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A new hybrid methodology is introduced which is a combination of multiple regression model and gen-
eralised autoregressive conditional heteroskedasticity (GARCH) model. Comparing the new approach and
the vector auto-regression (VAR) model, this paper analyses the short-term dynamics of the energy effi-
ciency index (EEI) in response to change in the five indicator variables for thermal power plants in China.
The result indicates that: (i) The new hybrid model can directly calculate the EEIs of thermal power plants
without artificial intervention. (ii) It can eliminate the disturbance of residual superposition. (iii) The new
method will offer more direct information on the degree of volatility among determinants and operating
inefficiency.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

In this decade, there is an increasing number of studies paid
more attention to evaluating, analysing energy efficiency around
the world. The global warming is one of the world’s most signifi-
cant problems and global warming is primarily attributed to the
emission of carbon dioxide (CO2). China has become the second-
largest economy entity in the world since the implementation of
China’s economic reform in 1978. However, this achievement has
led to the inefficient natural resource utilisation, rising of emission
of carbon dioxide and large energy consummation as well. Today,
China is the world’s second largest installed electricity generation
nation. China’s CO2 emission is close to 10 billion tons in 2013, and
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Nomenclature

Dyt constant variance
yi;t energy efficiency indicators of item i at the end of period

t
xi;t independent variables
Rt energy efficiency
Mi impact variable of the event i
ht conditional variance of Rt
v t result of VAR model
a constant
b constant

Greek symbols
a parameter
b parameter

c coefficient of correlation
C matrix valued polynomial
et residual error
t data series
lt squared distribution

Subscripts
t time index
0–1 state point
i time-varying changes of impact variables
n number of variables
q the number of lags
c point
k point
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coal-fired power generations contribute more than 80%. Thermal
power generation is a procedure in which thermal energy obtained
by the consumption of coal, gas and other fuels in transformed into
electricity. Therefore, thermal energy is the main source of energy
consumption and pollution in electricity generation industry.

To improve energy utilisation efficiency, protect the environ-
ment and implement sustainable development, various series of
energy policies have been published by the Chinese government
in order to establish a sufficient regulatory of energy use in differ-
ent industries. A target has also been presented that the CO2 emis-
sions per unit gross domestic production (GDP) should be reduced
by 40–45% by 2020 compared with the level in 2005. Government
highly focuses on energy efficiency evaluation of high energy-
consuming industries, especially thermal power industry. There-
fore, evaluating and measuring the energy efficiency of thermal
power industry with the consideration of environment constraint
indicator is very vital for plants to reduce energy consumption
and monitor environment pollution. The paper will adopt five vari-
ables of thermal power plants. They are namely: (i) standard coal
consumption per unit product of power (hereinafter to be referred
as SCC); (ii) the rate of electricity consumption of power plant
(hereinafter to be referred as EC); (iii) the total water consumption
per unit product of power generation (hereinafter to be referred as
WC); (iv) the total oil consumption per year (hereinafter to be
referred as OC); (v) the investment rate of desulfurization system
(hereinafter to be referred as RDS) which is treated as an environ-
mental constraint indicator of each thermal power plant.

1.2. Previous studies for evaluating utility performance

The importance of energy efficiency evaluating on one hand,
and its complexity on the other hand, has motivated many studies
in this area. There are several popular methodologies for energy
efficiency evaluation. The first methods are linear approach and
stochastic frontier analysis, which are the primal studies in evalu-
ating utility efficiency. Farrell [1] contributed the linear regression
approaches to measuring utility production efficiency based upon
the foundation work of Knight [2] and Debreu [3]. The new linear
regression approaches provided a distance function to evaluate
efficiency in a primal system. The improvement work by Shephard
[4] developed a mutual relationship between costs, production and
benefits. Filippini and Hunt [5] examined a stochastic frontier
approach to calculate the difference of energy efficiency among
OECD countries. They adopted energy price to be an independent
variable, which is in order to measure how well do the actions of
consumers respond to the energy efficiency with the policy vari-
ables change. Zhou et al. [6] employed a parametric frontier
approach to evaluate economic wide energy efficiency indicators.
The methodology is the basis of index decomposition analysis,
which can be applied to indicate a change in energy consumption.
However, linear approaches can only indicate a single relation from
input variables to outputs. It does not demonstrate the intercon-
nection between variables. The behaviour of the changes of energy
efficiency may not be completely captured by the linear tech-
niques. Moreover, this method does not take into account random
errors. Estimated results will be influenced by the residual
superposition.

To solve this problem, the second approaches have been further
developed. The multiple regression models are extended to explain
the influences of many variables. Denholm et al. [7] adopted the
model to assess the technological and environmental performance
of wind power plants. They found that the energy efficiency of
wind power plants will be at least five times greater than that of
fossil combustion technology by improving capacity efficiency.
Bernard and Cote [8] used principal component analysis (PCA),
one type of multiple regression models, to calculate the energy
efficiency of manufacturing. They treated environmental factor as
an important determinant in system simulation. Besides that, they
concluded that only regression approaches are unable to demon-
strate the particular patterns of energy efficiency. It cannot provide
a fair benchmarking of energy efficiency performance among dif-
ferent objectives. Based upon above mentioned, some studies fur-
ther extended the data envelopment analysis (DEA) approach to
involve more determinants. The DEA model is a nonparametric
‘‘black-box” multiple regression model. There are huge amounts
of scholars applied the DEA model to evaluate the overall energy
efficiency index (EEI) through involving different types of inputs.
Examples of such studies include Song et al. [9], Khoshnevisan
et al. [10], Bianchi et al. [11] and Mousavi-Avval et al. [12]. The
drawback is that most models are invariant with respect to the
decision making units (DMUs), and these models mainly focus on
less input or higher output for better overall energy efficiency. This
methodology simply includes all DMUs in one analysis while does
not provides a mechanism for incorporating useful information
such as volatility of interrelation into the analysis.

Instead of solving these methodological issues in an ordinary
least squares regression, the generalised autoregressive condi-
tional heteroskedasticity (GARCH) models were established. The
earliest fundamental work of ARCHmodels was pioneered by Engle
in 1982 [13], and the GARCH methodology was introduced by



Table 1
Variables description.

Variable Indicator Abbreviation Unit Definition

No. 1 The standard coal consumption per unit
product of power units

SCC gce/kW h Coal consumption by boiler units

No. 2 The rate of electricity consumption of power
plant

EC % The ratio of power consumption to generate capacity

No. 3 The total water consumption per unit product
of power units

WC kg/kW h Fresh water consumption within the period of power generation (not
containing repeated use of water)

No. 4 The total oil consumption per year OC tons/age Oil consumption within the period of power generation
No. 5 The rate of desulfurization system RDS % The efficiency rate of desulfurization system
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Bollerslev in 1986 [14]. This approach is based on econometric
models which was originally developed and widely adopted for
stock markets. The GARCH models can solve the deficiencies men-
tioned above. The strength of GARCH models is not only to provide
a stochastic volatility measurement between different variables
but to allow the data to decide their own best parameters. It is
most well-known for the dealing with mutual relationships. Nowa-
days, these models are widely adopted in many fields. Andersen
and Bollerslev [15] published an affirmative result through con-
structing the continuous-time data series in the GARCH (1,1)
model. It proved that the estimations of volatility are correlated
highly with the different variables. The GARCH (1,1) model did
provide good volatility. Day and Lewis [16] examined the relative
accuracy of volatility using time series data from the crude oil
future market. They made a comparison of near-term volatility
and distant-term volatility for proving that the implied volatilities
from oil market have significant within-sample explanatory power.
Poon and Granger [17] further made a detailed review about how
to forecast the volatility. They evaluated different types of GARCH
model to demonstrate the best method. Most recently, Alberola
et al. [18] and Byun and Cho [19] further applied the GARCH mod-
els to test the relationship between carbon price, energy price and
the change in market structure in the European Union. Chevallier
[20] used the GARCH models to examine the volatility degree of
factors affecting EU carbon futures. The other GARCH studies, such
as Goto and Karolyi [21], Sadorsky [22] and Elder and Serletis [23],
explored the relationship between electricity market and natural
gas, and proved the relation between oil price and macroeconomic
factors. Li et al. [24] adopted the GARCH model to evaluate and
predict the energy consumption in China.

According to the above studies [1–12], linear approaches and
multiple regression models have been widely adopted to evaluate
EEIs in many areas, but they cannot demonstrate the volatility
degrees and interconnections among determinants. The weights
used in the analysis are also defined artificially. Few papers consid-
ered environment constraints of thermal power units [6–12]. This
paper focuses on estimating energy efficiency of thermal power
plants without manual intervention, and analysing the volatility
between all variables. Therefore, the multiple regression model
and the GARCH model are combined for energy efficiency evaluat-
ing and volatility analysing.

The contributions and novelties of this study are as follows.
First, this paper provides a new econometric methodology to mea-
sure the cross-sectional efficiency of thermal power industries. The
new hybrid model combines the GARCH model and the multiple
regression model. Because the EEI systematically varies over time,
general regression methods cannot fully explain the mutual influ-
ence among various determinants. Second, normal regression
methods usual lead the residual superposition, and estimate of effi-
ciency is biased by construction. This hybrid method can overcome
the above insufficiencies. It will capture the complex features and
high volatility of data when data change over time, and the
heteroskedastic regression will weaken the effect of errors. Third,
this study treats thermal power plants as the whole system. It
examines the changes in energy efficiency, and investigates the
volatility degree among influential factors. The study identifies
important factors that affect the performance of thermal power
plants in China.

The reminder of the paper is organised as follows. Section 2
introduces the data adopted. Section 3 describes the methodology
used in this paper. Section 4 demonstrates the analysis empirical
result. Section 5 gives conclusions.

2. Data selection and descriptive statistics

According to wide practical researches, this study adopts five
physical indicators as impact variables. Policy makers usually treat
the SCC and the EC as the classic indicators compared with the
international standard level. However, because of the increasing
inefficient natural resource, it should be figured out that the WC
and the OC are other two kinds of energy carriers. The RDS could
be considered to measure the environment constraint level of
every power unit. The five indicators and their descriptions are
listed in Table 1.

The data set consists of the monthly data series of 600 MW
thermal power plants from National Database of China Electricity
Council [25]. The data set covers from January 01, 2010 to Decem-
ber 31, 2012, a time period lasts three years. Following issues need
to be noted during data selection. First, this paper focuses on the
coal-burning units. Therefore the data of coal-fired units are pri-
marily selected from the database. Second, 67 thermal power
plants are further considered. Every thermal power plant normally
installed 3 or 4 units. A total number of sample observations for
each variable will be around 200. The features of systems are dif-
ferent. It should be differentiated that some plants use steam tur-
bine generators and others adopt gas turbine power systems.
Different power generators lead different electricity used. Third,
because of the physical indicators of equipment plant-levels,
low-frequency data is more preferred compared with daily data.
Finally, the paper will make data process before adopting them
to the further analysis.

The descriptive statistics of the volatility indicators (Panel A)
and their logarithmic change (Panel B) are presented in Table 2.

The result illustrates that the SCC and the EC are stable basi-
cally. The OC is the most volatile variable, and it ranges from
�10.602 to 9.680. The WC volatiles a little. It varies from �6.215
to 6.141. The mean of the RDS is 87.7197. It demonstrates that
most thermal power plants have good performances of desulfur-
ization systems. All variables have long left tail because all kurtosis
are greater than 3, and every variable has a leptokurtic distribution
with asymmetric tails. It is to be noted that kurtosis is a measure of
the shape of a probability distribution of random variables, while
leptokurtic is a statistical distribution when the kurtosis value is
larger than a normal distribution.



Table 2
Descriptive statistics.

Observation Standard deviation Skewness Kurtosis Mean Maximum Minimum

Panel A: Levels
SCC 646 11.795 0.681 3.075 312.775 354.030 288.200
EC 650 0.279 0.064 3.573 0.002 0.761 �0.827
WC 670 7.694 24.841 625.942 1.271 195.000 0.000
OC 672 26.736 �3.152 17.159 166.181 2083.970 0.000
RDS 642 21.3626 �2.382 8.308 87.720 100.000 0.120

Panel B: First logarithmic change
SCC 646 0.050 �0.102 3.162 0.001*** �0.138 0.135
EC 650 0.279 �0.059 3.550 0.002 �0.827 0.761
WC 670 1.383 �0.036 3.362 0.015*** �6.215 6.141
OC 672 1.002 13.97 14.796 0.072 �10.602 9.680
RDS 642 0.691 �6.735 58.520 4.380 4.605 0.120

Note: full sample of variables are collected from every thermal power plant yearly closing data from January 01, 2010 to December 31, 2012.
*** Significance at the 1% level.

Fig. 1. Flowchart of the proposed method.
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3. Econometric methods

This section adopts econometric methods to investigate short-
term relationships among the volatility of energy efficiency, the
SCC, the EC, the WC, the OC and the RDS every year. The flowchart
of the proposed method is sketched in Fig. 1. The framework of the
hybrid model is listed as follows:

(1) The augmented Dickey Fuller (ADF) unit root test [4] is
adopted to analyse whether data are stationary for further
calculation. In order to measure the effectiveness of the
result, the Phillips Perrson (PP) test [4] is employed to make
a comparison.

(2) The Lagrange multiplier (LM) test [13] is further used to
examine whether time series data have heteroscedasticity.

(3) After above econometric tests, the hybrid method is further
established to calculate energy efficiency indicators and to
analyse the influence of different variables on the changes
of energy efficiency.
(4) Vector auto-regression (VAR) model [14], a well-known
approach of the AR-based models, is employed to measure
the effectiveness of the proposed method. The vital advan-
tage of VAR model is to provide a simultaneous estimation
of the interconnection under a mature structure, while tak-
ing into account the time series data. It is an appropriate
option to examine the short-term fluctuation for proving
the accuracy of estimation results of the hybrid model.

3.1. Unit root test: ADF test and PP test

As mentioned above, energy efficiency can be highly volatile. An
appropriate GARCH model should be adopted because this model
considers every time series moment as variants. The GARCH (1,1)
model is widely employed since it efficiently explains systematic
variations of assets volatility [12]. The GARCH (1,1) model requires
the covariance matrix and the data to be systematically changed
over time. Therefore, the test of time series is necessary
before the GARCH (1,1) model is adopted. In order to describe



Table 3
Unit root test of five variables.

Variables Automatic
lag length

ADF test PP test 1% level of
critical
value

Inference

lng (SCC) 1 �47.319*** �71.231*** �3.497 lnf � I(1)
lng (EC) 1 �42.003*** �34.428*** �3.336 lnf � I(1)
lng (WC) 1 �35.374*** �38.032*** �3.284 lnf � I(1)
lng (OC) 1 �30.782*** �36.146*** �3.405 lnf � I(1)
lng (RDS) 1 �20.607*** �27.381*** �3.411 lnf � I(1)
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the unbiased estimators for the classical regression model, the data
should be stationary because that the existence of correlations
between variables is a good evidence of a causal relationship
[12]. This paper applies two methodologies of unit root tests: the
ADF test and the PP test. Both include extra lagged terms of the
dependent variables for capturing the auto-correlation. The ADF
test equations are shown from Eqs. (1) to (3) and results of the
PP test will be adopted to make a fair comparison. Equations of
the ADF test are as follows:

Dyt ¼ cyt�1 þ
Xp

i�1

biDyt�i þ lt ð1Þ

Dyt ¼ a0 þ cyt�1 þ
Xp

i�1

biDyt�i þ lt ð2Þ

Dyt ¼ a0 þ cyt�1 þ a2t þ
Xp

i�1

biDyt�i þ lt ð3Þ

where a is a constant, a2t represents trend of equations. c and b
denote the short-run coefficients. Eq. (1) presents that the ADF test
has no constant and no trend in the series. Eq. (2) represents the test
as having a constant but no trend. Eq. (3) shows that the test not
only has a constant but a trend.

3.2. LM test

The LM test is the second step after examining the stationary of
data series. According to previous studies, the classical regression
issue of the joint hypotheses has to be considered. Because the
study would employ the GARCH (1,1) model in the following sec-
tion, this part would choose the lag number at 1 to test whether
the ARCH effect exists. The LM test [7] applies the null hypothesis
that there is no serial correlation up to lag order p, where the lag is
equal to 1 in this test. It tests for first order serial correlation.

l2
t ¼ c0 þ c1t

2
t�1 þ � � � þ cqt

2
t�q þ lt ð4Þ

where lt is squared distribution of Dyt , and it is obtained from Eq.
(3). t is data series. q is the number of lags, and c represents the
coefficient.

3.3. Multiple regression method

After the previous examination, this study will adopt the new
hybrid model combining the multiple regression method and the
GARCH model. This section evaluates the EEI primarily.

yi;t ¼ b0 þ bixi;t þ ut ð5Þ
where yi;t is the EEI of item i at the end of period t. xi;t is independent
variables of model. bi can be estimated by the correlation matrix.
The important choice for this method relates to the EEI to be
calculated.

3.4. GARCH (1,1) model

In order to provide a comprehensive analysis regarding the
stochastic activity of all time series data, the volatility model is fur-
ther applied. The volatility is described as conditional standard
deviations of time series variables. The model is generally known
as the GARCH model, and it has been employed in wide fields of
study. The GARCH (1,1) model [13] formulas are as follows:

Ri;t ¼ c þ
X

kP1

akRt�k þ
X

i

biMi;t þ et ð6Þ

et � ð0; htÞ ð7Þ
hi;t ¼ a0 þ bht�1 þ a1e2t�1 þ

X

i

ciMi;t ð8Þ
where Ri;t is the EEI which is estimated by the ordinary least square
approach in Eq. (5). hi;t explains the conditional variance of Rt , and it
is depended upon Mi;t . Mi;t is the impact variable of the event i and
the event of i represents the time-varying changes of impact vari-
able. The coefficients of Eq. (6) need to satisfy ak P 0; bi P 0, and
c > 0, to ensure that the conditional variance is positive. a0, b and
a1 have to be estimated in the variance to determine the time-
varying conditional variance. ci stands for the asymmetric effect.

In order to specifically analyse the five impact variables of
energy efficiency of thermal power plants, the model is extended
as follows.

Rt ¼ c þ
X

kP1

akRt�k þ bSCCMSCC;t þ bECMEC;t þ bWCMWC;t

þ bOCMOC;t þ bRDSMRDS;t þ et ð9Þ
et ! ð0;htÞ ð10Þ
ht ¼ a0 þ a1e2t�1 þ bht�1 þ cSCCMSCC;t þ cECMEC;t þ cWCMWC;t

þ cOCMOC;t þ cRDSMRDS;t ð11Þ
where MSCC;t stands for the standard coal consumption per unit pro-
duct of power, MEC;t is the rate of electricity consumption of power
plant, MWC;t represents the total water consumption per unit pro-
duct of power generation and MOC;t is the total oil consumption
per year. MRDS;t means the investment rate of desulfurization
system.

3.5. VAR model

The VAR model is one classical well-known model of AR-based
models. It is employed to prove the effectiveness through provid-
ing a comparison between its estimation and the empirical results
of the hybrid model. Formulas of VAR model are as follows:

CðYEEIÞ ¼ C1xi;t þ C2xi;t þ � � � þ et ð12Þ
v t ¼ C�1

0 et ð13Þ
where CðYEEIÞ is a matrix valued polynomial in positive powers of
the variable EEI, n is the number of variables in the system, et rep-
resents the residual error of xt, and vt is the result from the VAR
model. In accordance with the standard likelihood ratio tests, the
selected optimal lag length is 1.

Considering an identification that the YEEI can be explained by a
set of variables. Variables are namely: (i) SCC; (ii) EC; (iii) WC; (iv)
OC; and (v) RDS.
4. Computational results

4.1. Unit root test

Before detailed analysis is presented, it is important to look at
the unit root test in order to glean preliminary information about
time series data of variables. The results of unit root test for the
SCC, the EC, the WC, the OC and the RDS are reported in Table 3.
*** Significance at the 1% level.
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Fig. 2. The volatility of the SCC of the 67 thermal power plants from 2010 to 2012.
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Applying the unit root test is a pre-condition of the GARCH (1,1)
model, and the usefulness is to confirm whether variables are sta-
tionary to establish the time series model. The null hypothesis is
that there is an unit root in variables. The number of total observa-
tions is 3280. The following test demonstrates that the t-statistics
value generated lower than the critical value, and it means the ser-
ies data do not have a unit root problem. All the first order differ-
enced series are stationary. The data can be adopted to do further
calculation. Expressing the time series data in natural logs is cus-
tomary and useful because the coefficients of the estimated regres-
sion are elastic.

4.2. LM test

After the stationary test, the LM test is further employed. The
Obs⁄R-squared shown in Table 4 provides the Breusch-Godfrey
LM test statistics [8]. In order to achieve whether the null hypoth-
esis is rejected, the LM test statistics value (125.392) should be
compared with the critical value of Chi-Squared (1) value. The crit-
ical value of Chi-Squared (1) is selected as 3.62 from the Statistical
Table. As 125.392 exceeds the critical value 3.84, thus no doubt the
null hypothesis in these two groups can be rejected. Therefore, a
significant serial correlation exists between variables.

For a better understanding the trend of variables’ fluctuation
from 2010 to 2012, the patterns of the five variables are analysed.
Fig. 2 presents the time series pattern of the volatility of SCC each
year. The total trend is active, and it generally fluctuates within
around 304 gce/kW h to 320 gce/kW h in three years. Fig. 3 shows
time series pattern of the volatility of EC from 2010 to 2012, and
the means are increased from 4.89% (2010) to 5.15% (2011). After-
wards it reaches 5.28% (2012). Fig. 4 is the trend of the volatility of
WC, and the means are decreased from 1.05 kg/kW h (2010) to
0.96 kg/kW h (2011), and then it finally achieves 0.95 kg/kW h
(2012). Fig. 5 shows the pattern of the volatility of OC; the means
are declined from 219.45 tons/age (2010) to 158.49 tons/age
(2011), and further decreased to 155.75 tons/age (2012). Fig. 6 sug-
gests that volatilities of RDS normally range from 89% to 100%,
especially the performances of RDS are in better position in 2012
than the level in 2011. These results primarily describe the uncer-
tainty innovations of different determinants will, to some extent,
affect expected volatility changes of energy efficiency.

4.3. Correlation matrix

One function of GARCH model is to allow the data to decide
their own best weights. Table 5 presents contemporaneous corre-
lations among five variables as well as their logarithmic series.
The interval of the correlation coefficient could range between
�1.0 and 1.0, and a correlation of 1.0 means two variables are per-
fect positively corresponded to each other. Generally, the correla-
tion is quite high when it is over 0.8 [9]. The correlations
between the SCC and other variables are positive. It indicates that
the expected volatilities of these indicators seem to change in the
same direction within the sample period. Moreover, the SCC and
the EC are highly correlated at the level of 0.853, presenting that
the EC plays an important role in evaluating the SCC of thermal
Table 4
LM test for ARCH of the variables.

Lags (p) Prob. Chi-square Obs⁄R-squared

1 0.0003 125.392

Note: The Prob. Chi-square is probability Chi-squared distribution, it is a continuous
probability distribution. The Obs⁄R-squared is observation R-squared distribution.
power plants. The WC has a weak relationship with the SCC at
the level of 0.331, implying that the WC does not impact the SCC
well. The OC is positively correlated with the SCC, the EC and the
WC, which means that the OC may cause small fluctuation of these
three variables.

4.4. Application of hybrid model

How to use the proposed hybrid model for the implementation
is a key issue. Due to the purpose of energy conservation in high
consuming industries, government needs to make decisions on
whether new regulations should be approved. This hybrid model
can be adopted to evaluate the EEI conveniently.
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Fig. 3. The volatility of the EC of the 67 thermal power plants from 2010 to 2012.
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Fig. 4. The volatility of the WC of the 67 thermal power plants from 2010 to 2012.
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4.4.1. Multiple regression model
To apply all series data of variables and correlation coefficients

in Eq. (5), Table 6 shows EEI changes of thermal power plants dur-
ing the sample period. It can be found out that the EEI of No. 12 and
No. 66 thermal power plants have fluctuations. After a detailed
comparison of these plants, it reveals that plants have higher effi-
ciency indicators because they installed steam turbine power
plants. These plants have potential for improving energy efficiency
by new equipment with high operational quality.

The EEI by fuel is obviously important. It is vital to measure
energy supply, energy use and efficient level of different types of
equipment. While relatively high EEI for fuel can be treated as a
sufficient level to access, it is significant for achieve governmental
requirement in a secure and reliable energy supply.

It should be noticed that the meanings of empirical data of this
paper are very different from the normal outputs. First, almost no
existing paper considers the influence of environmental constraint
indicators on the EEI. They merely calculate the operational effi-
ciency of power plants [6–8,10–12]. Second, to the authors knowl-
edge there is no papers can straight examine the volatility degree
among the EEI and indicator variables without artificial interven-
tion. Third, nowadays most studies calculate the EEI of industries
through ‘‘black-box” calculation procedure, eg. DEA model [9]
and PCA model [8]. These EEIs are directly obtained without detail
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Fig. 5. The volatility of the OC of the 67 thermal power plants from 2010 to 2012.
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Fig. 6. The volatility of the RDS of the 67 thermal power plants from 2010 to 2012.

Table 5
Correlation matrix of the variables.

SCC EC WC OC

Panel A: level
EC 0.862***

WC 0.721*** 0.180***

OC 0.314*** 0.038*** 0.361***

RDS 0.032*** 0.018*** 0.019*** �0.017***

Panel B: first logarithmic change
EC 0.853***

WC 0.331*** 0.366***

OC 0.042*** 0.024*** 0.199***

RDS 0.165*** 0.433*** �0.007*** 0.002***

*** Significance at the 1% level.
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observation process. The new hybrid model in this paper provides
‘‘white-box” of each procedure.

4.4.2. Fixed effect regressive analysis estimated by the GARCH model,
compared with VAR model

The purpose of this section is to investigate the volatility rela-
tion between the EEI and the five variables. Estimation results of
GARCH model are summarised in Table 7. It demonstrates the evi-
dence of a significant relation between the EEI and variables. The
estimated coefficients from the mean equation of GARCH model
have confirmed the result of the nonlinear regression model. As
shown in Table 7, the most influential variables of energy efficiency
in thermal power plants are the SCC and the EC. It presents that



Table 6
Energy efficiency indicators change of China’s thermal power plants 2010–2012.

Thermal power plants 2010 2011 2012 Cumulative

No. 1 1.263 0.972 0.938 1.058
No. 2 0.987 0.864 1.327 1.059
No. 3 1.245 0.709 0.737 0.897
No. 4 0.903 1.821 1.083 1.269
No. 5 0.966 0.579 1.241 0.929
No. 6 1.097 1.382 1.397 1.292
No. 7 1.083 1.327 0.725 1.045
No. 8 0.394 0.540 0.742 0.559
No. 9 0.672 0.693 0.651 0.672
No. 10 0.579 1.581 1.284 1.148
No. 11 0.392 1.028 0.865 0.762
No. 12 1.177 0.963 1.277 1.139

� � � � � � � � �
� � � � � � � � �

No. 65 0.890 0.886 0.794 0.857
No. 66 0.784 1.230 1.201 1.072
No. 67 1.380 1.371 2.103 1.618

Table 7
Estimation volatility result of GARCH model.

Variables Volatility effects Standard error Z-Statistics

a 0.049 0.023 2.796
SCC 0.672*** 0.004 0.801
EC 0.543*** 0.056 �1.680
WC 0.291*** 0.007 �1.392
OC 0.236*** 0.001 0.457
RDS 0.483*** 0.006 0.283

*** Significance at the 1% level.

Fig. 7. Test of characteristic polynomial of VAR model.

746 M.-J. Li et al. / Applied Energy 169 (2016) 738–747
higher EEI will cause a positive effect on the volatility of SCC, con-
sequently leading to a high fluctuation of EC. The RDS is the second
influential variable to the EEI. It can be found out that there is a
substantial persistence in the RDS, as the coefficient associated
with its own lag is significant. Both the WC and the OC are fairly
correlated to the volatility of energy efficiency, with average slopes
of 0.291 and 0.236. This finding indicates that a large amount of
WC and OC may cause small fluctuation. The influence result of
these variables is that they can reduce the uncertainty of volatility
of energy efficiency in thermal power plants over the short-term.

The VAR model is further adopted to prove the accuracy of pro-
posed hybrid model by making a fair comparison between their
empirical estimations. It is a classical model which is often applied
to examine the volatility and Granger causality among variables.
Primary advantage of this model is that it can be used for aggre-
gated level of integration. The estimation results of VAR model
are summarised in Table 8, which is correspondent with the result
of the proposed hybrid model. The estimation result of VAR model
demonstrates that there is positive relation between the EC and the
Table 8
Estimation result of VAR model.

EEI lnSCC lnEC

EEI (�1) 5.573*** �0.829 �1.371
lnSCC (�1) �0.671*** 1.610 1.566
lnEC (�1) �1.283*** 1.833*** �1.724
lnWC (�1) �0.613 0.197 0.186
lnOC (�1) �0.309 0.387*** 0.201
lnRDS (�1) 0.663*** �1.426 1.492
c 3.412 �3.342 2.546

R-squared 0.726 0.638 0.417
Adj. R-squared 0.549 0.528 0.491
Log likelihood �211.547 115.511 51.882

*** Significance at the 1% level.
SCC. The obvious effect of the EC on the EEI is expected, and the
result also presents that an increase in the RDS has a positive influ-
ence on the EC. Moreover, the WC and the OC have weak signifi-
cant influence. Fig. 7 provides a test of root graph of VAR model.
All the points are in a circular with a radius of 1. Based on the prin-
ciple of VAR model, it proves that econometric analysis of the pro-
posed model is perfectly stationary.

Therefore, it can be summarised that the new econometric
hybrid model is an appropriate model to evaluate short-term
dynamics of thermal power units accurately. It contains more
information on the degree of volatility among determinants and
operating inefficiency. This has a surprise result that the variable
RDS is positive and significant, which demonstrates that a wide
use of desulfurization system will cause a rise of EEI.
5. Conclusion

This paper provides a new hybrid methodology for measuring
energy efficiency of thermal power plants and explaining its
short-term dynamics among plant-level physical indicators and
environment constraint.

Four conclusions can be obtained based upon the study. First,
the SCC is highly correlated with the EC. The OC is considered to
be a new driving force affecting fluctuates in energy efficiency. Sec-
ond, the EC has a positive impact on the volatility of energy effi-
ciency. The higher EEI will lead the lower EC. Third, rise in the
EDS drives up the EEI and the EC. Higher consumption on EC pre-
sents that plants installing desulfurization systems have good per-
formances. Fourth, the results clearly demonstrate that the hybrid
methodology is an accurate model through a comparison with the
VAR model. These findings are useful for a multiple of managers.
They should manage the energy use of plant-levels and pollution
emission through environmental management facilities.
lnWC lnOC lnRDS

0.265 2.439*** 1.674
*** 0.428 0.762*** �0.476***

�0.114*** 0.538 1.383***

*** �0.293 0.329*** 0.817
�0.621*** �1.183 0.235

*** �0.479 �0.238*** 2.264
�0.742 �0.892 10.162

0.378 0.542 0.573
0.264 0.298 0.287

�126.719 �241.039 �330.324



M.-J. Li et al. / Applied Energy 169 (2016) 738–747 747
In addition, two more major implications can be drawn based
on the comparison of the hybrid model and the VAR model. First,
the paper presents a competing methodology which is combining
the multiple regression model and the GARCH model. It straight
calculates the EEI of thermal power industry without artificial
intervention. Second, it can eliminate the disturbance of changing
outputs’ structures. In other words, the new method will offer
more information on the degree of volatility among determinants
and operating inefficiency. Understanding the performance of units
is significant in determining the benefits associated with a shift
towards competition. Because of the feature of the GARCH method,
adopting more explainable variables not only enlarge EEIs but also
obviously estimate the volatility of energy efficiency.

Based on this study, some suggestions are listed as follows.
First, due to the energy shortage and tough environment pollution,
the standard regulation of water consumption in thermal power
industry should be promoted, and the investment rate of desulfu-
rization systems should be considered during the further perfor-
mance benchmarking in thermal power industry. Second, this
hybrid method could be adopted in different high-consuming
industries for measuring EEIs. Third, the empirical results have rel-
evance to Chinese’s energy policymakers who are focusing the
energy efficiency performance and aiming to reduce energy con-
sumption in order to decrease the emission.

It should be mentioned that, the hybrid model proposed in the
present work focuses on the evaluation of the energy efficiency of
China’s thermal power plants. Because the data from China Elec-
tricity Council is the only official resource to collect information
of thermal power plants in China, the data used in the present
work is, in some sense, limited. Further research work is under
way in order to apply this hybrid methodology on different cases
and improve it by extended data sources.
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