þ ¼ 0
P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ 0

P8 = (a/4, (0, b/2), z) Eq: ð5Þ ! TM � TO ¼ TO000 � TM000

Tða=4;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ TO000¼ða=2;b=2;0Þ � Tða=4;b=2�y1 ;z1Þ
Eq: ð19Þ ) TO000¼ða=2;b=2;0Þ ¼ T6¼ða=2;b=2;0Þ ¼ Tð0;0;0Þ � DT=2

8<
:
) Tða=4;y1 ;z1Þ þ Tða=4;b=2�y1 ;z1Þ ¼ 2Tð0;0;0Þ � DT=2

kyy P1, P2, P4, P5, P6 Eq: ð20Þ !
P1 : Tðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
P2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ � 2Tð0;0;0Þ ¼ 0
P4 : Tð0;y1 ;z1Þ � Tð0;y1 ;h�z1Þ ¼ 0
P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ 0

P8 = (a/4, (0, b/2), z) Eq: ð5Þ ! TM � TO ¼ TO000 � TM000

Tða=4;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ TO000¼ða=2;b=2;0Þ � Tða=4;b=2�y1 ;z1Þ
Eq: ð20Þ ) TO000¼ða=2;b=2;0Þ ¼ T6¼ða=2;b=2;0Þ ¼ Tð0;0;0Þ � DT=2

8<
:
) Tða=4;y1 ;z1Þ þ Tða=4;b=2�y1 ;z1Þ ¼ 2Tð0;0;0Þ � DT=2

kzz P1, P2, P4, P5, P6 Eq: ð21Þ !
P1 : Tðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
P2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
P4 : Tð0;y1 ;z1Þ þ Tð0;y1 ;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ DT

P8 = (a/4, (0, b/2), z) Eq: ð4Þ ! TM � TO ¼ TM000 � TO000

Tða=4;y1 ;z1Þ � TO¼ð0;0;0Þ ¼ Tða=4;b=2�y1 ;z1Þ � TO000¼ða=2;b=2;0Þ
Eq:ð21Þ ) TO000¼ða=2;b=2;0Þ ¼ T6¼ða=2; b=2; 0Þ ¼ Tð0;0;0Þ

8<
:
) Tða=4;y1 ;z1Þ � Tða=4;b=2�y1 ;z1Þ ¼ 0
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For the calculation of kyy:

Boundary planes :
P1 : Tðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ � 2Tð0;0;0Þ ¼ �DT
P2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ � 2Tð0;0;0Þ ¼ 0
P4 : Tð0;y1 ;z1Þ � Tð0;y1 ;h�z1Þ ¼ 0
P8 : Tða=4;y1 ;z1Þ þ Tða=4;b=2�y1 ;z1Þ � 2T ð0;0;0Þ ¼ �DT=2
P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ 0
Vertices :
T1¼ð0;0;0Þ ¼ Tð0;0;0Þ; T2¼ð0;b=2;0Þ � Tð0;0;0Þ ¼ �DT=2;
T3¼ð0;b=2;hÞ � Tð0;0;0Þ ¼ �DT=2;
T4¼ð0;0;hÞ � Tð0;0;0Þ ¼ 0;
T5¼ða=4;0;0Þ þ T6¼ða=4;b=2;0Þ ¼ 2Tð0;0;0Þ � DT=2;
T7¼ða=4;b=2;hÞ þ T8¼ða=4;0;hÞ ¼ 2Tð0;0;0Þ � DT=2
Edges parallel to z axis :
T9¼ð0;0;z1Þ � T ð0;0;0Þ ¼ 0; T11¼ð0;b=2;z1Þ � Tð0;0;0Þ ¼ �DT=2;
T14¼ða=4;b=2;z1Þ þ T17¼ða=4;0;z1Þ ¼ 2Tð0;0;0Þ � DT=2;
Edges parallel to y axis :
T10¼ð0;y1 ;0Þ � T12¼ð0;y1 ;hÞ ¼ 0;
T16¼ða=4;y1 ;0Þ þ T16¼ða=4;b=2�y1 ;0Þ ¼ 2Tð0;0;0Þ � DT=2;
T18¼ða=4;y1 ;hÞ þ T18¼ða=4;b=2�y1 ;hÞ ¼ 2Tð0;0;0Þ � DT=2
Edges parallel to x axis :
T13¼ðx1 ;b=2;0Þ � Tð0;0;0Þ ¼ �DT=2; T15¼ðx1 ;b=2;hÞ � Tð0;0;0Þ ¼ �DT=2;
T19¼ðx1 ;0;0Þ � Tð0;0;0Þ ¼ 0; T20¼ðx1 ;0;hÞ � Tð0;0;0Þ ¼ 0

ð23Þ
For the calculation of kzz:

Boundary planes :
P1 : Tðx1 ;b=2;z1Þ þ Tðx1 ;b=2;h�z1Þ � 2T ð0;0;0Þ ¼ �DT
P2 : Tðx1 ;0;z1Þ þ Tðx1 ;0;h�z1Þ � 2T ð0;0;0Þ ¼ �DT
P4 : Tð0;y1 ;z1Þ þ Tð0;y1 ;h�z1Þ � 2T ð0;0;0Þ ¼ �DT
P8 : Tða=4;y1 ;z1Þ � Tða=4;b=2�y1 ;z1Þ ¼ 0
P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ DT
Vertices :

T1¼ð0;0;0Þ ¼ Tð0;0;0Þ; T2¼ð0;b=2;0Þ � Tð0;0;0Þ ¼ 0;

T3¼ð0;b=2;hÞ � T ð0;0;0Þ ¼ �DT=2;
T4¼ð0;0;hÞ � Tð0;0;0Þ ¼ �DT=2;

T5¼ða=4;0;0Þ � T6¼ða=4;b=2;0Þ ¼ 0;

T7¼ða=4;b=2;hÞ � T8¼ða=4;0;hÞ ¼ 0

Edges parallel to z axis :

T9¼ð0;0;z1Þ þ T9¼ð0;0;h�z1Þ � 2Tð0;0;0Þ ¼ �DT;
T11¼ð0;b=2;z1Þ þ T11¼ð0;b=2;h�z1Þ � 2T ð0;0;0Þ ¼ �DT;
T14¼ða=4;b=2;z1Þ � T17¼ða=4;0;z1Þ ¼ 0

Edges parallel to y axis :

T10¼ð0;y1 ;0Þ � Tð0;0;0Þ ¼ 0; T12¼ð0;y1 ;hÞ � T ð0;0;0Þ ¼ �DT;
T16¼ða=2;y1 ;0Þ � Tð0;0;0Þ ¼ 0; T18¼ða=2;y1 ;hÞ � Tð0;0;0Þ ¼ �DT
Edges parallel to x axis :

T13¼ðx1 ;b=2;0Þ � Tð0;0;0Þ ¼ 0; T15¼ðx1 ;b=2;hÞ � Tð0;0;0Þ ¼ �DT;
T19¼ðx1 ;0;0Þ � Tð0;0;0Þ ¼ 0; T20¼ðx1 ;0;hÞ � Tð0;0;0Þ ¼ �DT

ð24Þ
In this paper, UC1, UC2 and UC3 are used to establish numerical

models and predict effective thermal conductivities of 3D four-
directional braided composites. For the calculation of kxx, kyy and
kzz, the boundary conditions of UC1 are stated by Eqs. (1)–(3), that
of UC2 are stated by Eqs. (19)–(21), and that of UC3 are stated by
Eqs. (22)–(24), respectively. Each rotational symmetric transfor-
mation brings about its corresponding constraints and thus bound-
ary conditions of UC2 and UC3 are much more complicated than
that of UC1. So it can be concluded that for rotational symmetries
more utilizing of symmetric transformations means smaller size
but more complicated boundary conditions of unit cells. As a mat-
ter of fact, each utilizing of rotational symmetric transformation
will reduce the unit cell to a half size.

The boundary conditions indicate that for UC2 the nodal tem-
perature of the upper and the lower half of four lateral boundary
planes, i.e., planes P1 (y = b/2), P2 (y = 0), P4 (x = 0) and P7
(x = a/2), and furthermore for UC3 the right and the left half of



160 J.-J. Gou et al. / Composite Structures 163 (2017) 152–167
boundary plane P8 (x = a/4) should be constrained by equations. In
this situation, the corresponding half parts of these boundary
planes should be identically meshed to apply the boundary condi-
tions. The mesh generation will be stated in later discussion.

8. Boundary conditions of comparison calculations

The boundary conditions presented in Eqs. (1) to (3) and (19) to
(24) are derived precisely according to the symmetries exhibited in
the composite structure. Although these boundary conditions are
accurate for certain when their rigorous derivation process is con-
sidered, they are very complicated and have to be carefully treated
during the simulation. Researchers are always forced by these dif-
ficulties to search for other easier solutions. In order to confirm the
necessity of accurate boundary conditions, additional calculations
with the adiabatic boundary conditions are conducted in this work.
The so-called adiabatic boundary condition means a temperature
difference is imposed on boundary planes in the calculation direc-
tion while other four boundary planes are adiabatic, as shown in
Eqs. (25) and (27) for UC1, UC2 and UC3, respectively. For UC2

and UC3, due to the non-periodic structures of some corresponding
boundary planes, e.g., P1 and P2 of UC2, a constant temperature, i.e.,
T1 or T2, is imposed on these planes. This type of boundary condi-
tion is much simpler and easier to use in the simulation, however
its accuracy needs to be analyzed. In the later discussion of this
paper, all the results obtained by adiabatic boundary conditions
are denoted by ‘‘ABC”.

It should be noted that available studies focused on thermal
conduction behaviours of 3D four-directional braided composites
are limited, and the quarter and eighth unit cell are for the first
time established in this paper. Therefore, it has to be mentioned
that the main objective of these comparison calculations is to ver-
ify the significance of accurate boundary conditions rather than to
indicate the possible mistakes of previous studies.

Calculation of kxx : Tð0;y1 ;z1Þ � Tða;y1 ;z1Þ ¼ DT

Calculation of kyy : Tðx1 ;0;z1Þ � Tðx1 ;b;z1Þ ¼ DT

Calculation of kzz : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ DT

ð25Þ

Calculation of kxx : P4 : T ð0;y1 ;z1Þ ¼ T1; P7 : Tða=2;y1 ;z1Þ ¼ T2;

T1 � T2 ¼ DT=2

Calculation of kyy : P1 : T ðx1 ;b=2;z1Þ ¼ T2; P2 : Tðx1 ;0;z1Þ ¼ T1;

T1 � T2 ¼ DT=2

Calculation of kzz : P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ DT

ð26Þ

Calculation of kxx : P4 : T ð0;y1 ;z1Þ ¼ T1; P8 : Tða=2;y1 ;z1Þ ¼ T3;

T1 � T3 ¼ DT=4

Calculation of kyy : P1 : T ðx1 ;b=2;z1Þ ¼ T2; P2 : Tðx1 ;0;z1Þ ¼ T1;

T1 � T2 ¼ DT=2

Calculation of kzz : P6 � P5 : Tðx1 ;y1 ;0Þ � Tðx1 ;y1 ;hÞ ¼ DT

ð27Þ
Fig. 7. Numerical models of 3D four-directional braided composites.
9. Numerical models

9.1. Governing equation and model meshing

ANSYS Mechanical is used to conduct the numerical simulation.
The governing equation is:

kxx
@2T
@x2

þ kyy
@2T
@y2

þ kzz
@2T
@z2

þ ðkxy þ kyxÞ @2T
@x@y

þ ðkxz þ kzxÞ @2T
@x@z

þ ðkyz þ kzyÞ @2T
@y@z

¼ 0 ð28Þ
where kxx etc. are the non-isotropic thermal conductivities.
Based on Eq. (28), the temperature distributions can be calcu-

lated, and thus the effective thermal conductivities of the compos-
ite can be obtained by Eq. (29):

qo
x ¼ �koxxT

o
x � koxyT

o
y � koxzT

o
z

qo
y ¼ �koyxT

o
x � koyyT

o
y � koyzT

o
z

qo
z ¼ �kozxT

o
x � kozyT

o
y � kozzT

o
z

ð29Þ

To
x ; T

o
y and To

z are temperature gradients in three component direc-

tions applied as boundary conditions, and the matrix element koxx,
koxy, k

o
xz . . . are effective thermal conductivities to be calculated in

which non-diagonal elements koxy, k
o
xz . . . equal to 0 according to

the authors’ previous work [16]. qo
x , q

o
y and qo

z are the heat flux in



Table 5
Materials properties.

Transverse thermal
conductivity/(W/(m�K))

Axial thermal
conductivity/(W/(m�K))

Carbon fiber 0.675 7.81
Resin 0.178 0.178
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three component directions and can be obtained by Qi/Ai, where Qi

is the heat flow through the corresponding boundary plane and Ai is
the area of the plane.

Figs. 1–4 are the topological models and the establishment of
numerical models needs additional information about the yarns’
shape and size as detailed stated in [16]. In this paper, the cross-
section of braiding yarns is assumed to be ellipse, models estab-
lished based on UC1, UC2 and UC3 can be seen in Figs. 7 (a), (b) and
(c), respectively, in which the fiber volume fraction, Vf is 0.5 and
the interior braiding angle, c is 35�. In order to exhibit the distribu-
tion of braiding yarns clearly the matrix is not shown in the figures.

For UC1, the boundary conditions require the same grid for cor-
responding planes, i.e., the plane groups: x = 0 and x = a, y = 0 and
y = b, z = 0 and z = h. For UC2, the plane groups should be: (0, y,
(h/2, h)) and (0, y, (0, h/2)), (a/2, y, (h/2, h)) and (a/2, y, (0, h/2)),
(x, 0, (h/2, h)) and (x, 0, (0, h/2)), (x, b/2, (h/2, h)) and (x, b/2, (0,
h/2)), z = 0 and z = h. For UC3, the plane groups should be: (0, y,
(h/2, h)) and (0, y, (0, h/2)), (a/4, (0, b/4), z) and (a/4, (b/4, b/2), z),
(x, 0, (h/2, h)) and (x, 0, (0, h/2)), (x, b/2, (h/2, h)) and (x, b/2, (0,
h/2)), z = 0 and z = h. We use APDL (ANSYS Parametric Design
Fig. 8. Meshed
Language) command MSHCOPY to realize the copy and paste of
the area mesh of corresponding planes. Based on the area mesh,
the volumes are meshed with 3D thermal solid element SOLID 70
and the meshed models are shown in Fig. 8(a)–(c). Also, as shown
in Fig. 8 (b) and (c), the mesh of small area depicted by yellow dash
lines is displayed in the enlarged picture and the identical mesh is
indicated more distinctly. Although different number of grids will
be generated for models with different Vf and c, in this work UC1

has about 3,000,000 elements and 500,000 nodes, UC2 has about
700,000 elements and 130,000 nodes, while UC3 has about
400,000 elements and 80,000 nodes. The obtained numerical result
is independent of mesh refinement in this work.
models.



Fig. 9. Temperature fields of volumes for the calculation of kxxo .

Fig. 10. Temperature fields at boundary p
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9.2. Materials properties

In this work, the matrix of the composite is epoxy resin TDE-86
and the reinforcing fiber is T300 carbon. The thermal properties
can be seen in Table 5. The braiding yarn consists of resin and car-
bon fibers, and its axial and transverse thermal conductivities can
be calculated by:

kya ¼ kfaV fy þ kmð1� VfyÞ ð30Þ

kyt ¼ km þ Vfy

1=ðkft � kmÞ þ ð1� VfyÞ=ð2kmÞ ð31Þ

where kya and kyt are the axial and transverse thermal conductivity
of yarns, respectively. kfa and kft are the axial and transverse thermal
conductivity of fibers, respectively. km is the thermal conductivity of
resin. Vfy is the fiber volume fraction of yarns, and can be calculated
by Vf/Vy where Vy is the yarn volume fraction of composites. Eq. (31)
is referred to in [28] and its accuracy is validated by FEM simula-
tions in [16].

It should be noted that the temperature is a very important fac-
tor affecting the composite effective thermal conductivity. How-
ever, only normal temperature environment is considered in this
work, since the accurate prediction of effective thermal conductiv-
ities needs accurate essential input data, i.e., thermal conductivi-
ties of the resin and the carbon, which are very difficult to obtain
at low or high temperatures. On the other hand, according to the
above discussion we can see that the model and the boundary con-
ditions will not be affected by the environment temperature. Con-
sidering it from a positive point of view this work proposed an
approach which can be used to predict effective properties of com-
posites at any temperatures provided that the accurate input data
can be obtained.

10. Results and discussions

10.1. Temperature fields

10.1.1. Accurate boundary conditions
Temperature distributions of volumes, planes and lines are dis-

played to illustrate the same numerical results obtained by three
different unit cells. Figs. 9 (a), (b) and (c) are temperature fields
of volumes obtained by three unit cells for the calculation of kxx

o

lanes x = 0 for the calculation of kxxo .
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(Vf = 0.5, c = 30�). From boundary conditions of UC2 and UC3 one
can notice that TO acts as a reference temperature. Therefore, in
order to compare temperature fields obtained by the different unit
cells, TO is set to 0 �C for the specific cases (Vf = 0.5, c = 30�). As
shown in the figures, under the same legend all the temperature
fields are relatively uniform and have very similar distributions.
Fig. 10 shows the temperature fields at boundary planes x = 0 by
three unit cells with the same legend (UC2 and UC3 have the same
size of plane x = 0). The black point indicates rotation axis X1-axis,
and the temperature field of UC1 displays an obvious distribution
of 180� rotation symmetry between the left and the right parts.
Also, the almost identical temperature distributions are obtained
by three unit cells. In order to further confirm that UC1, UC2 and
UC3 result in the certainly same temperature fields, the tempera-
tures of nodes on path lines L1 = (0, b/8, z), L2 = (0, b/4, z),
L3 = (a/4, b/4, z), L4 = (a/2, b/8, z) and L5 = (a/2, b/4, z) (the white lines
in Fig. 9) are extracted and shown in Fig. 11. It should be noted that
UC3 only has path lines L1, L2 and L3. The solid, the dash and the dash
dot lines represent results obtained by UC1, UC2 and UC3, respec-
tively, and different colours indicate different path lines. The solid,
the dash and the dash dot lines almost coincidewith each other and
the largest difference which has an absolute value of 0.035 �C while
Fig. 11. Temperature on path lines for the calculation of kxxo .

Fig. 12. Temperature fields of volu
a relative one of only 0.7%, occurs on the path line L3 and is between
UC2 and UC3. Although the difference is very small, there is some-
thing interesting and it deserves an analysis and discussion. For
UC3, L3 is on the boundary plane P8 (see Fig. 6) and its temperature
distribution is described by the boundary conditions shown in Eq.
(22). Considering Eq. (22) carefully one can find that all the nodal
temperatures on L3 are accurately constrained as -5 �C. However,
for UC1 and UC2, L3 is in the interior region and its temperature dis-
tribution is obtained during the numerical calculation. The calcu-
lated temperature on L3 fluctuates around -5 (the accurate value)
with a largest deviation of 0.7%. At this condition, the difference
of the temperature fields obtained by three unit cells might be
due to the numerical error rather than the reduced size of unit cells
or their complicated boundary conditions.

One can also find a uniform volume temperature field for the
calculation of kzz

o as shown in Fig. 12. Temperature distributions
at boundary planes of z direction (planes z = h) are shown in
Fig. 13. In the figure, the pink point represents axis Z1 = (a/4, b/4,
z), and 180� rotational symmetries about Z1 of temperature distri-
bution can be observed in the results of UC1 and UC2. In addition,
the temperature fields obtained by three different unit cells are
very similar to each other under the same legend.

From Figs. 9–13 it can be concluded that three different unit
cells result in the same temperature fields and this indicates the
reliability of the boundary conditions derived for UC2 and UC3 in
this work.

10.1.2. Comparison with inappropriate boundary conditions
In fact, we can conclude that the temperature distribution cal-

culated by models with boundary conditions presented in this
paper can completely represent the full structure of composite,
especially when we consider the rigorous derivation process of
boundary conditions. On the other hand, these types of boundary
conditions are relatively tedious and complicated to use in the sim-
ulation, and thus its necessity has to be clarified here. Some calcu-
lations with inappropriate boundary conditions described in Eqs.
(25) to (27) are conducted to state the deviation between results
obtained by different boundary conditions.

Fig. 14 is the temperature fields for the calculation of kzz
o

obtained by adiabatic boundary conditions. In the figure, ‘‘ABC”
means the adiabatic boundary conditions for UC1, UC2 and UC3 as
shown in Eqs. (25)–(27), respectively. Compared with the uniform
distribution obtained by accurate boundary conditions (see
mes for the calculation of kzzo .



Fig. 15. Temperature on path lines of UC2 with different boundary conditions.
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Fig. 12), the temperature fields obtained by adiabatic boundary
conditions have a much different distribution, and also three unit
cells lead to totally different results. The temperature on path lines
also has the same condition, take UC2 as an example, Fig. 15 shows
the temperature of nodes on lines L1 to L5 obtained by UC2 with dif-
ferent boundary conditions. In the figure, ‘‘DBC” means the bound-
ary conditions derived in this paper. The nodal temperatures on the
five lines by ‘‘DBC” unit cell have the same and a nearly linear dis-
tribution, while those by ‘‘ABC” unit cell have different nonlinear
distributions. From Figs. 12–15 one can find that the inappropriate
adiabatic boundary conditions will lead to a wrong temperature
distribution much different from the real condition and may influ-
ence its accuracy of the prediction of effective thermal conductivity
and will be discussed later.

10.2. Effective thermal conductivities

Based on the three models, effective thermal conductivities of
3D four-directional braided composites are numerically calculated.
The fiber volume fraction Vf is assumed to be 0.4, 0.5 and 0.58, and
the interior braiding angle c varies from 15� to 50�. Figs. 16 and 17
are the transverse (kxxo = kyy

o ) and the axial (kzzo ) thermal conductiv-
ities obtained by three models. The black solid lines with black
Fig. 13. Temperature fields at boundary p

Fig. 14. Temperature fields obtained b
solid symbols, the red dash line with red solid symbols, and the
green dot line with green solid symbols are the results obtained
by UC1, UC2 and UC3 with derived boundary conditions,
lanes z = h for the calculation of kzzo .

y adiabatic boundary conditions.



Fig. 16. Transverse thermal conductivities of composites.

Fig. 17. Axial thermal conductivities of composites.
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respectively. The symbols without lines are results calculated by
adiabatic boundary conditions. From the figures one can see that
with the increase of fiber volume fraction both the effective trans-
verse and axial thermal conductivities of composites increase,
since the fiber has larger thermal conductivities than the matrix
resin. As for the interior braiding angle, the angle between the fiber
yarns and the axial direction, a larger value means that the trans-
verse projection of fiber yarns is longer while the axial component
is shorter, and thus the increasing interior braiding angle leads to
the increase of transverse but the decrease of axial thermal con-
ductivities. Additionally, effective thermal conductivities obtained
by three models with accurate boundary conditions approach each
other greatly with a maximum difference of 0.3% (kzzo for Vf = 0.5,
c = 50�). This further validates the accuracy of boundary conditions
derived for UC2 and UC3 in this paper. Furthermore, the computa-
tional time required for UC2 and UC3 is only about 25% and 12.5% of
UC1 (about an hour for a Dell work station with 8 CPUs and 24 GB
RAM). So, compared with UC1, UC2 and UC3 have much more com-
plicated boundary conditions while at the same time a smaller size
and a great saving of computational cost.

On the other hand, as discussed above the temperature distri-
bution obtained by adiabatic boundary conditions has much differ-
ence with that of the derived boundary conditions. From Figs. 16
and 17 one can see that also the effective thermal conductivities



Table 7
Comparison with experimental results (numerical results with ABC).

Vf c kt (Exp.) kxx (UC1) Diff. (%) kxx
o (UC2) Diff. (%) kxx

o (UC3) Diff. (%)

0.5 25 0.709 0.536 �24.4 0.614 �13.4 0.624 �12.0
0.5 40 1.09 0.732 �32.8 0.949 �12.9 0.98 �10.1
0.58 25 0.75 0.599 �20.1 0.704 �6.13 0.717 �4.4
0.58 40 1.021 0.809 �20.8 1.097 7.44 1.13 10.7

Vf c ka (Exp.) kzz
o (UC1) Diff. (%) kzz

o (UC2) Diff. (%) kzz
o (UC3) Diff. (%)

0.5 25 3.41 2.421 �29.0 2.007 �41.1 1.494 �56.2
0.5 40 2.53 1.534 �39.4 1.221 �51.7 0.835 �67.0
0.58 25 3.52 2.745 �22.0 2.287 �35.0 1.681 �52.2
0.58 40 2.692 1.703 �36.7 1.378 �48.8 0.9231 �65.7

Table 6
Comparison with experimental results.

Vf c kxx (UC1) kxx (UC2) kxx (UC3) kt (Exp.) Diff. (Max.) (%) kzz (UC1) kzz (UC2) kzz (UC3) ka (Exp.) Diff. (Max.) (%)

0.5 25 0.656 0.655 0.653 0.709 �7.62 3.334 3.328 3.33 3.41 �2.4
0.5 40 1.085 1.084 1.082 1.09 �0.55 2.480 2.475 2.477 2.53 �2.17
0.58 25 0.744 0.744 0.741 0.75 �0.8 3.843 3.837 3.839 3.52 9.18
0.58 40 1.241 1.239 1.236 1.021 21.6 2.854 2.847 2.851 2.692 6.02
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obtained by adiabatic boundary conditions (the ‘‘ABC” symbols
without lines in Figs. 16 and 17) have much deviation with that
of derived boundary conditions. For transverse thermal conductiv-
ities, the maximum deviation is about 39.4%, while for axial ther-
mal conductivities the maximum deviation is about 67%. This
indicates that the accurate boundary condition is very important
for the prediction of composites’ effective thermal conductivities
by unit cells.

The predicted thermal conductivities are compared with results
measured by a hot disk analyser (TPS2500S) presented in the
authors’ previous work [16]. Four types of composites with differ-
ent interior braiding angle and fiber volume fraction as listed in
Table 6 are measured. During the braiding process, the length
and width of braided pitch, which can represent the size of the
meso structure of composite, are controlled to obtain the compos-
ite materials with the same interior braiding angle but different
fiber volume fraction. As shown in Table 6, except the transverse
thermal conductivity of the last sample (Vf = 0.58, c = 40�), the
numerical and experimental values have relatively good agree-
ment with a maximum difference of 9.18%. This comparison vali-
dates the reliability of the numerical models established in this
work. For the larger deviation of transverse thermal conductivity
of the last sample, the measured value is smaller than the second
sample which has a smaller fiber volume fraction and means an
unreasonable value. This may be due to the material’s manufacter-
ing defect. Also, the results calculated by inappropriate boundary
conditions (adiabatic BC) are compared with the experimental
results as shown in Table 7. The calculation error in Table 7 is much
larger than that in Table 6 and the maximum one reaches an unac-
ceptable value of�39.4% for UC1,�51.7% for UC2 and�67% for UC3,
respectively.

As discussed above, for unit cells established in this paper, the
derived appropriate boundary conditions result in accurate effec-
tive thermal conductivities, while the inappropriate boundary con-
ditions lead to un-neglected errors. The boundary conditions are
closely related with the validity of the unit cell. In fact, the effective
properties of composites can only be calculated based on a model
which contains enough and complete information (structure, con-
stituents, etc.) about the composite. We can establish a relative
infinite model of the same structure and size with the experimen-
tal specimen, or a micro representative volume element (unit cells)
of the specimen. For the relative infinite model, the adiabatic
boundary condition similar to Eq. (25) which is often imposed dur-
ing the real steady-state experimental measurement can be used in
the calculation, and the accurate results will be obtained for sure.
However, the establishment of such a model is difficult and even
impossible for its great computational cost. On the other hand,
once a unit cell as presented in this work is established, the addi-
tional boundary conditions have to be derived to enable the unit
cell be an adequately representative to the composite, and for most
cases the adiabatic boundary conditions will not be appropriate
any longer.
11. Conclusions

It is for the first time a quarter and an eighth unit cell of three-
dimensional four-directional braided composite are formulated by
using three 180� rotational transformations. The thermal boundary
conditions of each unit cell corresponding to each transformation
are precisely derived. Based on the full, the quarter and the eighth
unit cell the effective thermal conductivities of the composites are
predicted. The identical temperature distributions and effective
thermal conductivities (difference less than 0.3%) obtained by the
three unit cells verify the accuracy of the boundary conditions.
The good agreement between numerical and experimental results
indicates the reliability of the numerical models. The numerical
results show some conclusions:

(1) Each rotational symmetric transformation can formulate a
unit cell in half size and a reducing-size unit cell has more
complicated thermal boundary conditions, however at the
same time can bring about a great saving of the computa-
tional source. The computational time required for the quar-
ter and the eighth unit cell in this work is about only 25%
and 12.5% of the full unit cell.

(2) In the prediction of thermal conduction behaviours for
three-dimensional four-directional braided composites,
accurate boundary conditions have to be derived rigorously
according to the symmetric transformations. Inappropriate
boundary conditions will lead to a wrong prediction of tem-
perature distribution and an inappropriate evaluation of
effective thermal conductivities with a possible unaccept-
able error.
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