
Computers & Fluids 118 (2015) 293–304
Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid
A three-dimensional volume of fluid & level set (VOSET) method
for incompressible two-phase flow
http://dx.doi.org/10.1016/j.compfluid.2015.06.018
0045-7930/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 029 82669106.
E-mail address: wqtao@mail.xjtu.edu.cn (W.-Q. Tao).
Kong Ling a, Zhao-Hui Li a, Dong-Liang Sun b, Ya-Ling He a, Wen-Quan Tao a,⇑
a Key Laboratory of Thermo-Fluid Science & Engineering of MOE, School of Energy & Power Engineering, Xi’an Jiaotong University, China
b School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 September 2014
Received in revised form 2 May 2015
Accepted 13 June 2015
Available online 18 June 2015

Keywords:
VOF
Level set
Distance function
Two-phase flow
3D VOSET
This paper presents a three-dimensional VOSET method, which combines both advantages of the VOF and
level set. The basic idea is the same with that in 2D VOSET, but new methods are proposed to deal with
new geometric problems in three dimensions. An iterative root-finding method is used for implementing
Piecewise Linear Interface Construction (PLIC) in three dimensions. An iterative geometric method is
presented to calculate the level-set function. The feasibility and accuracy of this method are analyzed
by some classical test problems. Combining the use of projection method that solves the flow field, the
3D VOSET is adopted to simulate a liquid dam break problem and a single-bubble rising problem. Our
numerical results are found to be in good accordance with those in previous studies.
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1. Introduction a continuous function / named level-set function is used to identify
Flow with moving interfaces can be widely found in the daily
life and industrial processes, such as moving of droplets and
bubbles in gas–liquid flow, ash deposition on tubes in gas–solid
flows and phase change heat transfer. In recent years, with the fast
development of computer’s performance, direct numerical simula-
tion is becoming an increasingly important tool for studying these
kinds of problems.

In the past decades, a number of different methods were devel-
oped for dealing with moving interfaces. Among these methods, vol-
ume of fluid (VOF) [1] and level set [2] were probably the most
widely used ones. VOF was proposed by Hirt and Nichols [1]. In this
method, a color function C ranging from 0 to 1, which we call VOF
function here, is used to identify the two phases divided by the inter-
face. The VOF function denotes the volume proportion of one phase
in a computational cell. C = 1 demonstrates that this cell is filled with
one phase and C = 0 means that the cell is filled with the other phase.
If C values between 0 and 1, the cell is regarded to contain both
phases. The major advantage of VOF is that the total mass conserva-
tion of the two phases can be kept very well. However, the interface
normal and curvature cannot be solved accurately in a convolved
scheme due to the fact that the VOF function is a step function,
and it will produce large numerical error in surface tension. Level
set method was proposed by Sethian and Osher [2]. In this method,
the interface and the two phases. The whole computational domain
is divided into two parts according to the sign of the level-set func-
tion. The first part refers to the area occupied by the first phase
where it satisfies / > 0, and / < 0 represents the location in the
other phase. The interface, therefore, is denoted by the zero contour
of level-set function. In the level set method, interface normal and
curvature can be computed much more accurately due to the use
of the continuous function. On the other side, however, the level
set method suffers from the weakness of loss/gain of mass.

As can be seen that, both VOF and level set have disadvantages,
but in different aspects. Therefore, the combination of the two
methods could be a good choice for improvement. In 2000, Sussman
proposed a coupled level set and VOF (CLSVOF) method [3], which
successfully combines both advantages of VOF and LS. However, the
advection equations for the VOF and level-set functions both need
to be solved, which makes this method more complicated. As a
simpler approach, a coupled method of volume-of-fluid and level
set (VOSET), which combines the advantages of VOF and level-set
as well, was proposed by Sun and Tao [4]. In this method, only
the advection equation of the VOF function is solved, and the
level-set function is computed from the VOF function indepen-
dently. However, Sun and Tao’s method is developed only in two
dimensions. Recently, Sun [5] has extended VOSET to three
dimensions. However, Sun’s method needs to use much more
classifications on different interface shapes. On the extension of
VOSET to 3D, the present authors try simpler approaches.
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Fig. 1. The volume below an interface in cubic cell.
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The main purpose of this study is to implement the major idea
of VOSET [4] for three-dimension case. That is to say, Piecewise
Linear Interface Construction (PLIC) [6] is used to reconstruct the
interface shape and geometrical method is adopted in computing
the level-set function. However, in order to implement this idea
for 3D case, more complicated geometrical problems have to be
dealt with, thus one needs to develop new techniques different
from those in 2D VOSET [4] so that the 3D VOSET can be conducted
in a simple way. Concretely, in the 2D VOSET, the interface is
reconstructed as a set of straight line segments by PLIC. In 3D case,
however, the interface should be approximated as a set of poly-
gons. In the present article, we will extend PLIC to 3D cases, and
the extension has some differences from existing 3D PLIC methods
in literatures [5,7]. Furthermore, a geometrical approach will be
proposed to compute the level-set function based on the recon-
structed polygonal interfaces. These approaches will make the
extension of VOSET from 2D to 3D simple. The present study is lim-
ited to three-dimensional Cartesian coordinates with uniform grid
system.

The rest of the present paper is organized as follows. In Section 2,
PLIC interface reconstruction method for solving three dimensional
VOF function is introduced. Section 3 presents the method for solv-
ing the signed distance function in three dimensions. The algorithm
for solving the flow field is illustrated in Section 4. In Section 5, some
test problems are studied by the proposed 3D VOSET. Finally some
conclusions are made in Section 6.

2. 3D PLIC interface reconstruction

For incompressible flow, the advection equation of VOF function
can be written as:

@C
@t
þr � ðuCÞ ¼ 0: ð1Þ

The discretization of this equation leads to the following result:

Cnþ1 ¼ Cn � Dt
DV

I
C

unþ1=2CndA: ð2Þ

For solving this equation numerically, an interface reconstruc-
tion method is needed to keep the sharpness of interfaces. For this
problem, Piecewise Linear Interface Construction (PLIC) presented
by Youngs [6] was widely used in the past decades. However, the
extension of the PLIC from 2D to 3D is not straightforward, since
the implementation of PLIC in 2D is a plane geometric problem,
while in 3D it becomes a solid geometric problem.

To resolve this difficulty, Gueyffier et al. proposed a
cube-cutting function [7], which thereafter became the basic
method for three-dimensional PLIC. The cube-cutting function is
presented briefly as follows.

For a 3D computational cell containing interface, by using some
turning and scaling, the reconstructed interface can be described
by a plane equation in a unit cube:

nxxþ nyyþ nzz ¼ a; ð3Þ

where nx, ny and nz are the three components of the interface nor-
mal in x, y and z directions, respectively. The interface normal can
be easily estimated by level-set function, but a remains to be deter-
mined for fully description of the reconstructed interface.

For a given value of a, the volume below the interface in cube
(0,c1) � (0,c2) � (0,c3), as illustrated in Fig. 1, can be determined by:

VolumeðaÞ ¼ 1
6n1n2n3

a3 �
X3

j¼1

Hða� njcjÞða� njcjÞ3
"

þ
X3

j¼1

Hða� amax þ njcjÞða� amax þ njcjÞ3
#
: ð4Þ
Here n1, n2 and n3 are equivalent with nx, ny and nz. c1, c2 and c3 are
the lengths of three sides of the cube, amax = nxc1 + nyc2 + nzc3, and H
is the Heaviside function:

HðxÞ ¼
0 ðx < 0Þ
1 ðx P 0Þ

�
:

Therefore, the key of interface reconstruction is how to compute
the value of a. By using Eq. (4), the VOF function can be obtained
directly from a given a. However, what we need here is the inverse,
that is, to solve a from a given VOF function. For solving this prob-
lem, Gueyffier et al. [7] classified the interface shapes into 12 cases.
For each case, Eq. (4) turns out to be a cubic polynomial in a and
the root can be computed directly. As a revision, Annaland et al.
classified different interface shapes into 5 cases [8]. Figure 2 shows
some examples of different interface shapes inside a cubic cell.
Anyway, the classification makes the coding complicated.

Actually, the cube-cutting function Volume in Eq. (4) is a piece-
wise cubic polynomial in a, and it is applicable to various interface
shapes owing to the use of Heaviside function. Furthermore, it is
smooth and monotonically increasing with a within the range
0 6 a 6 amax. Figure 3 shows some examples of the cube-cutting
function (Eq. (4)) with some different normal directions, which
demonstrates the two features of this function. According to these
features, one can use an iterative root-finding method to solve the
value of a that corresponds to a given VOF function. An advantage
of using an iterative root-finding method is that we do not need to
write different codes for different kinds of interface shapes, which
makes the extension of PLIC from 2D to 3D much easier. In fact, it
has been mentioned in Ref. [7] that a root-finding method may be
feasible. In the present study, a simple iterative secant method is
adopted. Here we write a pseudo code as follows to describe
how we use this method to solve the value of a from a VOF
function (denoted by C) with given n1�3 in a unit cube. Figure 4
illustrates one iteration in this method.

Set: error = 10�9

Set: a1 = 0, C1 = 0, a2 = n1 + n2 + n3, C2 = 1
Set: amiddle = (a1 + a2)/2
Loop

Set: Cmiddle = Volume(amiddle) /⁄See Eq. (4)⁄/
If (|Cmiddle � C| < error) then

Set: a = amiddle

Exit loop
End if
If (Cmiddle < C) Then

Set: a1 = amiddle, C1 = Cmiddle

Else
Set: a2 = amiddle, C2 = Cmiddle

End if
Set: amiddle ¼ a1 þ a1�a2

C1�C2
ðC � C1Þ

End loop



Fig. 2. Some examples of different polygon interface shapes inside a cube cell.

( ) ( ) ( )( )1/2 1/2 1/21 10 , 1 10 , 4 5

( ) ( ) ( )( )1/ 2 1/ 2 1/ 21 7 , 2 7 , 4 7

( ) ( ) ( )( )1/ 2 1/ 2 1/ 21 3 , 1 3 , 1 3

Fig. 3. Some examples of the cube-cutting function: a smooth and monotonically
increasing function with a.
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It has been found that by using the secant method the relative error
can fall below 10�9 within 10 iterations in most conditions.
3. Geometric method for computing level-set function

Level-set function, denoted by /, is defined as a signed distance
function. The absolute value of / refers to the shortest distance to
interfaces. It has been demonstrated in Section 1 that both the
commonly used CLSVOF [3,17] and VOSET [4] are combinations
of VOF and level set methods. The major difference between them
lies in the strategy how to update the level-set function. In CLSVOF
[3,17], the level-set function is first updated by solving the advec-
tion equation of the level-set function based on the velocity field,
and then it may be modified. In VOSET [4], the level-set function
is computed directly from the VOF function that has been updated.
The basic idea of computing the level-set function in 2D VOSET is
Volume

Volume = C

αα1 α2αmiddle

Fig. 4. Schematic of the procedure of one iteration in secant root-finding method
used in solving a from a VOF function.
to find the shortest distance between a line segment and a given
point, as shown in Fig. 5(a). It can be easily computed in a triangle
for 2D case.

However, in 3D case, the problem becomes much more compli-
cated due to the fact that the reconstructed interface in a 3D cube
becomes a polygon. The corresponding problem is to find the point
on the polygon closest to a given point (see Fig. 5(b)). The number
of the polygon’s sides, affected by the normal direction as well as
the VOF function, may vary from 3 to 6 (see Fig. 2). Thus, the cal-
culation of the level-set function in 3D case needs another method.

Before presenting our method for solving the level-set function,
the two types of interfaces which are taken into account are
described here. An interface belonging to the first type (we call
Type-1 interface hereafter) lies between two adjacent cells which
are filled by different phases. The interface is actually the face
dividing the two cells, as shown in Fig. 6(a), and we call the two
cells as Type-1 interfacial cells. An interface belonging to the sec-
ond type (we call Type-2 interface hereafter) lies inside a cell that
contains both phases, i.e., 0 < C < 1, as shown in Fig. 6(b), and we
call this cell as a Type-2 interfacial cell. In general, the interfaces
appear mostly in Type-2 during the movement of the interface.
Type-1 interface is actually a special case compared with the sec-
ond one. Nevertheless, it usually appears in the first time step,
especially if one initializes the distribution of the two phases sim-
ply by setting the VOF function in part of the computational cells as
C = 1 and setting C = 0 in the rest cells.

A method for solving the distance function in three dimensions
has been proposed by Sun [5]. However, in Sun’s method, Type-1
interface (see Fig. 6(a)) was ignored. For Type-2 interfaces (see
Figs. 2 and 6(b)), Sun [5] considered 12 possible interface shapes
(partial cases are shown in Fig. 2) and carried on a unique calculat-
ing routine for each of them. In the method presented here, Type-1
interface will be taken into account individually, while for Type-2
interfaces, we present a simpler method with no need for classifi-
cation on different interface shapes. In this regard, Wang et al. [17]
has proposed an algorithm that also needs no classification on
interface shapes to deal with the Type-2 interface. However, our
method is different and has better applicability in different kinds
of cells, which will be discussed later.

An iterative geometric method is adopted for the calculation of
the 3D level-set function, which is the same as that in 2D VOSET.
The procedure consists of five steps described as follows.

Step 1: Solve the interface normal and reconstruct the
interface

Interfaces are reconstructed based on PLIC by an iterative
method. In the first iteration, the interface normal is estimated

by the smoothed VOF function eC:

n ¼ r
eC

jreC j : ð5Þ

By using PLIC, the interface is estimated by a plane plate, the
equation of which is written as Eq. (3).

Step 2: Set initial value of level-set function
The initial level-set function is given as:



Fig. 5. Computing the shortest distance. (a) 2D case; (b) 3D case.

(a) Type-1 (b) Type-2

Fig. 6. Two types of interfaces: (a) Type-1; (b) Type-2.

Fig. 7. Computing the distance function.
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/0 ¼
10h if C P 0:5
�10h if C < 0:5

�
; ð6Þ

where h refers to the size of a computational cell.
Step 3: Mark the interfacial cells and their types
The interfacial cells, either containing interfaces inside them

(Type-2, Fig. 6(b)) or having interfaces on their faces (Type-1,
Fig. 6(a)), are marked in the present step. Concretely, the following
two sub-steps are executed.

(1) Visit all the cell faces and check whether they are Type-1
interfaces. In one visit to a cell face, if the VOF functions in
the two adjacent cells divided by the face satisfy: Cone < �,
and Cthe other > 1 � �, it indicates that the face is a Type-1
interface. Thus, the two cells are marked as Type-1 interfa-
cial cells. Note that � is the critical value used in numerical
implementation and we set � = 10�6.

(2) Visit all the cells and check whether they have interfaces
inside them. In one visit to a cell, if the VOF function satis-
fies: � 6 C 6 1 � �, it indicates that the cell contains a
Type-2 interface and the cell is marked as a Type-2 interfa-
cial cell.

Step 4: Mark the cells near interfaces
The purpose of this step is to save computational time, because

the level-set function is needed only in the regions near the inter-
face. In this study, cells within 5h away from the interfacial cells
(Type-1 or Type-2) are marked. This distance can make the marked
region thick enough for computing the interface normal and curva-
ture. The distance function will be calculated merely in the cells
marked in the present step, and the method will be discussed in
Step 5.

The above four steps are basically the same with those in 2D
VOSET proposed by Sun and Tao [4].

Step 5: Calculate level-set function in marked region
This step is the key for calculating the level-set function. As

shown in Fig. 7, for a marked cell M (i, j,k), nearby cells with
distance less than 5h are checked whether they are the interfacial
cells marked in Step 3. Supposing M0 (i0, j0,k0) is one of these cells,
we need to find the shortest distance from M to the interface
related with cell M0. For this purpose, the type of the interfacial cell
M0 (see Fig. 6), which has been marked in Step 3, will be examined
here.

We first consider the case that M0 belongs to Type-1 (see
Fig. 6(a)) which is actually much simpler to deal with compared
with the second type. Without loss of generality, we suppose that
the interface normal is in x direction. The interface center is
ðxf ; yj0 ; zk0 Þ, in which xf ¼ xi0 þ h=2 or xf ¼ x0i � h=2. The shortest dis-
tance is computed by:

distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

diff þ y2
diff þ z2

diff

q
; ð7Þ

where xdiff = |xi � xf|, ydiff ¼maxðjyj � yj0 j � h=2; 0Þ, zdiff ¼max
ðjzk � zk0 j � h=2;0Þ. Figure 8 illustrates an example of Type-1 inter-
face as well as the method calculating the shortest distance to a
given point.

Now attention is turned to the case that M0 is a Type-2 interfa-
cial cell (see Fig. 6(b)). As mentioned above, the interface inside
this cell is in Type-2 and it has been reconstructed as a polygon.
In this case, the following procedures are implemented.

First, the projection point of M on the interface, denoted by
point P in Fig. 9, is solved. According to the reconstructed interface
equation (Eq. (3)), the coordinates of P can be computed by:
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Fig. 9. The method computing the distance from a Type-2 interface to a given point.
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d ¼ a� ðnxxi þ nyyj þ nzzkÞ; ð8-aÞ

xP ¼ xi þ nxd; ð8-bÞ

yP ¼ yj þ nyd; ð8-cÞ

zP ¼ zk þ nzd: ð8-dÞ

If P is located inside cell M0, i.e. xi0 � h=2 6 xP 6 xi0 þ h=2,
yj0 � h=2 6 yP 6 yj0 þ h=2 and zk0 � h=2 6 zP 6 zk0 þ h=2, point P is
the closest point to M. Therefore, the distance is computed by:

distance ¼ jdj ¼ ja� ðnxxi þ nyyj þ nzzkÞj: ð9Þ

If P is outside the cell, it implies that the closest point is on one
side of the polygon. In order to find the shortest distance in this
condition, we use a straightforward method, i.e., solving the short-
est distance to each side of the polygon and then choosing the min-
imum value of them.

The polygon has some characteristics that advantages can be
taken of.

a. All the polygon’s sides are on the faces of the cube. These
sides are the intersecting lines of the interface and the cube’s
faces.

b. Each face of the cube contains only one side at most, since
two planes cannot have two or more intersection lines.

c. The vertices of the polygon are the intersection points of the
interface and the cube’s edges.

Based on these characteristics, an algorithm is presented for
computing the distance for Type-2 interface (Fig. 6(b)).

(1) Compute intersection points of the interface and the cube’s
12 edges. As an example, we illustrate the case for edge AB
in Fig. 9 in z-direction. According to the interface’s equation
(Eq. (3)), one can get the coordinates of the intersection
point:
Fig. 8.
xinter ¼ xi0 þ h=2; ð10-aÞ
yinter ¼ yj0 � h=2; ð10-bÞ
zinter ¼ ða� nxxinter � nyyinterÞ=nz: ð10-cÞ
If it satisfies zk0 � h=2 6 zinter 6 zk0 þ h=2, it indicates that edge
AB contains an intersection point (point C shown in Fig. 9).
diffx

diffz

diffy

distance
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z
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The method computing the distance from a Type-1 interface to a given point.
(2) Check all the 6 faces surrounding the cube. For each face,
check the four surrounding edges and count how many of
them contain intersection points. If the face has 2 edges that
contain intersection points, it indicates that the face con-
tains one side of the crossing polygon. For examples, faces
1, 2, 3, 4 and 6 in Fig. 9 are in this situation. In this case,
the shortest distance from point M to the side can be simply
solved in a triangle whose vertices are M and the two end
points of the side. An example of this triangle is marked by
dashed lines in Fig. 9. This distance from point M to one of
the polygon’s side solved in this triangle is regarded as a can-
didate for the shortest distance from point M to the polygon.
Face 5 in Fig. 9 contains no side of the polygon because none
of its four surrounding edges contains intersection points.

(3) As the shortest distances to all the polygon’s edges have
been solved, the minimum of them is chosen as the shortest
distance from the given point to the crossing polygon.

It deserves to be pointed out here that our algorithm is different
from the one proposed by Wang et al. [17], although both of them
calculate the level-set functions from reconstructed interfaces. The
algorithm by Wang et al. [17] is based on geometrical characteris-
tics of regular hexahedron, thus it is difficult to be applied in
unstructured mesh which may contain many non-cubic cells.
Differently, our algorithm is based on the relationship between
the computational cell and the polygon interface inside it. Thus it
is also applicable in other kinds of computational cells. It can be
illustrated by an example of a tetrahedron cell shown in Fig. 10,
where the distance from point M to the interface inside the cell
can be solved by using similar procedures described in Step 5.

Here we summarize the routine of Step 5. For a given marked
cell whose level-set function should be calculated, its nearby cells
within certain distance are visited. If one of these cells is interfacial
(Type-1 or Type-2), the distance from the center of the given
marked cell to the corresponding interface (Type-1 or Type-2) is
computed. As the visit to the nearby cells is finished, the smallest
value of the distances obtained is selected as the distance function,
i.e., the absolute value of the level-set function, in this marked cell.
In numerical implementation, the shortest distance is selected by
updating the current minimum distance, denoted by distance here,
when a smaller distance is found during the visit to nearby cells.

For saving computational time, the nearby cells are visited from
the core to outer, layer by layer. By adopting this visiting sequence,
outer layers can be skipped as the visit in inner layers is enough. As
shown in Fig. 11, in the nth layer, the shortest distance cannot be
smaller than (n � 1/2)h. Therefore, after the visit to the (n � 1)th
layer, if the current smallest distance has been found to be smaller
than (n � 1/2)h, it can be regarded as the distance function and the
outer layers can be skipped. It is different from the line-by-line vis-
iting order adopted in [5]. Here we call this visiting order as the
first improvement in saving computational time, and an example
will be presented below to test its effect.



Fig. 11. Visiting sequence for solving a distance function.

Table 1
Computational time cost in computing level-set function by original and improved
methods.

Grids Original (s) 1st improvement (s) 1st & 2nd improvements (s)

323 1.342 0.624 0.219
643 5.195 2.401 0.89

1283 21.029 9.61 3.76
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At the end of Step 5, the sign of the level-set function is deter-
mined by the VOF function:

/ ¼
distance ðC > 0:5Þ
0 ðC ¼ 0:5Þ
�distance ðC < 0:5Þ

8><>: ; ð11Þ

which is the same as that executed in 2D VOSET [4].
As the above five steps are finished, an initial level-set function

is obtained. However, in Step 1 the interface normal is computed
by the VOF function. For a better accuracy, Steps 1–5 are repeated
until the number of iterations reaches the preset value. From the
second iteration, interface normal is computed by the level-set
function obtained from the last iteration:

n ¼ r/
jr/j : ð12Þ

As recommended by Sun and Tao [4], three iterations are imple-
mented for solving the level-set function.

Actually, the purpose of the former two iterations is to obtain a
more accurate interface normal. For this purpose, we only need the
level-set function in one-layer cells around the interfaces. There-
fore, in the first and second iterations, we mark the cells within
only one layer around the interfacial cells (Step 4) and compute
the level-set functions there (Step 5). Only in the third iteration,
cells within five layers are marked. This treatment also can save
much computational time. It is the second improvement in saving
computational time.

In order to check the feasibility of our level-set function gener-
ating algorithm as well as the effect of the two improvements in
saving computational time, we computed the level-set function
for a given round ball in a computational domain of 1 � 1 � 1.
The ball is located at the center with radius of 0.25. Computation
was executed on a 2.00 GHz Intel Xeon CPU. Table 1 displays the
computational time cost by using different methods, i.e., the
original method used in [5], the first and second improvements
in for saving computational time. From the comparison we can
find obvious advantages of the proposed techniques in saving
computational time. Figure 12 displays the contours of the signed
distance function around the interface in a symmetric cross section
(computed in 643 grids using the 1st & 2nd improvements). It
demonstrates the feasibility of the method presented in this
Section for the calculation of the level-set function in three
dimensions.

4. Method for solving pressure and flow fields

The Navier–Stocks equation and continuity equation are solved
in fluid region, either liquid or gas phase. For incompressible
two-phase flow, the governing equations can be written as follows.

q
@u
@t
þ qðu � rÞu ¼ �rpþr � gðruþruTÞ þ qgþ rjrH; ð13Þ

r � u ¼ 0: ð14Þ

where rjrH is the term representing the effect of surface tension.
M

P

Fig. 10. A method solving the distance from point M to an interface in a tetrahedron
cell.
The momentum equation is discretized by finite volume
method (FVM) [9,10] in staggered grid. We applied projection
method [11] for solving the pressure and velocity fields. A
second-order Runge–Kutta method is used for time advancement.
QUICK scheme [12] is used for the discretization of the convection
term and central difference scheme for the diffusion term. Surface
tension is computed as a source term of momentum equation by
the balanced CSF (bCSF) [13], a revision of CSF model. Bi-CGSTAB
[14,15], a Krylov subspace method, is adopted for solving the
algebraic equations.

In the momentum equation, fluid properties and interface cur-
vature are computed by the level-set function. The method has
been illustrated in [4]. For readers’ convenience, here they are
briefly listed as follows.

Hð/Þ ¼
0 ð/ < �eÞ
1
2 1þ /

e þ 1
p sin p/

e

� �� �
ðj/j 6 eÞ

1 ð/ > eÞ

8><>: ; ð15Þ

q ¼ Hql þ ð1� HÞqg ; ð16-aÞ

g ¼ Hgl þ ð1� HÞgg ; ð16-bÞ

j ¼ r � r/
jr/j : ð17Þ

In summary, the procedure of 3D VOSET is presented as follows:
Computation starts from given initial value of the VOF function

C0, velocity u0, and pressure p0.
At the nth time step:

1. Compute the level-set function /n from the VOF function Cn

using the method presented in Section 3.
2. Compute the fluid properties, interface curvature and surface

tension term by /n using Eqs. (15)–(17).
3. Solve the pressure pn+1 and velocity field un+1 using the projec-

tion method. In this procedure, a velocity field at middle time
un+1/2 is computed of the second-order time advancement.



Fig. 12. The level-set function for a round ball.
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4. Advect the VOF function by un+1/2 using the method presented
in Section 2, i.e., compute Cn+1 from Cn and un+1/2.

5. Numerical tests

5.1. 3D deformation test

In order to examine the three-dimensional VOSET presented in
this paper, a test problem proposed by LeVeque [16] was studied.
In this problem, an initial sphere is deformed and then recovered
in a unit cube. The velocity field is given by:
1E-3 0.01 0.1
1E-4

1E-3

0.01

0.1

N
um

ric
al

 e
rr

or

Grid size

second order

Fig. 13. Numerical error versus grid size for 3D deformation test.

Fig. 14. Interface shape for 3D deformati
uðx; y; z; tÞ ¼ 2 sin2ðpxÞ sinð2pyÞ sinð2pzÞ cosðpt=3Þ
vðx; y; z; tÞ ¼ � sinð2pxÞ sin2ðpyÞ sinð2pzÞ cosðpt=3Þ
wðx; y; z; tÞ ¼ � sinð2pxÞ sinð2pyÞ sin2ðpzÞ cosðpt=3Þ

ð18Þ

The initial sphere’s radius equals to 0.15 and it is centered at
(0.35,0.35,0.35). After a whole period, the interface should return
to the initial status. Therefore, the numerical error of this problem
can be defined as:

Error ¼
X
jC � C0jDV : ð19Þ

By the proposed three-dimensional VOSET, the interface was
captured in five grid sizes: 323, 643, 803, 1003 and 1503. Figure 13
displays the numerical errors versus grid sizes, showing a
second-order accuracy.

Figure 14 shows the interfaces computed in grid of 1503. At
t = 1.5 (Fig. 14(b)), the deformation process is completed and the
shape is stretched to the largest extent. The grid is still not fine
enough to eliminate the holes on the thin film. Similar result was
obtained by Wang et al. [17]. In this regard, Menard et al. [18] gave
a better result. However, their method is based on the more
complicated CLSVOF where level-set function and VOF functions
both need to be advected. At the end of the recovering process
when t = 3 (Fig. 14(c)), the interface generally returns spherical
with a small deformation compared with the initial shape.

5.2. Spherical drop at equilibrium

The computation of this problem was executed in a domain of
0.5 � 0.5 � 0.5. A spherical drop with radius of R = 0.125 is located
at the center of the domain. The two phases have the same density
and viscosity (q = 4 and g = 1). The surface tension is given as
r = 0.357 and there is no gravity. This problem was studied to test
our surface tension model as well as the accuracy in calculation of
interface curvature. As the exact solution, the velocity should be
equal to zero in the whole domain. However, in numerical simula-
tion, false flow will occur because of inevitable numerical error in
computing surface tension. Simulations were carried out from t = 0
to t = 0.01 in three grid sizes, i.e., 16 � 16 � 16, 32 � 32 � 32 and
50 � 50 � 50. The extent of the false flow can be reflected by the
maximum velocity. Figure 15 shows the maximum velocities in
the results by the three grids. It can be seen that, the maximum
velocities are restricted at order of 10�3. Furthermore, it can be
decreased by using a finer mesh.

The exact pressure difference across the interface can be calcu-
lated by Young–Laplace equation:

Dp ¼ 2r=R: ð20Þ

Fig. 16 shows the pressure distribution on the center line in x
direction obtained in 503 grids, and it is compared with the exact
solution. Evidently, the pressure solved by the proposed 3D VOSET
on test. (a) t = 0; (b) t = 1.5; (c) t = 3.
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Fig. 16. Pressure distribution of static spherical drop problem.

Fig. 17. Schematic of vertical cylindrical dam break problem.
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coordinates well with the exact solution except for the slight
smoothness around the interfaces, which is a result of the
continuous-force surface tension model adopted here.
5.3. Vertical cylindrical liquid dam break

In order to testify the ability for simulating actual problems of
the proposed three-dimension VOSET, we computed the vertical
cylindrical dam-break problem, which has been experimentally
studied by Martin and Moyce [19]. The problem and the computa-
tional domain we used are sketched in Fig. 17. The radius and
height of the initial liquid column both equal to L (L = 2.25 inches).
The densities of liquid and gas are ql = 1000 kg/m3 and qg = 1.25 -
kg/m3, respectively. The viscosities of the two phases are
gl = 0.001 Pa s and gg = 1.8 � 10�5 Pa s, respectively. The surface
tension coefficient is 0.072 N/m and the acceleration of gravity is
9.8 m/s2.

Although cylindrical coordinate is a good choice for simulating
this problem, it also can be computed in three-dimensional Carte-
sian coordinate discussed here (see Fig. 17). The computational
domain is 3.6L � 3.6L � 1.2L, and the mesh of 90 � 90 � 30 with
uniform size was used. Wall boundary condition was applied on
top and bottom boundaries and the other four vertical faces were
treated as symmetric boundary.

The interface evaluation is shown in Fig. 18. In the first stage,
the base of liquid column expands under the effect of gravity,
and the front of the column base keeps a circular shape before it
reaches the far walls (Fig. 18(a)–(d)). Fig. 19 illustrates the radius
of the liquid column base versus dimensionless time. Martin and
Moyce’s result (Table 5 in [19]) is displayed as well in this figure.
It can be seen that our numerical results agrees very well with
the experimental data, which proves the accuracy of 3D VOSET
presented in this paper. After the liquid front collides with the wall,
it begins to flow back and dashes against the following liquid, and
then several waves are formed (Fig. 18(e), (f)).

5.4. Single rising bubble

A single rising bubble was simulated by the proposed 3D
VOSET. A sphere gas bubble is initially placed in a static liquid
and the bubble will rise due to the effect of buoyancy. The rising
bubble may deform into different shapes under different condi-
tions. It was concluded by Grace [20] that the terminal bubble
shape can be determined by two dimensionless numbers, i.e., Mor-
ton number (M) and Eotvos number (Eo). Also, the Reynolds num-
ber (Re) reflecting the terminal rising velocity can be determined
by M and Eo numbers. These dimensionless numbers are defined
as follows:

M ¼ gDqg4
l

r3q2
l

; ð21-aÞ

Eo ¼ gDqd2
e=r; ð21-bÞ

Re ¼ qlutde=ll: ð21-cÞ

Here, de denotes the diameter of the initial bubble and Dq = ql � qg

is the density difference. ut refers to the bubble’s terminal rising
speed.

In this problem, we simulated 4 cases with M and Eo numbers
that have been studied by Bhaga and Weber [21] experimentally.
Also, numerical simulations were conducted by Hua et al. [22]
using front tracking method and by Bower and Lee [23] using
lattice Boltzmann method. The dimensionless numbers and the
expected terminal bubble shapes of these cases are displayed in
Table 2.

Fig. 20 sketches the computational domain adopted for this
problem. Symmetric boundary conditions were used for saving
computational resources. The other two side walls were also set
as symmetric boundaries. Periodic condition was given at the top



(a) t = 0 (d) t = 0.15 s

(b) t = 0.05 s (e) t = 0.2 s

(c) t = 0.1 s (f) t = 0.4 s

Fig. 18. Interface evolution of cylindrical dam break problem.
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Fig. 19. History of liquid base radius.
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and bottom boundaries. Densities of the liquid and gas phases are
given as ql = 1000 and qg = 1, respectively. Viscosity ratio is gl/-
gg = 100. It has been proved that the density ratio and viscosity
ratio used in this study are large enough [8,22,23]. The diameter
of the initial bubble is de = 0.01 and the bubble is initially centered
at (0,0,0.01). The domain size should be large enough to decrease
the wall viscous effect under an acceptable extent. In this regard, it
has been discussed by former researchers [8,22,23] that a domain
size of 5de is enough for most conditions. Thus, we chose this size
in Case 2, Case 3 and Case 4. Since we adopted symmetric condi-
tions on the bubble’s cross sections, only 1/4 of the domain size
is needed (see Fig. 20). For Case 1, a larger domain size was used
because of the larger value of viscosity. The same as the study by
Annaland [8], a mesh size of 0.001 was used for Case 1. For the
other cases, smaller grid sizes were used because larger deforma-
tions of the bubble were expected. The computational domain
sizes and the grid sizes are summarized in Table 2.

Figure 21 shows the terminal bubble shapes obtained by
the proposed 3D VOSET method and by the experiments [21].



Table 2
Parameters used in single bubble rising simulation.

Cases Case 1 Case 2 Case 3 Case 4

Morton number 711 8.2 � 10�4 266 43.1
Eotvos number 17.7 32.2 243 339
Expected shape Spherical Elliptic Dimpled Skirted
Computational domain 4de � 4de � 6de 2.5de � 2.5de � 10de 2.5de � 2.5de � 10de 2.5de � 2.5de � 10de

Grids 40 � 40 � 60 32 � 32 � 128 32 � 32 � 128 50 � 50 � 200

Fig. 20. Schematic of single bubble rising problem.

Cases Simulation 

Case 1

Case 2

Case 3

Case 4

Fig. 21. Terminal b
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The figures of the experimental bubble shapes were copied form
Hua et al. [22]. Evidently, the terminal bubble shapes obtained
by our simulation are in accordance with the experimental results.
The velocity fields around the bubbles in the central vertical planes
are displayed in Fig. 22.

Table 3 shows the Reynolds numbers of the 4 cases obtained by
our simulation. Also, results reported in literatures are listed for
comparison. Generally, the Reynolds numbers obtained by our sim-
ulations are in good agreement with those by experimental study
[21]. Compared with the results obtained by Bower and Lee [23]
using Lattice Boltzmann Method, our results are closer to the exper-
imental data. For Cases 2–4, however, Hua et al. [22] got the bubbles’
rising velocities that are closer to those by experiments. The reason
lies in that they used a larger domain size (8de) in x and y directions.
In Case 1 where the viscous effect is more significant, we also used
the larger domain size (8de), and a Reynolds number was obtained
closer to the experimental result [21] compared with that by Hua
et al. [22]. In summary, the results of the single bubble rising can
prove the ability of the proposed 3D VOSET for simulating
three-dimensional gas-liquid two-phase flows.
Experiment

ubble shapes.



(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Fig. 22. Velocity fields in terminal state. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

Table 3
Reynolds numbers of single rising bubble obtained by simulations and experiments.

Cases Case 1 Case 2 Case 3 Case 4

Reexp [21] 23.2 55.3 7.8 18.3
Resim in [22] 18.2 54.8 7.6 17.8
Resim in [23] – 51.7 6.2 15.2
Resim present 20.3 52.5 7.3 16.8
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6. Conclusion

In the present paper, we describe the extension of the coupled
interface capturing method, VOSET, from 2D to 3D. A
root-finding method based on the cube-cutting function is used
in the implementation of 3D PLIC. For calculating the level-set
function, we consider two types of interface, where the first type
is a special case and the second one corresponds to a polygon inter-
face inside a cubic cell. For the second type, an algorithm is pre-
sented without the need for classification on different interface
shapes. By the use of these methods, geometrical difficulties in
applying VOSET in three dimensions are overcome without any
lost of accuracy. Furthermore, an iterative geometric method is
presented to calculate the level-set function. In the numerical tests,
the result of 3D deformation test shows a second order accuracy in
interface tracking, and the accuracy in computing interface curva-
ture and surface tension is illustrated by result of static spherical
drop. In the numerical study of dam break problem and single ris-
ing bubble problem, the results obtained by the presented 3D
VOSET agree well with those by experiments both qualitatively
and quantitatively.
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