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Abstract This paper presents an investigation of the non-

periodic boundary condition (NPBC) which is often used in

multiscale atomistic–continuum simulations. The relation-

ship between the boundary force exerted by the imaginary

atoms outside the atomistic domain and the fluid state

parameters including density and temperature at the

boundary is studied. A fitting formula of the boundary

force as a function of the fluid state has been proposed

based on the relationship. The accuracy of the fitting for-

mula is verified by the equilibrium molecular dynamics

(MD) simulations. Poiseuille flow with viscous dissipation

and unsteady heat transfer between two walls is then

simulated using the proposed fitting formula. The elimi-

nation of density oscillation near the boundary of atomistic

region and good agreement of velocity and temperature

evolutions with time from pure MD and the multiscale

simulations adopting NPBC further confirm the correctness

of our fitting formula.

Keywords Multiscale simulation � Finite volume

method � Molecular dynamics simulation �
Non-periodic boundary condition � Boundary force

1 Introduction

With the development of nanotechnology, more and more

attention has been paid to the micro- and nanoscale prob-

lems. The conventional continuum assumption breaks

down when the system reaches the nanometer scales,

sometimes even micrometer scales, and the Navier–Stokes

(NS) equations can no longer be used. Molecular dynamics

(MD) simulation, as a fully atomistic description, can act as

a substitute to describe the fluid flow and heat transfer at

such scales. However, MD simulations are highly time-

consuming and need lots of computer memory. A multi-

scale atomistic–continuum method (O’Connell and

Thompson 1995; Flekkoy et al. 2000; Delgado-Buscalioni

and Coveney 2003; Nie et al. 2004; Tao and He 2009; He

and Tao 2012; Zhou et al. 2012) has emerged and becomes

popular, which possesses the advantages of both the

atomistic and continuum descriptions. In such multiscale

methods, MD simulation is used to obtain the microscopic

details near the key positions such as interfaces between

fluid and solid, where the continuum assumptions break

down, and the macro-field of the remaining bulk region can

be solved by the continuum mechanics.

The periodic boundary condition (PBC) is often used in

MD simulations for homogeneous systems. However, in

the multiscale atomistic–continuum methods, PBC is no

longer applicable because of inhomogeneity of the atom-

istic region. In order to remove the periodical condition at

the boundary of MD region while still keeping correct

mean pressure on the MD system, a boundary force should

be applied on atoms near the boundary. Among those

existing boundary force models, O’Connell and Thompson

(1995) used a constant boundary force Fb = -aPq-2/3,

where a is an adjustable parameter, P the thermodynamic

pressure of the system, and q the local density. Flekkoy
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et al. (2000) proposed another boundary force Fb ¼
�ðgðriÞ=

P
j gðrjÞÞPA, where g(r) is a weight function

which diverges to infinity when the distance r between the

atom and the boundary approaches zero. Delgado-Buscal-

ioni and Coveney (2003) used the similar boundary force

model, except that the weight function g(r) was set to be 1

to ensure the energy conservation. Nie et al. (2004)

employed another diverging boundary force Fb =

-bPr(rc - r)/(1 -(rc - r)/rc), where b acts as an adjust-

able parameter, and rc is the cutoff radius. Taking account

of the local structure of the fluid, Werder et al. (2005) derived

a model by integrating the force exerted by the particles

that are located outside of the atomistic region. In their

model, the pair potential and the radial distribution func-

tion (RDF) were used to implement the integration. It was

found that their model could significantly reduce the den-

sity perturbations near the boundary compared with other

forms of boundary force (O’Connell and Thompson 1995;

Flekkoy et al. 2000; Delgado-Buscalioni and Coveney 2003;

Nie et al. 2004). However, Kotsalis et al. (2007) pointed

out that the model of Werder et al. (2005) was not stable

when the fluid state is changed to the liquid regime from

supercritical state. They developed an advanced model, in

which a dynamic controller based on the information of

local density was used to update the boundary force. It was

found that this model can keep the density fluctuation at a

low level. Recently, Huang et al. (2010) employed a soft

constraint mechanism to correct the instantaneous devia-

tion of the local fluid state. The mechanism was found to be

stable even under internal disturbance.

In the model developed by Werder et al. (2005), the

RDF is crucial to the accuracy of the boundary force. The

expressions of RDF introduced by Matteoli and Ali

Mansoori (1995) or Bamdad et al. (2006) can be used to

perform the integration to obtain the boundary force.

However, due to the complexity of the curve shape of the

RDF, there are often lots of adjustable parameters in the

existing expressions. It is quite difficult to perform the

integration with so many adjustable parameters which are

dependent on the fluid state. Meanwhile, the deviation of

the RDF in Matteoli and Ali Mansoori (1995) from the

one obtained from the MD simulation at the same state

point could cause the inaccuracy of boundary force

(Werder et al. 2005). In addition, the simulations in

Werder et al. (2005) and Kotsalis et al. (2007) are both

performed at fixed state points, i.e., the density and

temperature are known a priori and will not change dur-

ing the simulations. Thus, their models are not able to

deal with the cases in which the density or temperature is

not known a priori but needs to be obtained during the

simulation, such as the Poiseuille flow with heat transfer.

The major purpose of the present paper is to investigate

the relationship between the boundary force and the fluid

state used in the multiscale atomistic–continuum simula-

tion. The outline of the paper is as follows: In Sect. 2, in

order to study the relationship between the boundary force

and the fluid state, the equilibrium MD simulations are

performed in various state points with periodic boundary

condition in all three directions. A fitting formula of the

boundary force is proposed based on the relationship, and

the accuracy of the formula is verified through additional

MD simulations. In Sect. 3, the proposed expression of

boundary force is validated through the multiscale atom-

istic–continuum simulation of Poiseuille flow in which the

heat is generated by viscous dissipation of fluid and

transferred to the solid wall. In Sect. 4, the unsteady heat

transfer problem is simulated to further demonstrate the

feasibility of the boundary force model. Finally, some

concluding remarks are given in Sect. 5.

2 An expression of boundary force

In this section, the equilibrium MD simulations (Allen and

Tildesley 1987; Rapaport 2004) are performed for fluid

argon to investigate the relationship between the boundary

force and the fluid state including the reduced density and

temperature. The following shifted Lennard-Jones (L-J)

potential is used to describe the atomic interactions

/ðrÞ ¼ 4e
r
r

� �12

� r
r

� �6

� r
rc

� �12

þ r
rc

� �6
" #

ð1Þ

where e = 1.67 9 10-21 J and r = 0.341 nm are the

energy and length characteristic parameters for argon,

respectively. rc is a cutoff length beyond which the atomic

interactions are not considered. In our simulations, rc is

chosen to be 2.5r. The equation of motion used to calculate

the acceleration of each molecule is

mi

d2ri

dt2
¼ �

X

j 6¼i

o/ji

ori

: ð2Þ

The Newton’s equations of motion are then integrated

using the leap-frog algorithm with a time step dt of 0.005s
(s = m1/2re-1/2, m is the mass of argon atom). The MD

simulations are performed at a series of different fluid state

points in the range of 0:4mr�3� q� 0:9mr�3 and

1:3e=kB� T � 3:9e=kB, and the intervals for densities and

temperatures are 0:1mr�3 and 0:2e=kB, respectively.

Therefore, there are totally 6 9 14 = 84 state points to

be studied. Periodic boundary conditions are imposed in all

three directions. During the simulations, we collect the

forces applied on an atom i by all atoms j whose distance

from i satisfies rij C rw and rij B rc, as depicted in Fig. 1. It

588 Microfluid Nanofluid (2014) 16:587–595

123



is worth noting that in Fig. 1, Uf is a fictitious boundary

that mimics the atomistic boundary in the MD simulations

when considering non-periodic boundary condition

(NPBC), and rw is the distance between the atom i and

the boundary Uf. The position of the boundary Uf can be

arbitrary in the x direction, because the system is

homogenous. Since rw changes from 0 to rc, we divide rc

into 200 bins of equal width and obtain the average force in

every bin until all have 3 9 106 entries (Werder et al.

2005), i.e., the total number of atoms in any bin during the

period of sampling should be larger than 3 9 106.

The change of the boundary force Fb with the distance

rw is shown in Fig. 2. To show it more clearly, data at only

nine different fluid state points are given, i.e., for the

combination of three different densities and three different

temperatures. As can be seen in Fig. 2, at a given fluid

state, when rw becomes larger, Fb decreases from positive

to negative until rw reaches the turning point rt, which

means the atom i feels the repulsive force with small rw and

it feels the attractive force with large rw. After the turning

point rt, the absolute value of Fb decreases with increase of

rw and gradually approaches 0, which means the attractive

force felt by the atom i decreases and then vanishes when

the distance rw approaches rc. It can also be seen from

Fig. 2 that all the curves reach the lowest point at the same

turning point rt for any fluid state studied, at which the

attractive force reaches its maximum value. The turning

point rt is found to be rt = 1.04r. In order to make the

fitting of boundary force formula easier and more precise,

we divide the curves into two parts by the vertical line

rw = 1.04r. At the left side, the curves become steeper

when the density or the temperature is higher. Moreover, it

is observed that the intercept of the curve with the ordinate

increases in proportion with the temperature at a fixed

density. However, at the right side, the effective force

changes only with the density but not with the temperature.

The independency on temperature of the right side may be

a special characteristic for L-J potential.

Based on the data at 84 different state points, a formula

of boundary force can be fitted as

Fb ¼
p1 þ p2eðrwþ0:25Þ3:4 cosðp3rwÞ for rw� 1:04r

�1

q1þq2ð2:5�rwÞ2þ
q3

ð2:5�rwÞ2
for rw [ 1:04r;

(

ð3Þ

where p1, p2, p3, q1, q2, and q3 are six parameters, the first

three of which are functions of density and temperature and

the next three of which are functions of density only. The

expressions of the parameters are given as

p1 ¼ ð�18:953þ 53:369T � 1:253T2 þ 4:599T3

þ 59:871 lnðqÞ þ 19:737ðlnðqÞÞ2Þ=
ð1þ 2:592T � 0:557T2 þ 0:049T3

� 13:912 lnðqÞ þ 18:657ðlnðqÞÞ2Þ ð4Þ

p2 ¼ ð�0:094þ 2:808T � 0:019T2� 0:001T3

þ 2:823lnðqÞþ 2:071ðlnðpÞÞ2Þ=ð1þ 0:168T � 0:013T2

� 4:323lnðqÞþ 2:557ðlnðqÞÞ2� 2:155ðlnðqÞÞ3Þ ð5Þ

p3 ¼ 3:934þ 0:099T0:394 � 0:097q17:437

þ 0:075T0:394q17:437 ð6Þ

q1 ¼ �30:471þ 113:879q� 207:205q2 þ 184:242q3

� 62:879q4 ð7Þ

q2 ¼ 6:938� 25:788qþ 46:773q2 � 41:768q3 þ 14:394q4

ð8Þ

q3 ¼ 39:634� 147:821qþ 269:519q2 � 239:066q3

þ 81:439q4: ð9Þ

It is worth noting that the involvement of temperature as

a variable of the fitting formula is of great significance. It is

Fig. 1 Schematic for effective boundary force

Fig. 2 The boundary force at different fluid states
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this involvement that makes our formula be able to be used

to the cases with temperature variation.

In order to verify the accuracy of the fitting formula, two

additional equilibrium MD simulations at different fluid

states (q = 0.43mr-3, T = 1.13e/kB and q = 0.76 mr-3,

T = 4.0e/kB) are performed. Then, the boundary forces

from Eq. (3) are compared with those from MD simula-

tions. It can be seen from Figs. 3, 4 that the boundary

forces Fb calculated from Eq. (3) agree quite well with MD

simulations, except for the minor mismatch at the far-left

part of the curve. During the simulation, we found that as

the density of fluid decreases, the fluctuation of the equi-

librium MD simulation results becomes more severe,

which can be seen from the left part of curve in Fig. 3.

Therefore, the minor mismatch at the far-left part of the

curve in Fig. 3 is reasonable (Fig. 4).

3 Poiseuille flow

In this section, the fitting formula given in Eq. (3) is used as

the boundary force of the multiscale atomistic–continuum

simulation. As shown in Fig. 5a, in the multiscale simu-

lation, the domain decomposition method is used and the

computational domain is divided into three regions: a

continuum region named C region where the flow can still

be described by NS equations and the finite volume method

is used as a solver, an atomistic region named P region

where the MD method is employed and an overlap region

named O region where a coupling scheme is applied to

ensure the continuity of the state variables, including

velocity and temperature in the present paper.

MD simulation introduced above is carried out in P

region. The fluid density is set to be q ¼ 0:81mr�3, and the

cutoff length rc = 2.5r. In order to control the temperature

of the solid wall, the ‘‘phantom method’’ (Maruyama and

Kimura 1999; Yi et al. 2002) is used. As can be seen in

Fig. 5b, the solid wall at the bottom of P region consists of

three layers of fcc (1 1 1) surface of ‘‘real’’ atoms. The

distance of nearest neighbor atoms rw ¼ 0:814r and the

spring constant k ¼ 3249:1er�2. Right below the ‘‘real’’

atoms, there are another two layers of ‘‘phantom’’ atoms.

Taking account of the interaction between the ‘‘real’’ and

‘‘phantom’’ atoms, a special spring of 2 k in vertical

direction and 0.5 k in horizontal direction is set between

the third ‘‘real’’ layer and the upper ‘‘phantom’’ layer, and

another spring of 2 k in vertical direction and 3.5 k in

horizontal direction is set between two ‘‘phantom’’ layers.

The temperature of the upper ‘‘phantom’’ layer is con-

trolled to be Tw ¼ 1:1e=kB by Langevin method (Maruy-

ama and Kimura 1999; Tully 1980). The interaction

between fluid and solid is also calculated by Eq. (1), except

that the characteristic parameters are changed to

rls = 0.91r and els = e which yields a slip boundary

condition at the solid wall (Sun et al. 2010; Li and Xu

2006; Xu and Li 2007).

For C region, the two-dimensional incompressible NS

equations are solved (Tao 2001)

r � u ¼ 0 ð10Þ
ou

ot
þ u � ru ¼ l

q
r2u� 1

q
rp ð11Þ

oT

ot
þ u � rT ¼ k

qc
r2T

þ 2l
qc

ou

ox

� �2

þ ow

oz

� �2
"

þ 1

2

ou

oz
þ ow

ox

� �2
#

ð12Þ

where u and w are the velocity components in the x and

z directions; l, c, and k are the dynamic viscosity, specific

Fig. 3 The boundary force from fitting formulas and MD simulation

at q = 0.43mr-3 and T = 1.13e/kB

Fig. 4 The boundary force from fitting formulas and MD simulation

at q = 0.76mr-3 and T = 4.0e/kB
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heat, and thermal conductivity, respectively. These ther-

mophysical properties are obtained from the property

database of fluid (NIST 2005) such as l = 2.18esr-3,

c = 2.40kBm-1, and k = 6.92kBr-1s-1, which corre-

sponds to the mean fluid state of q ¼ 0:81mr�3and T ¼
1:25e=kB of argon. The semi-implicit method for pressure-

linked equations consistent algorithm is used to solve the

NS equations (Tao 2001). In order to validate the fitting

formula of the boundary force proposed in the last section,

we simulate the Poiseuille flow with viscous dissipation by

multiscale simulation. As shown in Fig. 6, only a half-

channel lz (lz = H/2, H = 41.74r is the height of the

channel) needs to be simulated because of symmetry. For

the simulation domain, the size of P region is set as

lP
x ¼ 8:70r, lP

y ¼ 4:64r and lPz ¼ 13:92r, and the size of C

region is lC
x ¼ lCz ¼ 13:92r. C region is divided by uniform

grids with the grid size DxC = DzC = 2.32r. The boundary

conditions are as follows: the top boundary of C region is

set to be symmetric, and the maximum velocity at this

boundary is fixed as Um = 1.196rs-1; the inlet and outlet

boundaries along the flow direction are periodic boundary

conditions; the bottom boundary of C region is updated

with the information from P region and the state variables

such as u, w, and T are assumed to be constant along the

flow direction.

The overlap region is divided into three layers: C–P

layer, relaxation layer, and P–C layer (see Fig. 5). The data

transfer from P region to C region in P–C layer is relatively

simple since it is easy to extract the macroscopic quantities

from a large amount of data at nanoscale level by aver-

aging. However, it is difficult to implement the reverse

procedure. In C–P layer, the acceleration of the ith atom

should be adjusted as follows (Nie et al. 2004):

€riðtÞ ¼
1

dtP
uðt þ dtPÞ � 1

NC�P

XNC�P

j¼1

_rjðtÞ
" #

þ fiðtÞ
m
� 1

NC�P

XNC�P

j¼1

fjðtÞ
m

" #

ð13Þ

where u(t ? dtP) is the velocity vector of the center of C–P

layer at the moment t ? dtP and it is obtained from the

continuum solutions of C region, NC-P is the number of

Fig. 5 Schematic of the

multiscale simulation.

a Domain decomposition;

b Atom arrangement of solid

wall
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atoms in C–P layer, fi and fj are the forces on ith and jth

atoms in C–P layer caused by interactions with other

atoms. In addition, an external driving force needs to be

applied to all the atoms in P region to take the pressure

gradient -dp/dx into account:

fp ¼ �
m

q
dp

dx

� �

: ð14Þ

In a half-channel Poiseuille flow problem, we need two

conditions to make the solution determined, usually they

are boundary velocity at the wall (Us) and symmetry at the

central line, if the pressure gradient dp/dx is already

known. However, for the present problem, we cannot

predetermine either Us or dp/dx due to the slippage of the

wall, so we need an extra condition, i.e., maximum velocity

at central line (Um). On the other hand, dp/dx and Um are

actually equivalent conditions (either can be calculated

directly from the other in non-slip flows), so we fix the

maximum velocity at central line Um in the present study.

Note that if we calculate dp/dx based on the convergent

solution and rerun it with the conditions of symmetry at the

central line and fixed dp/dx, we can achieve identical

solutions.

The coupling of temperature is achieved by using

Langevin method (Tully 1980) only in y direction in C–P

layer. More details about the coupling scheme of velocity

and temperature can be found in (Sun et al. 2010).

In order to apply the proper mean pressure on the

boundary of P region, the boundary force model proposed

in Sect. 2 is employed. Here, the fitting formula in Eq. (3)

is only used to atoms whose distance from the top

boundary of P region is less than the cutoff radius rc. The

reason why Poiseuille flow with viscous dissipation is

chosen to demonstrate our fitting formula is that during

the simulation, the temperature at the boundary of P

region is changing because of viscous dissipation and

cannot be known a priori. In our simulation, the tem-

perature T in Eq. (3) is updated by the continuum solu-

tions at the boundary of P region. To avoid the atoms

drifting away from P region, the specular wall model

developed in (Werder et al. 2005) is adopted. Meanwhile,

the boundary force model from (Nie et al. 2004) is also

applied as a reference, which says:

Fig. 6 Schematic of the

multiscale simulation for

Poiseuille flow with viscous

dissipation

Fig. 7 Comparison of density profiles from our fitting formula and

Nie et al.’s model

Fig. 8 Comparison of velocity profiles from multiscale simulation

and pure MD result

592 Microfluid Nanofluid (2014) 16:587–595

123



Fb ¼ �bPrðrc � rwÞ=ð1� ðrc � rwÞ=rcÞ: ð15Þ

Figure 7 shows the density profiles along the z direction

in P region. It can be seen that the oscillatory

characteristics of density profiles near the solid wall by

the model of Nie et al. (2004) and our fitting formula

Eq. (3) are almost the same. This phenomenon reflects the

fact that the liquid atoms distribute orderly near the solid

wall due to strong solid–liquid interactions. However, there

is strong oscillation adjacent to the top boundary of P

region by the model of Nie et al. (2004), and it extends a

relatively long distance into P region. The oscillation is

effectively eliminated when using our fitting formula. In

Yen et al.’s work (2007), a depress region located above

C–P region was employed to apply the external force to

prevent atoms from drifting away. They used Nie et al.’s

force model (2004) in depress region and found the similar

density oscillation phenomenon. The unrealistic density

oscillation may result in unnecessary disturbances to the

atomistic region (Kotsalis et al. 2007). Consequently, they

ignored the MD results in depress region and replaced it by

continuum solution. The depress region is not needed when

using our fitting formula of the boundary force; hence, the

size of P region is reduced and the efficiency of multiscale

simulation is improved. Figures 8 and 9 show the profiles

of velocity and temperature, respectively. It can be seen

that the results of multiscale simulation agree quite well

with the pure MD predictions, with the maximum relative

deviations of 2.7 and 2.2 % for velocity and temperature,

respectively. This confirms the correctness of our fitting

formula of boundary force. It is worth noting that as far as

the computational times are concerned, the computational

time of multiscale simulation for this problem is only one-

third of the pure MD, once again showing the advantage of

the multiscale simulation approach.

4 Unsteady heat transfer

To further test our fitting formula, we studied the unsteady

heat transfer problem between two stationary solid walls.

The temperature of the entire system including two walls

and the liquid argon was kept at 1.1e/kB for 100s at the

beginning of simulation. After the period of equilibrium,

the temperature of the top wall was suddenly changed to

1.3e/kB at t = 0, while the temperature of the bottom wall

was still kept at 1.1e/kB. The thermostat for the liquid argon

was then switched off. For the heat transfer problem, the

solid walls are constructed with Fe atoms. The more real-

istic embedded atom model (EAM) is used and the relevant

parameters for the EAM model are proposed by Mendelev

et al. (2003). The Fe–Ar interaction is also modeled with

L–J potential, and the characteristic parameters are

rls = 1.09r and els = 5e (Balasubramanian et al. 2008).

For each solid wall, there are three layers of Fe atoms of

which the outermost one is fixed, and the temperature of

wall is adjusted by rescaling the velocities of atoms in the

two remaining layers (Balasubramanian et al. 2008). The

channel height is 235r in z direction. Different from the

Poiseuille flow problem, the whole domain should be

simulated for the hybrid simulation here, i.e., there are two

MD subdomains which are near the bottom (0� z� 76:4r)

and top wall (158:6r� z� 235r), respectively, and a

continuum region in between (58:7r� z� 176:2r). For the

temperature coupling in C–P layer, all thermostat methods

introduce an additional time lag (Liu et al. 2007). Although

Langevin thermostat is appropriate for steady-state prob-

lems, it introduces more severe time lag than velocity

rescaling method used in Allen and Tildesley (1987) and

Liu et al. Liu et al. (2007) for unsteady heat transfer

problems. Therefore, the velocity rescaling method (Allen

and Tildesley 1987; Liu et al. 2007) is adopted here, which

is given as follows:

u ¼ �uþ ðTtarget=TMDÞ1=2ðu� �uÞ ð16Þ

where �u is the mean velocity of C–P layer, Ttarget is the

target temperature from the continuum region, and TMD is

the microscopic temperature of C–P layer.

All of our MD simulations in this section are carried out

by the large-scale atomic/molecular massively parallel

simulator (Plimpton 1995) while self-programming codes

are used for simulations in above sections.

Figure 10 shows the comparison of the evolutions of the

temperature profiles obtained from multiscale and pure MD

simulations. The multiscale results agree well with pure

MD results, except that there exists an obvious deviation for

the time interval from t = 0 to 1,500s, which cannot be

reduced by averaging over more independent simulations.

The similar phenomenon was also found in Liu et al. (2007).

Fig. 9 Comparison of temperature profiles from multiscale simula-

tion and pure MD result
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5 Conclusions

In the present work, the implementation of NPBC which is

often used in the multiscale atomistic–continuum simula-

tions has been investigated. Based on the relationship

between the boundary force and the fluid state at the

boundary, a fitting formula of the boundary force is pro-

posed. The accuracy of the fitting formula is verified through

the equilibrium MD simulations. The proposed fitting for-

mula for the boundary force has also been employed in a

multiscale Poiseuille simulation with viscous dissipation.

The elimination of density oscillation near the boundary of

atomistic region demonstrates the correctness of the fitting

formula, which has been further proven by the good agree-

ment of velocity and temperature profiles between the

multiscale simulation and the pure MD results. Finally, the

proposed fitting formula has been adopted to simulate an

unsteady heat transfer problem between two stationary solid

walls. The good agreement in evolutions of temperature with

time from pure MD and multiscale simulation further con-

firms the feasibility of the proposed boundary force formula.

Furthermore, the application of our fitting formula is

quite convenient since the fluid state including density and

temperature near the boundary does not need to be known a

priori. The boundary force can easily be given by our fitting

formula based on the boundary information during the

computational procedure. Also, we believe that our fitting

formula can be used for other complicated MD boundaries,

such as the arbitrary boundaries studied in Borg et al. (2010).

However, there are some limits of our boundary force

model: Firstly, it can only be used for L–J potential since

the fitting formula is constructed based on the L–J poten-

tial, a more universal model needs to be developed in the

future. Secondly, it cannot be used for gas. Thirdly, it

cannot be used for polyatomic molecules such as water.
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