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A multiple-relaxation-time lattice Boltzmann model with an off-diagonal collision matrix is adopted to
predict the effective thermal conductivities of anisotropic heterogeneous materials with anisotropic com-
ponents. The half lattice division scheme is used to handle the internal boundaries to guarantee the heat
flux continuity at the component interfaces. Accuracy of the model is confirmed by comparing with
benchmark results and existing simulation data. The present method is then employed to predict the
transverse and longitudinal effective thermal conductivities of three-dimensional four-directional
(3D4D) braided composites. Experiments based on the Hot Disk method are also conducted to obtain
the transverse and longitudinal effective thermal conductivities of the materials. The numerically pre-
dicted results fit the experiment data well. Then, influences of fiber volume fractions, interior braiding
angles and interface thermal contact resistance on the effective thermal conductivities of 3D4D braided
composites are studied. The results show that the effective thermal conductivity along the transverse
direction increases with the fiber volume fraction and interior braiding angle; while the longitudinal
one increases with the fiber volume fraction but decreases with the increasing interior braiding angle.
A larger interface thermal contact resistance leads to a smaller effective thermal conductivity. Besides,
for anisotropic materials, the effective thermal conductivity obtained by the periodic boundary condition
is different from that obtained by the adiabatic boundary condition.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The three-dimensional four-directional (3D4D) braided com-
posites are anisotropic heterogeneous materials composed of the
matrix and braiding yarns. They have been widely applied in aero-
nautics and astronautics due to their high strength and low density
[1]. The braiding yarns, one of the components in 3D4D braided
composites, are anisotropic with different thermal conductivities
along the transverse and longitudinal directions [2,3]. Heat transfer
in each anisotropic component has preferable directions, and it
needs a thermal conductivity matrix to fully describe the local
property of components. Besides, the continuity of the normal heat
flux and temperature should be ensured at the component inter-
faces. The thermal properties of the 3D4D braided composites are
anisotropic along the transverse and longitudinal directions. For
such anisotropic heterogeneous materials with anisotropic compo-
nents, the effective thermal conductivity along the specified direc-
tion is an important parameter that can quantitatively evaluate the
heat transfer capacity of composites. Here, several concepts are
emphasized to avoid confusion. The heterogeneous material refers
to a composite material with different components, and the
homogenous material refers to the material with only one compo-
nent. Anisotropic heterogeneous materials with anisotropic com-
ponents refer to the composite materials of which the overall
thermal properties are anisotropic and their components are also
anisotropic. Anisotropic heterogeneous materials with isotropic
components refer to the composite materials of which the overall
thermal properties are anisotropic but their components are
isotropic.

The lattice Boltzmann method (LBM) is an effective approach to
solve the Navier–Stokes equations. It has been widely used to solve
the conventional fluid flows [4,5], fluid flows in porous mediums
[6,7], multiphase flows [8–10], and recently has been applied to
investigate the effect of magnetic field on the behavior of the nano-
fluid [11,12]. Moreover, the LBM has also been used successfully in
solving energy transport or mass diffusion problems. Xuan et al.
[13] investigated the mass transfer process of volatile organic com-
pounds in porous media based on the LBM. Chen et al. [14] adopted
the LBM to predict the effective diffusivity of the porous gas
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Nomenclature

a, b, m, h characteristic length of the unit cell, mm
c pseudo sound speed, m/s
cp, qcp heat capacity J/(kg�K), volumetric heat capacity, J/(m3�K)
D, d thermal diffusivity, m2/s, diameter of fiber, mm
e discrete velocity
f, feq temperature distribution function, equilibrium distribu-

tion function
L thicknesses of materials, m
m moment vector
M transformation matrix
q heat flux, W/m2

S relaxation time matrix
t, dt, dx time, time step, space step
T temperature, K
X collision matrix
b, c oblique angle, interior braiding angle, �
e, j constants, e = 2 j, and j = 1/8
/ volume fraction

k thermal conductivity, W/(m�K)
s relaxation time coefficient

Subscript
a direction of the temperature distribution function
m matrix
f fiber
i, j number index
x, y, z direction index
a directions opposite to a
g, f principle axis of heat conduction
e effective
T transverse
L longitudinal
fy fiber volume fraction of braiding yarn
ya yarn volume fraction of the unit cell
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diffusion layer in fuel cell. Wang et al. [15] proposed a LB algorithm
to deal with the fluid–solid conjugate heat transfer problem, which
can ensure the heat flux and temperature continuity at the inter-
faces. As for the heterogeneous materials with isotropic compo-
nents, many studies have been conducted to predict their
effective transport property. In particular, Wang et al. [16] pro-
posed a LB model to predict the effective thermal conductivity
for granular structures, netlike structures and fibrous structure
composite materials. In the model of Wang et al. [16], the original
LB Bhatnagar–Gross–Krook model was adopted, which only has a
single-relaxation-time coefficient without sufficient parameters
to fully describe the anisotropic heat transfer in anisotropic mate-
rials. Several studies have been conducted on the solution of aniso-
tropic heat transfer equation using the LBM. Zhang et al. [17,18]
proposed a LB model in which the relaxation time coefficients
are assumed to be directionally dependent and this model ensured
that the collision is mass-invariant. Ginzburg et al. [19] presented
two LB models, the equilibrium-type and the link-type models, to
solve the anisotropic heat transfer problems. But these models all
suffer the instability and poor application flexibility [20]. Recently,
the multiple-relaxation-time (MRT) LB model has been adopted for
heat transfer due to its higher stability and accuracy than the
single-relaxation-time model [21,22]. Yoshida and Nagaoka [20]
developed a MRT LB scheme using a collision operator with off-
diagonal components, making it possible to solve the anisotropic
heat transfer problems, but it is only suitable for the homogeneous
materials. As for the heterogeneous materials with anisotropic
components, it will lead to heat flux discontinuity at the interfaces
if the heat transfer at the interface is not properly treated [23].

There have been some studies using finite element methods to
predict effective thermal conductivity of 3D4D braided composites
[3,24,25]. However, it is quite difficult for the finite element
method to consider the thermal contact resistance at the internal
interface and to predict the effective thermal conductivity of
heterogeneous materials with randomly distributed anisotropic
components, such as needled C/SiC composites [26]. The LBM is
particularly suitable for the heat and mass transfer in complex
materials and has the ability to deal with the thermal contact resis-
tance at the internal interface, and thus the present study focuses
on developing a LB model for 3D4D braided composites with aniso-
tropic components. The developed LB model can be also adopted to
predict the effective thermal conductivity of the needled C/SiC
composites. Besides, the previous numerical results based on the
finite element method were not compared with the corresponding
experimental data, and in the present study, such comparisons are
also conducted.

The MRTmodel developed by Yoshida and Nagaoka [20] and the
treatment for the internal interfaces should be combined to deal
with such heterogeneous materials with anisotropic components.
The single-relaxation-time LBM adopted by Wang et al. [15] is only
suitable for the materials with isotropic components, and it has
been used to predict the effective thermal conductivity of the iso-
tropic heterogeneous materials with isotropic components [27]
and the directional effective thermal conductivity of the anisotro-
pic heterogeneous materials with isotropic components [28].

In the present paper, a multiple-relaxation-time LB model com-
bined with the ‘half lattice division scheme’ treatment for internal
interfaces is adopted to predict the effective thermal conductivity
of the anisotropic heterogeneous materials with anisotropic com-
ponents. The ‘half lattice division scheme’ first proposed by Wang
et al. [15] is to handle the internal interfaces between the isotropic
components. In the present paper, it is extended to deal with the
internal interfaces between the anisotropic components. With
the ‘half lattice division scheme’ method, the temperature and heat
flux can be directly obtained from the local temperature distribu-
tion functions without the calculations of the finite difference,
which is important for the continuity of temperature and heat flux
at the interfaces (will be discussed at Section 2.3). In addition, to
verify the reasonability and accuracy of the present method, sev-
eral benchmarks are simulated, and then experiments based on
the Hot Disk method are conducted to measure the effective ther-
mal conductivity of 3D4D braided composites (Section 4.3). The
influences of the fiber volume fraction, interior braiding yarns
and interface thermal contact resistance on the effective thermal
conductivity are also examined in this study (Section 5).

2. Numerical method

2.1. Governing equation

The governing equations for anisotropic heat conduction in
multicomponent systems, e.g., the matrix and reinforced fibers,
without any heat source can be expressed as

@Tm

@t
¼ @

@xi
ðDijÞm

@Tm

@xj

� �
ð1Þ
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@Tf

@t
¼ @

@xi
ðDijÞf

@Tf

@xj

� �
ð2Þ

where the subscript m represents the matrix and f represents the
reinforced fiber; T is temperature; and Dij is the thermal diffusivity
matrix.

At the interfaces of different components (phase), the continu-
ity of temperature and normal heat flux should be satisfied [29]:

Tm ¼ Tf ð3Þ

�niðkijÞm
@Tm

@xj
¼ �niðkijÞf

@Tf

@xj
ð4Þ

where ni is the unit normal vector at the interfaces, and kij is the
thermal conductivity matrix.

2.2. MRT lattice Boltzmann model

The MRT LB model with a collision operator matrix has suffi-
cient parameters to solve fully anisotropic heat transfer problems,
and each moment can be relaxed to the equilibrium state with a
different coefficient [21]. We adopt the three-dimensional seven-
speed (D3Q7) model (see Fig. 1) to deal with anisotropic heat con-
duction problems. For the conduction process in each component
of composite materials, the evolution equation of the MRT LBM
for the temperature distribution functions can be expressed as [30]

f ðxþ eadt; t þ dtÞ � f ðx; tÞ ¼ �X ðf � f eqÞ ð5Þ
where x denotes the particle position; t is time; dt is the time step; f
is the temperature distribution function vector with seven compo-

nents, denoted by f ¼ ðf 0; f 1; f 2; f 3; f 4; f 5; f 6ÞT; f eqa is the correspond-
ing equilibrium temperature distribution function

f eqa ¼ ð1� 6jÞT; a ¼ 0
jT; a ¼ 1;2; . . . ;6

�
ð6Þ

where j 2 ð0;1=6Þ. ea is the discrete velocity, defined as

½ea� ¼ ½e0; e1; e2; e3; e4; e5; e6� ¼
0 1 �1 0 0 0 0
0 0 0 1 �1 0 0
0 0 0 0 0 1 �1

2
64

3
75c
ð7Þ

and X is the collision matrix

X ¼ M�1SM ð8Þ
where S is a relaxation time matrix, and M is a linear matrix that
transforms the velocity space into the moment space:
Fig. 1. D3Q7 mo
M ¼ ½/1;/2; . . . ;/7�T ; ð9Þ

m ¼ M � f ð10Þ
where /a are the orthogonal basic vectors which are the polynomial
functions of velocity;m is the moment vector. The definitions of the
matrix M and the relaxation time matrix S are [20]:

M ¼

1; 1; 1; 1; 1; 1; 1
0; 1; �1; 0; 0; 0; 0
0; 0; 0; 1; �1; 0; 0
0; 0; 0; 0; 0; 1; �1
6; �1; �1; �1; �1; �1; �1
0; 2; 2; �1; �1; �1; �1
0; 0; 0; 1; 1; �1; �1

2
666666666664

3
777777777775
c ð11Þ

S�1 ¼

s0; 0; 0; 0; 0; 0; 0
0; sxx; sxy; sxz; 0; 0; 0
0; syx; syy; syz; 0; 0; 0
0; szx; szy; szz; 0; 0; 0
0; 0; 0; 0; s4; 0; 0
0; 0; 0; 0; 0; s5; 0
0; 0; 0; 0; 0; 0; s6

2
666666666664

3
777777777775

ð12Þ

For isotropic heat conduction problem, sxx = syy = szz, and sij = 0
(i– j). The off-diagonal components of the relaxation time matrix
can take into account of the fully anisotropic heat conduction situ-
ation. For each component in composite materials, the relations
between the relaxation time coefficients and the thermal diffusiv-
ity matrix of the anisotropic component can be expressed as
[20,31]:

ðsijÞm ¼ 1
2
dij þ

ðDijÞm
ec2dt

; i; j ¼ 1;3

ðsijÞf ¼
1
2
dij þ

ðDijÞf
ec2dt

; i; j ¼ 1;3
ð13Þ

where dij is the Kronecker symbol, and c is the pseudo sound speed.
The value of c should ensure the value of sii (i = 1,2,3) between 0.5
and 2 [26]. The values of s0, s4, s5, s6 are generally set to be unity
without affecting the numerical results. If the equivalent distribu-
tion functions are defined as Eq. (6), e equals 2j. In this paper,
the value of j is set to be 1/8 [20].

To recover the evolution equation of discrete distribution func-
tions to macroscopic Navier–Stokes equations, the fourth-order
tensor of discrete velocities,

P
eaieajeakeal, should be isotropic. This
del scheme.
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isotropic requirement is not necessary for the heat diffusion equa-
tion, making it possible to minimize the numbers of discrete veloc-
ities. Therefore, we adopt the D3Q7 model instead of D3Q15 or
D3Q19 model to reduce the calculation time without affecting
the accuracy much. The scheme stated above has second-order
accuracy with respect to the lattice interval dx and first order accu-
racy with respect to the time step dt [20].

2.3. Internal interfaces and boundary condition treatment

At the internal interfaces between two different components in
composites, Eqs. (3) and (4) must be satisfied to ensure the conti-
nuity of temperature and heat flux. In the LBM, such conditions can
be satisfied if the ‘half lattice division scheme’ is adopted (see
Fig. 1) [15,29]. In the ‘half lattice division scheme’, the interface
is placed at the middle of two lattice nodes. Thus, once we identify
the local component to be A or B, the local temperature and heat
flux can be obtained from the local temperature distribution func-
tions without any nearby nodes information.

The local temperature can be obtained by the summation of the
discrete temperature distribution functions [26]:

T ¼
X
a
f a ð14Þ

Yoshida and Nagaoka [20] proposed the following relations
between the local discrete distribution functions and the first order
partial derivatives with respect to temperature

� 1
edx

ðf 1 � f 2Þ ¼ sxx
@T
@x

þ sxy
@T
@y

þ sxz
@T
@z

� 1
edx

ðf 3 � f 4Þ ¼ syx
@T
@x

þ syy
@T
@y

þ syz
@T
@z

� 1
edx

ðf 5 � f 6Þ ¼ szx
@T
@x

þ szy
@T
@y

þ szz
@T
@z

ð15Þ

The first order partial derivatives with respect to temperature,
@T=@x, @T=@y, @T=@z can be obtained by solving the above ternary
linear equations. Then, the heat fluxes along the specified direc-
tions can be calculated by

qx ¼ qcp Dxx
@T
@x

þ Dxy
@T
@y

þ Dxz
@T
@z

� �

qy ¼ qcp Dyx
@T
@x

þ Dyy
@T
@y

þ Dyz
@T
@z

� �

qz ¼ qcp Dzx
@T
@x

þ Dzy
@T
@y

þ Dzz
@T
@z

� � ð16Þ

where qcp is the volumetric heat capacity.
In the conventional conjugate heat transfer problem, the gen-

eral governing equation adopted for discretization in its vector
form is as follows [32,33]:

@ðqTÞ
@t

þ divðqU
!
TÞ ¼ divðCgradTÞ þ S ð17Þ

where C is the related nominal diffusion coefficient, which is
defined by the following equation:

C ¼ k
cp

ð18Þ

Then as first pointed out by Chen and Han in [34] and later fur-
ther demonstrated in [32], for a conjugate heat transfer problem if
the nominal interface diffusion coefficient is determined by the
harmonic mean value, the specific heat capacity (cp) in the solid
region should take the value of that in the fluid region in order
to guarantee the continuity of flux at the interface.

The LB model adopted in this paper will recover to the macro-
scopic energy equation in the following form:
@T
@t

þ divðU
!
TÞ ¼ divðDgradTÞ þ S ð19Þ

Therefore, according to above discussions, we should assume:

ðqcpÞm ¼ ðqcpÞf ð20Þ

for different phases in composites to ensure the heat flux continuity
[35]. When heat transfer reaches the steady state, such treatment
does not influence the temperature field. Based on this assumption
(shown in Eq. (20)), the incoming distribution functions at the inter-
faces can be obtained by the streaming process without any addi-
tional treatment if we follow the ‘half lattice division scheme’:

f aðxf ; t þ dtÞ ¼ f̂ aðxm; tÞ
f aðxm; t þ dtÞ ¼ f̂ aðxf ; tÞ

ð21Þ

where the index a indicates the directions opposite to a. Note that if
the heat flux continuity at the internal interfaces needs to be satis-
fied in a transient analysis, the incoming distribution functions at
the interfaces need to be modified. Therefore, the streaming process
should be also modified at the interfaces. One can refer to Refs.
[25,31] for more details. In the present paper, only the steady state
is studied because it is sufficient in estimating the effective thermal
conductivity of the materials.

Once the temperature field is converged, the effective thermal
conductivity along specified directions can be calculated by

kx;e ¼
R
qxdAx

ðDT=LxÞAx

ky;e ¼
R
qydAy

ðDT=LyÞAy

kz;e ¼
R
qzdAz

ðDT=LzÞAz

ð22Þ

where Lx, Ly, Lz are the thicknesses of materials along x, y, z direc-
tions, respectively; qx, qy, qz are steady heat fluxes along the x, y, z
directions, respectively; DT is the temperature difference between
the two opposite surfaces.

Boundary conditions for the LB simulations are as follows. For
the unit cube cell of materials, two opposite boundary surfaces
are set to be isothermal but at different temperature (Dirichlet con-
dition). Other surfaces are set to be adiabatic (Neumann condition)
or periodic according to the actual situation. For interfaces placed
at the middle of two lattice node (see Fig. 1), the following treat-
ments for Dirichlet and Neumann conditions have the second order
accuracy [20,36].

Dirichlet condition:

f aðx; t þ dtÞ ¼ �f̂ aðx; tÞ þ eTd ð23Þ
Neumann condition:

f aðx; t þ dtÞ ¼ f̂ aðx; tÞ þ ðdt=dxÞqn ð24Þ
While the periodic condition is expressed as follows:

f aðxþ L; t þ dtÞ ¼ f̂ aðx; tÞ ð25Þ

here, f̂ denotes the post-collision discrete distribution function; Td

is the given temperature and qn is the given specified flux at the
boundary.
3. Validation test

In this section, several benchmarks are simulated to validate the
accuracy of the method presented in Section 2.
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3.1. Infinite long anisotropic slabs

For the case in which two anisotropic thin slabs are serially
connected, the effective thermal conductivity of such composite
material can be obtained analytically if the geometry size along
the x direction is infinite long (see Fig. 2). In Fig. 2, the oblique lines
represent the principle axis of heat conduction, and b is the oblique
angle. The thermal conductivities along the two principle axes of
heat conduction are denoted as kg and kf, respectively. To obtain
the effective thermal conductivity of the composites, the effective
thermal conductivity of single slab along y direction, ky, should
be first determined. The thermal conductivity matrix of the aniso-
tropic slab in g�f coordinate is diagonal, but it should be converted
into x–y coordinate:
kxx kxy
kyx kyy

� �
¼ cos b sin b

� sin b cos b

� �
kg 0
0 kf

� �
cosb � sinb

sinb cosb

� �
ð26Þ

And the heat flux can be expressed as:
qx

qy

" #
¼ � kxx kxy

kyx kyy

� � @T
@x
@T
@y

" #
ð27Þ

If the slab is infinite long along the x direction, @T=@x equals
zero and therefore the effective thermal conductivity of the single
slab along y direction, ky, equals kyy (according to Eq. (27)). If we
assume that the two slabs have the same thickness, the effective
thermal conductivity of the series slabs along y direction is equal
to 2ky1ky2/(ky1 + ky2) (index 1 and 2 denote two different slabs).

We keep the ratio kg = 2kf for both slabs, and set kg1 = 2 W/
(m�K) while changing the value of kg2 from 2 to 2000W/(m�K), that
is, the ratio of kg2/kg1 varying from unity to one thousand. In our
simulations, the upper and lower boundaries are set to be isother-
mal but at different temperature. The periodic conditions are
imposed on the side boundary. The size of grid space is 0.01 at a
200 � 200 grid, and the value of c maintains 400,000. The effective
thermal conductivities predicted by the present method and the
corresponding analytical results are shown in Table 1. The
Fig. 2. Series mode of two infin

Table 1
Comparisons of the predicted results and the analytical results.

kg1:kg2 b = 75�

Analytical
results (W/(m�K))

Predicted
results (W/(m�K))

Relative
deviations (%

1:1 1.9330 1.9330 0
1:10 3.5145 3.5145 0
1:20 3.6819 3.6820 0.003
1:40 3.7717 3.7717 0
1:100 3.8277 3.8278 0.003
1:1000 3.8621 3.8622 0.003
maximum relative deviation is 0.003% for b = 75� and 0.005% for
b = 15�, which confirms the high accuracy of the present method.

3.2. Composites reinforced with anisotropic short fibers

Reinforced fibers are commonly dispersed in the solid matrix to
increase the mechanical strength [37]. In this case, we assume that
the reinforced short orthotropic fiber is transversely isotropic, i.e.
kxx–kyy ¼ kzz, and it is longitudinally aligned in the matrix, as
shown in Fig. 3.

The fiber volume fraction, /f , and the fiber aspect ratio, f, are
defined as

/f ¼
pd2l
4a3

ð28Þ

f ¼ l
d

ð29Þ

where a is the side length of the cube; d is the fiber diameter; l is the
fiber length. For a given fixed fiber volume fraction, /f , there exists a
minimum fiber aspect ratio, fmin, and a maximum value, fmax [37]:

fmin ¼ 4/f

p
; fmax ¼

ffiffiffiffiffiffiffiffi
p
4/f

s
ð30Þ

To study the influences of the fiber aspect ratio on the effective
thermal conductivity of composites, we keep the fiber volume frac-
tion constant while change the fiber aspect ratio. In Ref. [37], the
effective thermal conductivities of such composites are numeri-
cally estimated by the finite element method. The matrix is set
to be isotropic and its thermal conductivity is assigned to be unity.
The anisotropy degree of fiber is defined as l = kxx/kyy. k

e
L and keT are

the longitudinal and the transverse effective thermal conductivity
of the composites, respectively. Note that the step-wise approxi-
mation is adopted to deal with the curved boundaries of the fiber.
For all cases, we conducted the simulation on two grid systems
80 � 80 � 80 and 60 � 60 � 60 to obtain the effective thermal con-
ductivity, and the deviations of the two grid system are within
ite anisotropic thin slabs.

b = 15�

)
Analytical
results (W/(m�K))

Predicted results
(W/(m�K))

Relative
deviations (%)

1.0670 1.0670 0
1.9400 1.9401 0.005
2.0324 2.0324 0
2.0820 2.0821 0.005
2.1129 2.1129 0
2.1319 2.1320 0.005



Fig. 3. Cubic-cell geometry reinforced with short fiber.
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1.2%. Therefore, the grid system 60 � 60 � 60 is enough for this
problem. The size of grid space is 0.01 and the value of c maintains
100,000. The results based on the present method are compared
with those in Ref. [37] shown in Fig. 4.

In Fig. 4(a), kxx = 1000 W/(m�K) and l = 10 for fiber; while in
Fig. 4(b), kxx = 100 W/(m�K) and l = 0.1. As shown in Fig. 4, the pre-
dicted results based on the present method agree well with the
existing simulation data, and the maximum deviation is 2.2%,
which again confirms the accuracy of the present method.

3.3. Three-dimensional dual-component composites

A series mode of 3D dual-component composites is further con-
sidered (see Fig. 5). The thermal conductivity matrices of the two
components are given as

k1ij ¼
4 1 2
1 8 1
2 1 10

2
64

3
75; k2ij ¼

10 1 4
1 8 1
4 1 12

2
64

3
75 ð31Þ

The boundary conditions are imposed as shown in Fig. 5. Ansys
Fluent 14.0 is adopted to obtain the effective thermal conductivity
of the composite material along the z direction, and it equals
10.34 W/(m�K). The result of the present LB model with a grid of
30 � 30 � 30 is 10.40W/(m�K). The deviation is 0.6%. The temper-
ature distribution contours of the surface at the right hand side of
0.6 0.8 1.0 1.2 1.4 1.6

1.5

2.0

2.5

3.0

3.5

λ
/W

⋅(m
⋅K

)-1

λ eL
λ eT
 existing data [37]
 existing data [37]

ζ

λxx=1000 W/(m⋅K)

μ = 10

 (a) λxx µ=10⋅

Fig. 4. Comparisons of effective thermal conductivity between t
the cube obtained by Ansys Fluent and the present method are
compared in Fig. 6, which shows rather good agreement. It can
be seen that at the interface, the temperature contour obtained
either by Fluent or by the present method is continuous. The local
normal heat flux can be obtained by Eq. (16), and it is found that
the normal heat flux at the interface is also continuous with a devi-
ation less than 0.5%. The continuity of temperature and heat flux at
the interface verifies the accuracy of the present ‘half lattice divi-
sion scheme’ treatment for the anisotropic heat conduction
problem.
4. Application for 3D4D braided composites

4.1. Structure of 3D4D braided composites

For 3D4D braided composites, the inside braiding yarns are reg-
ularly woven by machines and their structure is periodic. A repre-
sentative unit cell thus can be built to describe the entire
composites according to the movement of braiding yarns during
the braiding process, and the effective thermal conductivity of
braided composites can be obtained based on such representative
unit cell [2,3,38]. In the present paper, the unit cell developed in
[1] is adopted, which contains 12 long straight yarns and 8 short
yarns. The coordinates and orientation angles of each yarn axis
are the same as those in [1,3]. A schematic of the unit cell and its
components are shown in Fig. 7(a). There are two geometric scale
levels: first, thousands of uniaxial fibers and the matrix constitute
a braiding yarn; second, lots of braiding yarns within the matrix
form the braided composites. In Fig. 7, c is the orientation angle
of each yarn with z axis, namely interior braiding angle; h denotes
the braiding pitch length; and a is the side length of the unit cell. A
reconstructed unit cell is shown in Fig. 7(b). In practice, the braid-
ing yarns in composites contact tightly with each other, and each
yarn is subjected to the compressive force by its adjacent yarns.
As a result, the cross section of the yarns will be distorted and no
longer a circle. In previous studies, different cross sections were
studied, such as ellipse [2], hexagon [39] and octagon [40]. In the
present work, the cross section is assumed to be ellipse. To satisfy
the condition that elliptical-section braiding yarns contact tightly
with each other, the sizes of the unit cell and the related geometry
parameters of braiding yarns must obey the following relations [1]:

b ¼ a=8 ð32Þ

m ¼ b
ffiffiffi
3

p
cos c ð33Þ
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he predicted results and the existing simulation data [37].



Fig. 5. Series mode of 3D dual-component composites.
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A ¼ pbm ¼ nf � pd2
f =4

/fy
ð34Þ

/ya ¼
ðpmbÞ � h= cos c� 8

a� a� h
¼ p

ffiffiffi
3

p

8
¼ 0:68 ð35Þ

where m and b are the lengths of semi-major axis and semi-minor
axis of the ellipse cross section, respectively; A is the area of the
cross section; nf is the number of fibers in one braiding yarn; df is
the diameter of fibers; /fy ¼ /f =/ya is the fiber volume fraction of
the braiding yarns, /f is the fiber volume fraction of the unit cell,
and /ya is the yarn volume fraction of the unit cell. With the given
values of /f , nf , df and c, one can determine the geometry parameter
values of m, b, a, h according to Eqs. (32)–(35). In the present paper,
we set nf ¼ 9000, df ¼ 6:9 lm; let c vary from 20� to 45�, and /f

equal 0.4, 0.5, 0.58.

4.2. Materials properties and boundary conditions

To determine the effective thermal conductivities of 3D4D
braided composites, the thermal conductivities of their each com-
ponent, matrix and braiding yarns, should be first determined. The
braiding yarn, one of the components of braided composites, is
composed of the matrix and thousands of uniaxial fibers. In the
present paper, the matrix is epoxy resin and the reinforced fiber
is T300 carbon. The thermal conductivity of isotropic resin is mea-
sured by Hot Disk TPS2500s (discussed in Section 4.3), and equals
(a) By Fluent 14.0

Fig. 6. Temperature distribution contours of
0.178W/(m�K). The T300 carbon fiber is transversely isotropic
whose transverse and longitudinal thermal conductivities are
0.675W/(m�K) and 7.81W/(m�K), respectively [41]. Based on the
determined thermal conductivities of the matrix resin and T300
carbon fibers, the longitudinal and transverse thermal conductivi-
ties of braiding yarns can be obtained by [25]:

kLya ¼ kLf/fy þ kmð1� /fyÞ ð36Þ

kTya ¼ km þ ð1� /fyÞ
1= kTf � km

� 	
þ ð1� /fyÞ=ð2kmÞ

ð37Þ

where kLf and kTf are the longitudinal and transverse effective ther-
mal conductivity of fibers, respectively; km is the thermal conduc-
tivity of the matrix.

For 3D4D braided composites, two opposite surfaces along the
measured direction are isothermal but at different temperature.
The other boundary surfaces are imposed to be periodic [3].

4.3. Experimental measurement

In the present paper, the Hot Disk thermal constants analyzer
(TPS 2500s) [42–44] based on the transient plane source method
was adopted to measure the effective thermal conductivities of
materials, including the isotropic resin and the anisotropic braided
composites. For 3D4D braided composites, the specimens should
be properly cut so that the probe can be placed perpendicular to
the braiding direction.

The measurement process is as follows. The probe is clamped
between two identical specimen halves, and then a heat pulse is
supplied to the probe to generate a dynamic temperature field.
The temperature increase of the probe surface is recorded as a
function of time. The temperature response within the specimen
is predominantly related to the thermal diffusivity and thermal
conductivity of the measured material. By dealing with the
recorded temperature curve, both the thermal conductivity and
thermal diffusivity of the measured material can be obtained. For
isotropic materials, the temperature increase of the probe surface
can be expressed as [42]:

DTsðHÞ ¼ P0

p3=2rk
HðHÞ ð38Þ

where P0 is the input power; r is the radius of the probe; k is the
thermal conductivity of the specimen material; HðHÞ is the dimen-
sionless specific time function;H is the dimensionless time, defined
asH ¼

ffiffiffiffiffiffi
Dt

p
=r, in which D is the thermal diffusivity of the specimen,
(b) By the present method 

the right hand side surface of the cube.



(a) The unit cell and its components                (b) The reconstructed unit cell 

Fig. 7. Diagram of the unit cell for 3D4D braided composites.
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and t is the measurement time. The thermal diffusivity can be
obtained by a least-squares procedure to obtain a best linear rela-
tion between the DTs and HðHÞ. Finally, the thermal conductivity
can be obtained from the slope of this line (Eq. (38)).

As for anisotropic materials, the temperature increase of the
probe can be expressed as [42]

DTsðHTÞ ¼ P0

p3=2rðkLkTÞ�1 HðHTÞ ð39Þ

where kL and kT are the longitudinal and transverse effective ther-
mal conductivities of the specimen, respectively. Similar to the iso-
tropic case, we first obtain the thermal diffusivity of the specimen,
DT , along the transverse direction. With a given volumetric heat
capacity qcp, we have

kT ¼ qcpDT ð40Þ
The longitudinal thermal conductivity of the specimen, kL, can

then be obtained from the slope of the line corresponding to Eq.
(39).
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5. Results and discussion

The MRT LBM combined with the ‘half lattice division scheme’
method presented in Section 2 is adopted to determine the longi-
tudinal and transverse effective thermal conductivity of 3D4D
braided composites. Taking the case of fiber volume fraction being
0.4 and the interior braiding angle being 25� as an example, the
geometry parameters of reconstructed unit cell are as follows.
The side length of the unit cell, a, is 2.724 mm; the braiding pitch
length, h, is 5.843 mm; the semi-major axis of ellipse, m, is
0.535 mm; the semi-minor axis of ellipse, b, is 0.341 mm. The grid
number of the reconstructed unit cell is 56 � 56 � 120. The longi-
tudinal and transverse thermal conductivities of the braiding yarns
obtained from Eqs. (36) and (37) are listed in Table 2.

After reconstructing the unit cell of the composites structure
and determining the thermal conductivity of each component,
Table 2
Effective thermal conductivities of braiding yarns.

/f (%) kLya (W/(m�K)) kTya (W/(m�K))

0.4 4.667 0.363
0.5 5.790 0.445
0.58 6.688 0.530
we can then apply the MRT LBM to calculate the effective thermal
conductivities of anisotropic heterogeneous materials along the
specified direction. The heat flux remains almost constant along
the z direction (shown in Fig. 8), verifying the energy conservation
of this method.
5.1. Comparisons with the experimental data

The Hot Disk thermal constants analyzer is adopted to measure
the effective thermal conductivity. The experimental data and the
numerical results are shown in Table 3. All the simulations are
based on the assumption that the interface thermal contact resis-
tance is negligible because different components in the composites
are tightly contacted.

In Table 3, keT and keL are the numerically predicted effective
thermal conductivities of 3D4D braided composites along the
transverse and longitudinal directions, respectively, and kT and kL
are the experimental data. The predicted results and the experi-
mental data show good agreements and the deviations are within
±10%, confirming the accuracy of this method. In 3D4D braided
composites, the braiding yarns are regularly woven by machines
and their structure is periodic, making it possible to be well recon-
structed. The reconstructed structure can be very similar to the real
structure of composites if the fiber volume fraction and interior
0 20 40 60 80 100 120
60

65

70

Position
Fig. 8. Heat flux along the z direction.



Table 3
Comparisons of the experimental data and numerical results.

c /f keT (W/(m�K)) kT (Exp) (W/(m�K)) Deviation (%) keL (W/(m�K)) kL (Exp) (W/(m�K)) Deviation (%)

25 0.5 0.639 0.709 �9.87 3.085 3.41 �9.53
25 0.58 0.727 0.75 �3.07 3.444 3.52 �2.16
40 0.5 1.015 1.02 �0.4 2.258 2.50 �9.68
40 0.58 1.160 1.056 9.89 2.583 2.63 �1.78
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Fig. 9. Effective thermal conductivities versus the interior braiding angle.
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braiding angle are the same. This is exactly the reason that good
agreement is obtained between the numerical results based on a
representative unit cell and the experimental results based on
the entire domain.

5.2. Influence of structure parameter

The influences of fiber volume fractions and interior braiding
angles on the effective thermal conductivities are investigated with
the fiber volume fractions as 0.4, 0.5, 0.58, and the braiding angles
varying from 20� to 45�. The predicted transverse and longitudinal
thermal conductivities of the 3D4D braided composites are shown
in Fig. 9 (a) and (b), respectively.

It can be seen that the transverse thermal conductivity
increases with the interior braiding angle, while the longitudinal
thermal conductivity decreases with the increasing interior braid-
ing angle. This can be explained as follows. A larger interior braid-
ing angle leads to a larger proportion of yarns projected into the
transverse direction, and a smaller proportion along the longitudi-
nal direction. This indicates that the heat transfer capability is
strengthened along the transverse direction but reduced along
the longitudinal direction due to the bigger effective thermal con-
ductivity of braiding yarns than that of the matrix. It can also be
found that both the transverse and longitudinal effective thermal
conductivity increase with the fiber volume fractions within the
range of the studied interior braiding angle. This is because the
thermal conductivity of fibers is bigger than that of the matrix.

It is worth mentioning that the above results are obtained based
on the periodic boundary condition rather than the adiabatic one.
For isotropic homogeneous or heterogeneous materials, the
imposed boundary condition being either adiabatic or periodic will
not influence the calculations of effective thermal conductivity.
However, as for anisotropic homogeneous or heterogeneous mate-
rials, the imposed boundary condition will greatly influence the
effective thermal conductivity. Taking the case of c = 25�, Vf = 0.5
as an example, the transverse and longitudinal thermal conductiv-
ities are 0.637W/(m�K) and 3.085W/(m�K), respectively, for peri-
odic boundary conditions, while 0.566 W/(m�K) and 2.486 W/
(m�K), respectively, for adiabatic boundary conditions. The devia-
tions between the two boundary conditions are as high as 11.1%
and 19.5%, respectively. The temperature distribution contours
under two different boundary conditions are shown in Fig. 10.
The periodic boundary condition results in a less tortuous temper-
ature distribution contour. This is because the periodicity means
that the geometry size of measured materials along the imposed
direction is infinite, and therefore the influence of the boundary
on the temperature field will be reduced. For the anisotropic
homogeneous materials, the periodic boundary condition results
in a zero temperature gradient along the imposed direction while
the adiabatic boundary condition does not. As for the anisotropic
heterogeneous materials, such as the 3D4D braided composites,
the temperature distribution contour obtained by periodic bound-
ary conditions is much less tortuous than that of the adiabatic one.
According to Eq. (16), the temperature gradients at x or y direction
will have an influence on the heat flux along the z direction and
therefore result in different effective thermal conductivities along
z direction. Thus, for the simulation of the 3D4D braided compos-
ites, the periodic boundary conditions should be adopted rather
than adiabatic boundary conditions.

5.3. Influence of the interface thermal contact resistance

To consider the internal thermal resistance without any model,
the morphology of the contacting surface needs to be specifically
described at the micro size level. It requires huge computational
resources to describe such microscale morphology for the domain
size studied at the millimeter level. It is still challenging to numer-
ically consider the thermal contact resistance in the composite
material. In the present paper, we embed the thermal contact
resistance into the microstructure of the 3D4D braided composites.



(a)The periodic boundary condition       (b) The adiabatic boundary conditon 

Fig. 10. Temperature distribution contours.
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Wang et al. [45] also adopted such method to consider the thermal
contact resistance in the aerogels. At the positions of component
interfaces, we use one lattice node with its local thermal conduc-
tivity less than the matrix to consider the thermal contact resis-
tance. The local thermal conductivity of the contact nodes varies
from 0.01 W/(m�K) to 0.178W/(m�K). For the case of c = 25�,
Vf = 0.5, one lattice length corresponds to 48 lm length in physical
unit, and therefore the corresponding thermal contact resistance
varies from 0.00027 m2�K/W to 0.0048 m2�K/W. The influence of
the thermal contact resistance on the longitudinal effective ther-
mal conductivity of the 3D4D braided composites is shown in
Fig. 11. It can be seen that the effective thermal conductivity of
the 3D4D braided composites decreases when the thermal contact
resistance increases.
6. Conclusions

In this paper, a multi-relaxation-time LB model combined with
the ‘half lattice division scheme’ method is adopted to predict the
effective thermal conductivities of the anisotropic heterogeneous
materials with anisotropic components are also anisotropic. By
benchmark validations and comparisons with the existing simula-
tion data, the accuracy of the present method is confirmed. This
method is then applied to predict the transverse and longitudinal
effective thermal conductivity of 3D4D braided composites. Sev-
eral corresponding experiments are conducted to measure the
effective thermal conductivity of 3D4D braided composites. The
LB predicted results agree well with the experimental data, verify-
ing the accuracy of the present model. For 3D4D braided compos-
ites, it is found that both the longitudinal and transverse thermal
conductivity increase with the fiber volume fraction; the trans-
verse thermal conductivity of the braided composites increases
with the interior braiding angle while the longitudinal thermal
conductivity decreases when the interior braiding angle increases.
A larger interface thermal contact resistance leads to a smaller
effective thermal conductivity. For the simulation of the 3D4D
braided composites, we should impose periodic boundary condi-
tions rather than adiabatic boundary conditions.

It is interesting to note that the developed method can also be
used to predict the effective thermal conductivity of the needled
C/SiC composites, which is another type of composite materials.
The results will be reported elsewhere.
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