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This study proposes a new hybrid methodology for short-term prediction of energy efficiency. This new
method consists of the stochastic frontier analysis-generalised autoregressive conditional heteroskedas-
ticity (SFA-GARCH) model and the radial basis function neural (RBFN) model. The study finds that 30
regions (provinces and municipalities) in China have cluster-hetergeneity, and the different levels of
industry structure, technology content and energy resources in the different regions lead to dissimilar
energy saving quotas. In addition, through fair comparison between the traditional GARCH model and
the new hybrid model, it is proved that the new hybrid model shows good performance and the results
are reasonable. The energy efficiency indicators predicted by the hybrid model appear to be more reliable
than the summation of the individual forecasts because it avoids the superposition of errors.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction policy in China in response to a range of challenges including
1.1. Background

Due to the environmental pressure, energy efficiency and
energy saving are becoming increasingly significant to government
energy resource scarcity, shortage of energy supply and high
energy price. Many of the high energy-consuming fixed asset
investments have become enterprises in energy-intensive indus-
tries. Chinese energy consumption per unit output value is 2.3
times of the world average, and the energy efficiency is 10% less
than the world average [1]. Continually increasing energy con-
sumption and energy intensity have not only caused the alarm
for Chinese energy security but also led to carbon emission
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Fig. 1. Flowchart of the proposed methodology.

1770 M.-J. Li et al. / Applied Energy 185 (2017) 1769–1777
pressure in the post Kyoto-protocol era [2]. Therefore, to improve
energy efficiency has become a rigorous matter in China. It is of
great significance to investigate regional energy efficiency and
analyse the influencing factors, because it can impact the strategy
of scientific and technological development and the transformation
of the mode of economic growth. Moreover, accurate forecasting of
regional energy efficiency is vital for politic decision.

1.2. Previous studies of energy efficiency evaluation and prediction

There are mainly four types of models closely related to energy
efficiency evaluation. First is the stochastic frontier analysis (SFA)
model. It is mainly adopted to deal with the linear regression of
energy efficiency. Boyd [3] and Boyd et al. [4] adopted the SFA
model to investigate energy performance index. Then, the index
data analysis (IDA) model is further extended based upon the
SFA model. The SFA model can be used to investigate how the
linear change of industrial structure impacts the total energy
intensity. For example, Newell et al. [5] adopted it to analyse the
relation between technical change and energy saving. Lin and Du
[6] adopted the SFA model to estimate energy efficiency in 30 pro-
vinces, and they argued that the deficiency of this linear approach
is ignoring the technology gaps across variable groups. Further-
more, the data envelopment analysis (DEA) model has been
applied to overcome the disadvantage of the SFA model basically.
Scholars employed the DEA model because they believed that
energy efficiency should be put together with wide independent
factors in order to evaluate outputs [1]. Wang et al. [7] applied
the DEA model to do multi-directional efficiency analysis. Wang
and Feng [8] adopted this model to evaluate the performance of
environmental efficiency in China. They figured out that the ten-
dency of environmental efficiency has begun to have an ascending
path because of improved technologies. Recently, the DEA model
has been implemented to examine the energy efficiency of coal-
fired power units by Song et al. [9]. The obvious causal relationship
could be obtained thanks to the linear characteristics of the DEA
model. The DEA model can be easily applied to a multiple input–
output black-box framework for estimating different indexes,
especially for the decision making units of industries. However,
the DEA model has some limitations. It does not overcome the
summation of measurement errors, and evaluation of this method
is easy to be influenced by its extreme value. Fourth, some studies
employed the generalised autoregressive conditional
heteroskedasticity (GARCH) models to estimate the volatility of
assets, and they showed the short-run performance based upon
in-sample forecasts [10]. The GARCH model mainly focuses on
volatility analysis of time series data, without examining the
underlying physical process. Ji and Guo [11] recently analysed
the oil price volatility and its related issues via adopting the
GARCH model for figuring out the reason of global financial crisis.
Li et al. [12] further employed the GARCH model to examine the
detailed causality relationship among different variables in ther-
mal power plants, and then to figure out the most influential fac-
tors through non-manual intervention methodology.

On the other hand, the radial basis function neural (RBFN)
model is a successful application for seasonal and time series fore-
cast. It is able to structure frameworks for modeling a broad range
of nonlinear issues. It can structure any type of relations with a
high degree of accuracy. The most obvious advantage is that the
RBFN model can universally approximate a large number of data,
and no prior model needs to be built within the process. This
power comes from the computation progress of the information
from the data. Wedding and Cios [13] used the RBFN model and
the Box–Jenkins model to generate certainty factors with normal
output. Ginzburg and Horn [14] also employed a neural network
to analyse time series prediction.

Recently, due to the limitation of each single model, hybrid
methodology has become an important methodology to analyse
comprehensive nonlinear systems. Conejo et al. [15] proposed a
hybrid method based on the auto-regressive integrated moving
average (ARIMA) models and the wavelet transform (WT) models
to forecast day-ahead energy price of Spanish market. A hybrid
model has been constructed by Li et al. [12] combining time series
methods (WT model + RBFN model) and an adaptive evolutionary
algorithm for day-ahead price. However, all the above methods
ignore the effect of measurement errors and other statistical noises
that may lead to the result errors.

There are many papers that focus on particular sectors of
Chinese energy system but few studies pay attention on prediction
of energy efficiency in medium-term (i.e., to 2020). The objective of
this paper is to address this gap, by quantifying energy efficiency
factors at a function level and by adopting the hybrid model. The
new hybrid model will overcome the limitation of single model,
and it combines the SFA-GARCH model and the RBFN model, for
evaluating influencing factors and forecasting regional energy effi-
ciency. The advantage of this method can be described as follows.
When the amount of data is large, the RBFN model is presenting
that the data match a training pattern with a high degree of accu-
racy and the results are reliable. When the amount of data is low,
there are few training patterns and the forecast will be obtained in
favour of the GARCH model. Therefore, the new hybrid model is
more accurate than adopting RBFN model or GARCH model alone.



Fig. 2. A three-layer RBFN model.
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Using the proposed hybrid model, the investigations of this paper
are twofold. The first one is to analyse the energy efficiency indica-
tors (hereafter referred to as EEI) of the 30 regions (provinces and
municipalities) in China from 2003 to 2014 by the new hybrid
methodology. Unlike the usual regression approach, the hybrid
method considers the heteroskedasticity, and results will not be
easily biased. The second one is to forecast the EEI in the next
5 years. The results of prediction present three energy-efficiency
cluster areas for which the government needs to provide helpful
support with specific regional policies. To our knowledge, there
has been rare study applying econometric models to forecast regio-
nal energy efficiency in China.

2. Proposed methodology

In this section, the proposed new hybrid method for short-term
regional energy efficiency in China is described. This approach is a
four-step procedure. First, the selected explanatory variables are
tested whether data series are stationary or not. Stationary is pre-
mised of further calculation. In the second step, the SFA model is
adopted to investigate the regional EEI using explanatory variables.
In the third step, the GARCHmodel is used to evaluate the volatility
among the EEI and influencing factors. Finally, the hybrid model is
employed for estimating the short-term EEI. The results obtained
with the proposed approach are compared with those from the tra-
ditional GARCH model. The prediction time-horison is 5-ahead
years, from 2016 to 2020.

The proposed hybrid methodology is sketched in Fig. 1 and can
be listed as follows:

(1) Structure a database including historical data of all variables
that affect the short-term EEIs.

(2) Apply data processing for the explanatory variables to each
sub-panel.

(3) Calculate each sub-panel by the SFA-GARCH model. This
process is demonstrated in the red box of the flowchart.

(4) The RFBN model is adopted to forecast the nonlinear model-
ing of every panel.

2.1. Stationary test functions

In order to describe the unbiased estimators by the classical
regression model, it is necessary to have a test of the time series
in empirical studies for proving whether there is good evidence
of a causal relationship. This section employs the augmented
Dickey-Fuller (ADF) unit root test to examine whether data is sta-
tionary for further calculation or not. It includes extra lagged terms
of the dependent variables for capturing the auto-correlation. The
Lagrange multiplier (LM) test framed by Engle is more widely
accepted in testing the presence of the autoregressive condition-
ally heteroskedasticity (ARCH) effect [16]. The LM test is employed
for testing whether time series data have heteroscedasticity. The
functions are as bellows.

2.1.1. Unite root test

Dyt ¼ cyt�1 þ
Xp
i�1

biDyt�i þ tt ð1Þ

Dyt ¼ a0 þ cyt�1 þ
Xp
i�1

biDyt�i þ tt ð2Þ

Dyt ¼ a0 þ cyt�1 þ a2t þ
Xp
i�1

biDyt�i þ tt ð3Þ
where a0 means constant, a2t represents trend of equations. c and bi

denote the short-run coefficients. The first equation demonstrates
the ADF test with no constant and no trend in the series, whereas
the second one represents the test as having a constant but no
trend. The third equation shows that the test has both a constant
and a trend.

2.1.2. LM test
This part sets lag number at 1 in order to test whether the ARCH

effect exists. The LM test applies the null hypothesis that there is
no serial correlation up to lag order p, where the lag is equal to 1
in this test.

l2
t ¼ c0 þ c1t

2
t�1 þ . . .þ cqt

2
t�q þ lt ð4Þ

where lt represents squared distribution of Dyt , which is obtained
from Eq. (3). t is data series, q presents the number of lags, and c
stands for the coefficient of correlation.
2.2. SFA model

2.2.1. Shephard energy distance function
As mentioned, the Shephard energy distance function is further

employed in this section to define the EEI for investigating regional
energy efficiency performance. The characteristic of this function is
to include all variables in an aggregate production framework. The
economy level, labour, technology level and investment level are
all related variables. The function is as follows:

T ¼ fðPGDP;C; LP; IFA; EEIÞ : ðPGDP;C; LP; IFAÞ ! EEIg ð5Þ
where PDGP is per capita GDP, and it represents regional economic
development; C is the proportion of coal in primary energy con-
sumption, and it describes energy consumption characteristics; LP
stands for labour productivity, and it represents technology level;
IFA is fixed asset investment accounted for the proportion of GDP
every year, and it represents investment level. In Eq. (5), economy
level, labour, technology level and investment level are inputs. They
are treated as independent variables. EEI is output and it is treated
as a dependent factor. T includes all the independent and dependent
vectors. In production theory, it is a closed and bounded set [10].
Moreover, the function normally assumes that:

ðPGDP0;C 0; LP0; IFA0
; EEI0Þ 2 T ð6Þ

if ðPGDP0;C 0; LP0; IFA0Þ P ðPGDP;C; LP; IFAÞ and Y 0 6 Y: ð7Þ



Table 2
Unit root test of four variables.

Variables Automatic lag
length

ADF
statistic

5% Level of critical
value

Inference

ln(PGDP) 0 �37.103 �3.382 lnf�I(0)
ln(C) 0 �36.227 �3.416 lnf�I(0)
ln(LP) 0 �42.491 �3.388 lnf�I(0)
ln(IFA) 0 �30.743 �3.622 lnf�I(0)

Table 3
LM test for ARCH of the variables.

Lags (p) Prob. Chi-square Obs ⁄ R-squared

1 0.0002 126.573

Note: The Prob. Chi-square is probability Chi-squared distribution, it is a continuous
probability Distribution. The Obs ⁄ R-squared is observation R-squared distribution.

Table 4
Volatility relationship among four determinants of variables.

Variables Coefficient

East region Central region West region

ln(PGDP) �0.569⁄⁄⁄ �3.062⁄⁄⁄ 0.147⁄⁄⁄

ln(C) �0.706⁄⁄⁄ �0.101⁄⁄⁄ �0.093⁄⁄⁄

ln(LP) 0.482⁄⁄⁄ 1.299⁄⁄⁄ �0.714⁄⁄⁄

ln(IFA) �0.012⁄⁄⁄ �0.260⁄⁄⁄ �0.034⁄⁄⁄

Note: ⁄⁄⁄ means figure is at significant level of 1%.

1772 M.-J. Li et al. / Applied Energy 185 (2017) 1769–1777
To investigate energy efficiency, the EEI is defined as the ratio of
energy use to actual energy use, and it can be expressed as:

EEI ¼ 1=DEðPGDP;C; LP; IFA; EEIÞ ð8Þ
where the estimation of EEI equals 1, and it represents that the esti-
mated figure of regions is located at the frontier of best practice.

2.2.2. SFA model
The Shephard energy distance function has to be analysed via a

practical perspective. The Shephard energy distance function for
region i can be represented as DEðPGDPi;Ci; LPi; IFAi; EEIiÞ. The func-
tion is expressed in the form of the logarithms:

lnDEðPGDPi;Ci; LPi; IFAi; EEIiÞ ¼ a0 þ b1PGDPi þ b2Ci þ b3LPi

þ b4IFAi þ et ð9Þ
where bi means parameter i of region i, and it proves the impact of
various factors from the perspective of empirical evidence. et is a
random statistical noise and approximation error.

2.3. GARCH model

The GARCH method is further adopted after the estimation of
regional EEI by the SFA model. The objective is to investigate both
long-term and short-term relationships among the volatility of EEI,
PDGP and C, LP and IFA.

With the work of ARCH models pioneered by Engle, there are a
large number of volatility models for precise evaluation [10].
GARCH (1,1) model is one of the GARCH (p,q) models, which is pre-
sented by Bollerslev in 1986 [16]. Where p is the order of the mov-
ing average ARCH term and q stands for the autoregressive GARCH
term. The model equation is as bellows:

The traditional GARCH (1,1) model

REEI ¼ c þ
X
kP1

akRt�k þ
X
i

biMi;t þ et ð10Þ

et � Nð0;htÞ ð11Þ

ht ¼ a0 þ bht�1 þ a1e2t�1 þ
X
i

ciMi;t ð12Þ

where REEI is the regional energy efficiency, and Mi;t is the impact
variable of the event i. The coefficients of Eq. (4) need to satisfy
ak P 0; bi P 0, and c > 0, to ensure the conditional variance is pos-
itive. ht explains the conditional variance of REEI , and it relies onMi;t .
The event of i stands for the time-varying changes of impact vari-
able. a0, b and a1 have to be estimated in the variance to enable
the past squared errors to determine the time-varying conditional
variance.ci stands for the presence of the asymmetric effect.

In order to analyse specifically four influencing factors of regio-
nal EEI, the model is extended as bellows:

The extended GARCH (1,1) model

REEI ¼ c þ
X
kP1

akRt�k þ bPGDPMPGDP;t þ bCMC;t þ bLPMLP;t

þ bIFAMIFA;t þ et ð13Þ
Table 1
Descriptive statistics of variables.

Observation Standard Deviation Skewness

PGDP 300 12748.708 0.681
C 300 17.811 �0.064
LP 300 7.694 24.841
IFA 300 2.656 3.152

Note: Full sample of variables are collected from January 01, 2003 to December 31, 201
et ! Nð0;htÞ ð14Þ

ht ¼ a0 þ a1e2t�1 þ bht�1 þ cPGDPMPGDP;t þ cCMC;t þ cLPMLP;t

þ cIFAMIFA;t ð15Þ

where MPGDP;t stands for the per capita GDP each year, MC;t repre-
sents the proportion of coal in primary energy consumption, MLP;t

stands for labour productivity, and MIFA means fixed asset invest-
ment accounted for the proportion of GDP every year.

2.4. RBFN model

After the evaluation of regional EEI, the RBFN model is further
adopted to forecast. It has been implemented to a variety of com-
prehensive problems because of its ability to solve non-linear rela-
tions between input and output variables. Neural forecasting
network implicates that it is not only a vital candidate for time ser-
ies data but also an accurate modeling tool for any types of causal
relationship. There are many types of neural network models. One
of the most popular methodologies is the multi-layer interceptions,
which is used in this paper. It includes an input layer, hidden layers
and an output layer as shown in Fig. 2. The input nodes are the first
layer that collects data to each node of the second layers or hidden
layers, and then the second layer represents a data cluster which is
centred at a particular point. Finally the third layer has only one
output node, and it is the sum of all the hidden nodes to lead to
the decision value. Amjady [17] demonstrated that the weights
Kurtosis Mean Maximum Minimum

3.075 16356.382 80376.600 2861.203
3.573 64.272 96.500 10.100
625.942 1.2712 195.000 0.000
11.159 2.950 15.393 0.090

3.



Table 5
Energy efficiency values of provinces in China from 2003 to 2014.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Beijing 0.760 0.772 0.931 0.978 0.894 0.991 0.867 0.939 0.956 0.931 0.982 0.979
Tianjin 0.658 0.701 0.848 0.973 0.762 0.877 0.943 0.860 0.842 0.853 0.902 0.896
Hebei 0.780 0.711 0.719 0.858 0.755 0.840 0.833 0.865 0.902 0.851 0.899 0.875
Shanxi 0.720 0.628 0.687 0.729 0.696 0.908 0.825 0.896 0.910 0.903 0.842 0.886
Inner Mongolia 0.586 0.542 0.649 0.768 0.566 0.705 0.716 0.826 0.758 0.727 0.786 0.764
Liaoning 0.564 0.698 0.550 0.611 0.487 0.587 0.881 0.863 0.865 0.892 0.803 0.790
Jilin 0.487 0.576 0.687 0.758 0.560 0.852 0.756 0.861 0.859 0.855 0.831 0.901
Heilongjiang 0.620 0.633 0.528 0.662 0.648 0.846 0.846 0.743 0.856 0.901 0.931 0.899
Shanghai 0.856 0.879 0.901 0.937 0.872 1.000 0.987 0.964 0.915 0.958 0.987 0.973
Jiangsu 0.755 0.815 0.881 0.879 0.854 0.931 0.935 0.948 0.959 0.853 0.893 0.932
Zhejiang 0.785 0.800 0.915 0.944 0.879 0.956 0.897 0.902 0.936 0.895 0.849 0.896
Anhui 0.677 0.759 0.715 0.780 0.674 0.862 0.798 0.747 0.876 0.928 0.901 0.900
Fujian 0.862 0.877 0.914 0.963 0.928 0.993 0.786 0.864 0.880 0.855 0.869 0.893
Jiangxi 0.735 0.733 0.821 0.899 0.675 0.768 0.802 0.811 0.876 0.818 0.846 0.795
Shandong 0.540 0.569 0.612 0.685 0.624 0.711 0.780 0.726 0.697 0.708 0.799 0.843
Henan 0.550 0.536 0.535 0.542 0.673 0.589 0.672 0.617 0.550 0.543 0.653 0.663
Hubei 0.496 0.579 0.664 0.719 0.610 0.532 0.525 0.550 0.580 0.618 0.700 0.713
Hunan 0.557 0.568 0.609 0.657 0.660 0.583 0.652 0.579 0.610 0.669 0.785 0.721
Guangdong 0.875 0.910 0.932 0.960 0.922 0.900 0.897 0.848 0.921 0.900 0.933 0.967
Guangxi 0.657 0.663 0.699 0.719 0.688 0.670 0.731 0.684 0.782 0.699 0.778 0.729
Hainan 0.910 0.932 0.817 0.879 0.842 0.880 0.883 0.850 0.821 0.786 0.881 0.892
Chongqing 0.506 0.601 0.592 0.660 0.762 0.614 0.760 0.760 0.579 0.683 0.769 0.526
Sichuan 0.504 0.563 0.583 0.896 0.575 0.487 0.542 0.550 0.421 0.682 0.583 0.595
Guizhou 0.281 0.307 0.221 0.372 0.319 0.343 0.358 0.441 0.462 0.520 0.557 0.584
Yunnan 0.960 0.882 0.801 0.764 0.898 0.941 0.976 0.866 0.866 0.866 0.832 0.886
Shannxi 0.629 0.522 0.587 0.716 0.611 0.544 0.507 0.698 0.720 0.747 0.756 0.774
Gansu 0.479 0.357 0.435 0.479 0.438 0.342 0.474 0.479 0.593 0.593 0.532 0.550
Qinghai 0.363 0.354 0.460 0.371 0.381 0.245 0.261 0.220 0.288 0.245 0.437 0.445
Ningxia 0.366 0.347 0.428 0.383 0.495 0.440 0.587 0.391 0.391 0.358 0.427 0.551
Xinjiang 0.325 0.477 0.582 0.487 0.519 0.369 0.440 0.525 0.608 0.621 0.507 0.573
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and biases of the neural network are appropriate to be supervised
by the back-propagation in order to minimise the error between
the actual outputs and the designed outputs. The input nodes are
the lagged observations and the output nodes present the forecast-
ing result. Hidden nodes are nonlinear transfer function to analyse
information collected by input nodes.

The data set is usually divided into a training set and a test set.
The training set is used to construct the neural network model and
map the relationship between input patterns and output patterns.
The training set is used to measure the predictive ability of the
neural network. Once the neural network is properly trained, it
can extrapolate patterns using a limited amount of input data.

According to the traditional method of RBFN model, 80% of the
data are chosen to be training set. 20% of the data are chosen to be
test set. It can be ensured that the prediction result still contains
the tendency of historical data. The formula is as bellows:

yt ¼ a0 þ
Xn
j¼1

ajf
Xm
i¼1

bijyt�i þ b0j

 !
þ et ð16Þ

where n is the number of hidden nodes, and m is the number of
input nodes. f means a vector of weights from the hidden nodes
to output nodes: fðxÞ ¼ 1

1þexpð�xÞ :faj; j ¼ 0;1; . . .ng, and

bij;i ¼ 0;1; . . . ; m; j ¼ 1;2; . . . ;n
� �

are vectors of weights from the
input nodes to hidden nodes. a0 and bij have values which are
always equal to 1.
3. Explanatory variables selection

In the prediction methodology, modeling of energy efficiency is
usually based on historical data, which has the relationship with
other relevant factors, such as economic indicators, social indica-
tors, environmental indicators and such. This paper sets influenc-
ing factors from following four perspectives:
(a) per capita GDP representing regional economic development
level;

(b) the proportion of coal in primary energy consumption
describing energy consumption characteristics;

(c) labour productivity demonstrating technology level;
(d) fixed asset investment accounting for the proportion of GDP

every year, and it means investment level.

Due to the different sources, per capita GDP and the proportion
of coal in primary energy consumption are composed of yearly
data series, which are from China energy yearbooks. Labour pro-
ductivity is chosen from China labour statistic yearbooks, and fixed
asset investment accounted for the proportion of GDP is set from
regional statistic yearbooks. Panel data area units include China’s
30 provinces (autonomous regions and crown city, not including
Tibet, Hong Kong, Macao and Taiwan area). The data set from
January 01, 2003 to December 31, 2014, and the time period covers
11 years.
4. Empirical analysis

4.1. Unit root test of variables

The descriptive statistics of the volatility of the four indepen-
dent variables for PGDP, C, LP and IFA are presented in Table 1.
Before applying models, it is necessary to identify whether vari-
ables belong to a non-stationary series or not. The examination
result is listed in Table 2.

The ADF test indicates that the series of all the explanatory vari-
ables are stationary at the 5% level of significance. The test demon-
strates that the t-statistics value is lower than the critical value,
and it means the series data do not have a unit root problem and
they are stationary series. The data can be used to do further
calculation.



Fig. 3. Integrated average energy efficiency of 30 regions in China from 2003 to
2014.
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4.2. LM test

The objective is to test how these variables play together to
affect the output, and determine whether they can get the desired
result. The estimated results of test are reported in Table 3.
Assuming a null hypothesis that there is no serial correlation up
to lag order p, where p is equal to 1 in this test. The LM test statistic
value (126.573) should be compared with the critical value of
Chi-Squared (1) value. The critical value of Chi-Squared (1) is
selected as 3.82 from the statistical table. As 126.573 exceeds the
critical value of 3.82, there is no doubt that the null hypothesis
can be rejected. Therefore, a significant serial correlation exists
between variables.

4.3. Fixed effect regressive analysis estimated by the GARCH model

The purpose of this section is to investigate the volatility coef-
ficient among four variables. Table 4 summarises the results of
the ARCH effect estimated by the GARCH (1,1) model. Due to the
difference of resource allocation and economic development in
every region, the following analysis is based upon eastern region,
central region and western region, in order to examine the impact
of various factors of regional differences.

The rapid economic growth (per capital GDP) has significant
impact on energy efficiency of eastern region and central region
of China. The changes in PGDP can have significant impacts on
regional energy efficiency. However, the impacts of western region
are not obvious because of the limited economic development. The
volatility efficiency of C is highly influential with eastern cities due
to the improving high clean coal technology in recent years. LP
plays an important role in central regions. Therefore the energy
efficiency in every province should be evaluated based upon the
volatility of factors.

4.4. Application of hybrid model

How to use the new hybrid methodology for the implementa-
tion is another key issue. Due to the purpose of energy conserva-
tion, government should know the energy efficiency and the
variation tendency. When government needs to make a decision
on whether new policies should be approved, this hybrid model
can be adopted to evaluate not only the national EEI but also the
EEI in every province. The provincial energy efficiency evaluation
will be implemented in this section.

Implementation procedure is shown in Fig. 1, and it is listed as
follows:

Step 1: A database is structured including provincial historical
data of all variables that affect short-term EEIs. Then, apply data
processing for the explanatory variables to each sub-panel. The
unit root test and the LM test are employed for the unbiased esti-
mators, and it is necessary to have a calculation of the time series
in empirical studies for proving index of causal relationship.

Step 2: The Shephard energy distance function is shown in
Eq. (2), and it is adopted and linearly simultaneous in energy effi-
ciency. That is to say, the Shepard energy distance function will be
increased by a certain proportion with the increasing of energy
efficiency. It is also consistent with energy intensity. Then, calcu-
late yearly energy efficiency of provinces by the SFA-GARCH
model. This process is presented in the red box of flowchart.

Step 3: According to the perspectives of regional energy effi-
ciency level, provinces can be divided into different EEI regions.
Policy should be made based upon the regional cluster analysis.
Furthermore, the RFBN model is adopted to forecast the nonlinear
modeling of every panel.

The detailed estimation result of the hybrid methodology is pre-
sented as follows. Table 5 illustrates the empirical results of energy
efficiency of China’s 30 regions (provinces and municipalities). To
obtain a more specific description and analysis of regional EEI,
Fig. 3 presents the change of average value of energy efficiency
in 30 regions from 2003 to 2014. It can be found out that: (i)
Eastern regions, such as Beijing, Shanghai, Jiangsu and Zhejiang,



High energy efficiency area Moderate energy efficiency area Low energy efficiency area

1 Beijing 6 Zhejiang 9 Hielongjiang 14 Hunan 19 Henan 23 Liaoning 27 Qinghai

2 Shanghai 7 Jiangsu 10 Jilin 15 Hubei 20 Hebei 24 Gansu 28 Ningxia

3 Guangdong 8 Hainan 11 Tianjin 16 Sichuan 21 Anhui 25 Xinjiang 29 Shanxi 

4 Guangxi 12 Shannxi 17 Chongqing 22 Yunnan 26 Inner 
Mongolia 30 Guizhou 

5 Fujian 13 Jiangxi 18 Shandong 

Fig. 4. The three cluster areas in China.

Fig. 5. The tendency of energy efficiency in three regions from 2003 to 2014.
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have better performance than western and central regions. These
regions have the most rapid economic growth in the past 3 dec-
ades, and their PDGP is around half of total GDP in China during
the study period (from 2003 to 2014). Thanks to policies, a few
high-consuming fixed asset industries and most service industries,
as well as foreign technological investment are located in the east-
ern regions. (ii) The worst performance appears in Ningxia and
Qinghai. Energy efficiency of Gansu is slightly increased in recent
5 years, because they have high resource reserves such as coal,
oil, natural gas, and other minerals, and the historical development
paid more attention on GDP than energy efficiency and environ-
mental protection. These regions began to explore the transforma-
tion of energy consumption in recent years. (iii) The performance
of other regions keeps stable during the study period. Because of



Table 6
5-year time-horison forecast.

2016 2018 2020

GARCH Hybrid GARCH Hybrid GARCH Hybrid

High efficiency
areas

0.921 0.922 0.929 0.906 0.906 0.938

Moderate
efficiency
areas

0.722 0.705 0.816 0.816 0.816 0.903

Low efficiency
areas

0.671 0.690 0.734 0.783 0.820 0.886
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the promotion of ‘‘Twelfth Five year plan” of China, more western
regions have obviously developed clean energy, such as wind
energy and solar energy, in order to lessen the reliance on tradi-
tional fossil fuel energy resources. Inner Mongolia can be treated
as a typical province in Fig. 3. The average value of its efficiency
is increased because of lower proportion of C and the higher IFA.
Moreover, it has inexhaustible wind power source and solar
source. The government took several investment policies to
develop technology in the past few years. Inner Mongolia has the
most installed wind power capacity in China, which is 11.39 GW,
and it is the most significant electrical supply base now.

Then the system cluster analysis is adopted, according to the
perspectives of regional energy efficiency level. These provinces
are divided into three areas: high energy efficiency area, moderate
energy efficiency area and low energy efficiency area, as shown in
Fig. 4. It not only demonstrates the geographic location of the
regions, but also illustrates the efficiency level with different
colors.

Based on the average values of energy efficiency in the different
three areas, Fig. 5 shows three patterns of energy efficiency by
areas (high efficiency, moderate efficiency and low efficiency).
During the study period, changes of energy efficiency have obvious
fluctuation. The overall trends of China present that energy effi-
ciency was improved prior to 2006, then decreased after that,
and increased gradually after 2009. Because energy saving target
was promoted in the ‘‘Twelfth Five-year plan” of China, the EEI of
low efficiency area has a steep upward trend while the change of
EEI of high efficiency area is stable. The moderate efficiency area
has the worst performance during these years.

Table 6 shows the proposed efficiency value for 2016, 2018 and
2020. The traditional GARCH model is further adopted to make a
fair comparison for empirical estimation. The calculation results
of prediction show that the EEI of high energy efficiency area will
be stable in 5-ahead years, while those of moderate energy effi-
ciency area and low energy efficiency area maintain a rising trend.
The gap between high efficiency area and moderate efficiency area
is smaller with the increase of prediction time-horison. The fore-
cast results obtained by the hybrid model are quite close to the
value proposed by the traditional GARCH model. It proves that
the results estimated with the hybrid model are reasonable. The
hybrid prediction methodology of EEI in three areas appears to
be more reliable than the linear overall forecasts. When making
prediction of every series data and adding them up to get a whole
result, the residual error of each series will be also added up which
leads to a bigger error. Moreover, following the same principle as
mentioned above, the time horison of 5-year is appropriate to pre-
diction management, the residual error may lead to biased results.

In a summary, the energy efficiency of China has been made a
stable improvement during our study period. In 2006, the Chinese
government announced a national objective that the energy inten-
sity of China should be reduced by 20% until 2010, compared with
the energy intensity in 2005. Moreover, the achievement is mainly
contributed by a series of energy saving policies, regulations and
programs since the published ‘‘Twelfth Five-year plan”, and they
primarily focuse on alleviation of energy shortage issues. This
study proved that the series implementation of rigorous energy
saving policies contributed to the better performance of energy
efficiency in China. The tendency of prediction of EEI in every pro-
vince will be held over time.
5. Conclusion

Using a combined SFA-GARCH model, and taking into account
four explanatory inputs, this study evaluates the EEI of 30 regions
(provinces and municipalities) in China from 2003 to 2014.
Furthermore, it adopts the RBFN model for the short-term regional
energy efficiency prediction based on the three cluster areas of
China from 2016 to 2020.

Three conclusions can be obtained from the study. First, the
paper presents a new four-stage hybrid methodology which com-
bines the SFA-GARCH model and the RBFN model. It is straightfor-
ward to evaluate the EEI of different regions and to forecast the
short-term performance without manual intervention. After the
fair comparison, the predicting result is proved to be reasonable.
Second, the new hybrid model of EEI prediction appears to be more
appropriate than the summation of the individual forecasts
because individual errors of series will be added up which results
in greater errors. Third, there is significant cluster-heterogeneity
among different regions, especially considering the four variables.
High energy efficiency area plays a dominant role in comparing
the EEI levels under frontier analysis, and it does behave better
than the moderate efficiency area and low efficiency area of China
from 2003 to 2009. The EEI gap between these three areas is nar-
rowed during the ‘‘Twelfth Five-year plan”.

Through the proposed hybrid model, this study has the follow-
ing policy recommendation. First, government should apply differ-
ent energy policies to associate different regions. The low
efficiency area should be allocated with more energy saving quo-
tas, and the energy policies should bias to them. For those regions
in high energy efficiency area, such as Beijing, Shanghai and
Guangdong, the leading industry has been changed from the sec-
ondary industry to the third industry. It is necessary for these
regions to focus on controlling the scale of energy supply from
other regions. For those regions in moderate energy efficiency area,
such as Shannxi, Tianjin and Hebei, the proportion of coal in pri-
mary energy consumption is above the average level. It is signifi-
cant for them to focus on technological improvement of
production process. The application of energy saving technologies
which are helpful for environment should be promoted and
assisted by financial support. For those regions in low energy effi-
ciency area, such as Liaoning, Ningxia and Inner Mongolia, energy
resources outputs made huge financial support for them in past
years. It is vital to control the allocation of energy resources, and
extensive expansion of resource usage should be no longer permit-
ted. Moreover, local government should create incentive for
improving clean energy technology and reducing waste of energy.
Second, the target of emission reduction is severe for the Chinese
government in the next 5 years because the coal-burned power
plants are still the major provider of electricity in China. It is sug-
gested that the requirement level of carbon emission should be
higher.
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