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A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM)
and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled
multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of
multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and
a region filled with porous materials. The FVM and LBM are used for these two regions,
respectively, with information exchanged at the interface between the two sub-domains.
A general reconstruction operator (RO) is proposed to derive the distribution functions in
the LBM from the corresponding macro scalar, the governing equation of which obeys the
convection–diffusion equation. The CFVLBM and the RO are validated in several typical
physicochemical problems and then are applied to simulate complex multi-scale coupled
fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro
reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored
and discussed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Multi-scale phenomena widely exist in material science, electrical and mechanical engineering, chemistry processes and
energy and environmental science [1]. Such phenomena are usually caused by large size ratio between different components
in a device or induced by complex fluid flow in confined domains (such as interfacial interactions among phases, and hydro-
dynamics and transport processes in local complex porous media). Generally, the multi-scale phenomena possess a number
of prominent characteristics. The first and most important one is the large range of relevant length or time scales, which can
vary up to several orders of magnitude. Second, the dominant processes change with the length or time scale [1]. For ex-
ample, the surface and interfacial phenomena become increasingly important as the size of the system decreases [2]. Third,
multi-scale phenomena usually involve intrinsic multiphysics consisting of coupled multiple physicochemical processes [3].
For example, in a proton exchange membrane fuel cell (PEMFC), coupled fluid flow, heat transfer, mass transport, electron
and proton conduction, as well as electrochemical reactions simultaneously take place [4].

From the computational physics point of view, multi-scale phenomena in the thermal and fluid science and engineering
may be classified into two categories: multi-scale systems and multi-scale processes [5,6]. A multi-scale system refers to a
system that is characterized by large variation in length scales in which the processes at different length scales often have
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the same governing equations and are not closely related. The cooling problem of a data center is a typical multi-scale sys-
tem. The cooling process from the room to the chip involves an extended span of length for about 11 orders of magnitude.
In a multi-scale process, the overall behavior is governed by processes that occur at different length and/or time scales
which are closely coupled with each other [5,6]. Transport process in proton exchange membrane fuel cell and turbulent
flow and heat transfer are two typical examples of multi-scale process. In a PEMFC, processes of fluid flow, heat transfer,
mass transport and electronic charge conduction take place in components with different scales and are closely related to
each other, and the overall cell performance is a combined result of these coupled processes [7].

There have been an increasing number of studies focusing on the modeling and simulation of the multi-scale phenom-
ena. Due to more complication and coupling involved, the multi-scale process is more challenging to simulate than the
multi-scale system [5,6,8,9]. Currently, two types of numerical approaches exist in the literature for the simulation of multi-
scale processes in engineering thermal and fluid science [5]. One can be described as “Using uniform governing equation
and solving for the entire domain”, among which direct numerical simulation (DNS) is a typical example [10]. The second
approach is described as “Solving problems regionally and coupling at the interfaces” (hereafter called coupled modeling
approach) [11–28]. In such an approach, instead of pursuing a single uniform numerical method for the entire domain,
a coupled modeling strategy is proposed, in which different numerical methods are used to predict transport processes in
different local regimes and information is exchanged at the interface between neighboring regimes following certain prin-
ciples. Different numerical methods have their own advantages and disadvantages depending on specific applications. For
example, the conventional top-down numerical methods, such as finite volume method (FVM), finite element method (FEM)
and finite difference method (FDM), are suitable for large scale simulations with good computational efficiency, while the
bottom-up numerical methods, such as the lattice Boltzmann method (LBM) is able to capture local transport details involv-
ing complex structures or interfacial behaviors. The goal of the coupled modeling approach is to combine the advantages
of different numerical methods leading to an accurate yet efficient numerical approach, and there have been increasing
studies dedicated to this problem in recent years [11–28]. For the coupling of the LBM and FVM/FEM/FDM, the LBM is
applied in sub-domains where small scale effects, porous transport processes, or interface phenomena are more relevant
and FVM/FEM/FDM is used in the remaining domains.

The critical task and major difficulty in the coupled modeling strategy is how to exchange information at the interface
of neighboring sub-domains (or essentially between different numerical methods). Specially, for the coupling between LBM
and FVM/FEM/FDM, it is straightforward to transfer the distribution functions obtained in the LBM framework to macro
fluid variables in FVM/FEM/FDM (velocity, density, temperature, concentration and so on) through statistic methods. How-
ever, the inverse evaluation of the distribution functions from macro fluid variables is not unique and usually difficult [5,6],
since the LBM has more degrees of freedom than the FVM/FEM/FDM. A few recent efforts have been reported to asso-
ciate the distribution functions with fluid variables in coupling LB-FVM/FEM/FDM simulation strategy [12,15,20,26–28], in
which Chapman–Enskog multi-scale expansion skill was widely adopted. FDM and LBM were coupled to simulate 2D pure-
diffusion problems in Refs. [12,26], 1D diffusion–reaction problems in Ref. [15], and Poiseuille flow in Refs. [27,28]. FEM
and LBM were coupled to simulate wave propagation problems in Ref. [16]. While the simulations in Refs. [12,16,26–28]
presented simple examples as a proof-of-concept for the coupled simulation strategy, Christensen and Graham [20] coupled
FDM and LBM to simulate a realistic heat transport problem of local phonon transport in crystalline. However, to the best of
our knowledge, there has been no studies on coupling the FVM/FEM/FDM and LBM for realistic convective mass (heat) trans-
fer processes, or for transport processes in complex porous media. For pure diffusion–reaction (heat conduction) processes,
the only physical variable concerned is concentration (temperature), and the expressions of its corresponding distribution
functions only contain concentration (temperature) and its space derivatives. However, when convection is considered, the
corresponding expressions of the concentration (temperature) distribution functions will be more complex and also contain
density and velocity and their space derivatives. Furthermore, the coupling between FVM/FEM/FDM and LBM will be more
complex. Recently, we constructed a reconstruction operator (RO) for deriving the density distribution functions from the
macro density and velocity up to the second order [23]. Using this RO in the coupled simulation strategy, we successfully
predicted complex fluid flow in a domain with local porous media [21]. Very recently, we proposed a temperature RO [22]
and a concentration RO [29] for transferring temperature to temperature distribution functions and concentration to concen-
tration distribution functions, respectively. Using the density RO and concentration RO, transport phenomena in PEMFC are
investigated, where FVM is used to simulate transport phenomena in gas channel (GC) and LBM is used to predict transport
phenomena in porous gas diffusion layer (GDL) [25,29].

Nowadays, numerical simulations have been widely applied to a variety of fields, such as laminar and turbulence flow,
heat and mass transports, chemical reactions, multiphase flow, electrokinetic flows, and so on. In these fields, it is common
that the transport phenomena are described by the NS equations coupled with several scalar convection–diffusion (CD)
equations [30]. For example, the classical natural convection problem caused by temperature (or concentration) gradient
in a cavity is described by NS equations for fluid flow and CD equations for temperature (or concentration) [31]. Another
more complex example is the transport processes in PEMFC, which is described by NS equations combined with several
CD equations describing temperature, concentration, and electron potential and proton potential [32–34]. Generally, the CD
equation can be considered as a scalar transport equation and is similar for different scalars (temperature, concentration,
potential, etc.) [30], as will be discussed in detail in Section 2. Therefore, it is desirable to propose a general RO for scalar
(the transport of which obeys the CD equation) to develop the coupled simulation strategy.
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The objective of the present research is to construct such a general RO, and to demonstrate the effectiveness of the
present simulation strategy coupling FVM and LBM in predicting the complex coupled multi-scale multi-physicochemical
processes. This paper is arranged as follows. The CD equation and LBM are briefly introduced in Section 2. In Section 3
the general RO is derived and the coupled simulation strategy is briefly described. In Section 4 several typical problems
are simulated to validate the accuracy of the general RO and the efficiency of the coupled simulation strategy. In Sec-
tion 5 the coupled simulation strategy combined with the general RO is used to simulate the complex coupled multi-scale
multi-physicochemical thermal processes in a wall-coated type micro reactor in which the high-temperature catalytic re-
action of NH3 gas decomposition using Ni-Pt/Al2O3 as catalyst is considered, which can produce hydrogen (H2) as fuel for
PEMFCs [35]. Finally, conclusions are drawn in Section 5.

2. CD equation and LBM

2.1. CD equation

The general form of a CD equation can be expressed as follows [30]

∂ϕ

∂t
+ u · ∇ϕ = Γ �ϕ + R (1)

where ϕ is a scalar and can be temperature, concentration, potential and so on. u is velocity and Γ is the transport
coefficient which is thermal diffusivity for temperature, diffusivity for mass transport and so on. On the left, the first term
is the time-dependent term and can be eliminated for steady state problems; the second term is the convection term and
equals zero if fluid flow is not involved (for example, heat conduction). On the right, the first term is the diffusion term;
the second term R denotes the source (or sink). It can be used to account for not only the production or consumption of
matters (for example, chemical reaction term for mass transport), but also other processes that cannot be described by the
other three terms in Eq. (1) [30], such as ionic transport caused by electrochemical migration in electrokinetic flow [36].

For completeness, the NS equations are given below

∂ρ

∂t
+ ∇ · (ρu) = 0 (2)

∂ρu

∂t
+ u · ∇(ρu) = −∇p + ∇ · (∇μu) + S (3)

where p is pressure and S is the source term. The coupling between NS equation and CD equation can be one-way or two-
way. If the scalar in the fluid does not influence the density or momentum of the carrier fluid, the coupling is one-way and
the scalar is called passive scalar. If the scalar alters the flow field, the coupling is two-way. An example of two-way cou-
pling is natural convection in a cavity caused by temperature or concentration gradient. In the validation part of Section 4,
both one-way and two-way coupling problems are simulated using the coupled simulation strategy and the RO.

In the FVM part of the coupled simulation strategy, the two-dimensional (2D) IDEAL (Inner Doubly-Iterative Efficient
Algorithm for Linked-Equations) collocated grid algorithm developed by the author’s group is adopted [37,38] for solving
Eqs. (1)–(3), and the SGSD (Stability-Guaranteed Second-Order Difference) scheme [39] is used to discretize the convective
term. The models of the LBM are introduced as follows.

2.2. LBM for scalar transport CD equation

The LBM considers flow as a collective behavior of pseudo-particles residing on a mesoscopic level, and solves Boltzmann
equation using a small number of velocities adapted to a regular grid in space. Due to its underlying kinetic nature, the LBM
is particularly useful in fluid flow applications involving interfacial dynamics and complex boundaries, e.g., multiphase or
multi-component flows in porous media [40]. For scalar transport described by Eq. (1), the LB equation is written as [41]

gi(x + ci�t, t + �t) − gi(x, t) = − 1

τϕ

(
gi(x, t) − geq

i (x, t)
) + J i S�t (4)

where gi is the distribution function with velocity ci at the lattice site x and time t . �t is the time increment, and τϕ is
the collision time related to transport coefficient Γ in Eq. (1). ci is the discrete velocities.

Note that the convection–diffusion equation is linear in velocity u. This means that the equilibrium distributions for
scalar transport need only to be linear in u; and thus lattices with fewer vectors can be used for scalar transport. Noble [42]
performed a Chapman–Enskog expansion for the LB model with equilibrium distributions linear in u and with a reduced
number of lattice velocities, recovering the advection–diffusion equations. Thus, a reduced D2Q5 lattice model is used in
the present study as shown in Eq. (5) combined with an equilibrium distribution that is linear in u as shown in Eq. (6) [41]

ci =
{

0 i = 0
(cos[ (i−1)π

2 ], sin[ (i−1)π
2 ]) i = 1,2,3,4 (5)

geq
i = ϕ

[
J i + 1

ci · u
]

(6)

2
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J is given by [41]

J i =
{

J0 i = 0
(1 − J0)/4 i = 1,2,3,4

(7)

where the rest fraction J0 can be selected from 0 to 1. In literature, different forms of equilibrium distribution are adopted.
The equilibrium distribution function given by Eq. (6) is a general formula, which becomes the one used in [43] if J0 = 1/3,
becomes that in [44] if J0 = 1/5, and becomes that in [45] if J0 = 0. Such a general formula is also adopted in Ref. [46].
The accuracy and efficiency of the reduced D2Q5 model have been confirmed in other studies [4,25,29,43–49]. Eq. (6) covers
a wide range of diffusivity by adjusting J0 in Eq. (7), which is a prominent advantage of such an equilibrium distribution
[4,41].

As will be seen in the derivation process of the general RO, a different equilibrium distribution will ultimately lead to a
somewhat different RO. The equilibrium distribution used in the present study can cover a wide range of scalar transport
coefficients by adjusting J0, which is a prominent advantage of such an equilibrium distribution [4,41]. The scalar ϕ can be
obtained by

ϕ =
∑

gi (8)

The transport coefficient is related to the collision time by

Γ = 1

2
(1 − J0)(τϕ − 0.5) (9)

Eqs. (4) and (6) can be proved to recover Eq. (1) using Chapman–Enskog expansion.
For completeness, the fluid flow model for LBM adopted in the present study is briefly described as follows. The evolution

of LB equation for fluid flow is described by

f i(x + ci�t, t + �t) − f i(x, t) = − 1

τυ

(
f i(x, t) − f eq

i (x, t)
)

(10)

where f i(x, t) is the density distribution function, f eq is the ith equilibrium distribution function. τυ is the collision time
related to the kinematics viscosity. For the D2Q9 (two-dimensional nine-velocity) model used in this study, ci is given by

ci =
⎧⎨
⎩

0 i = 0
(cos[ (i−1)π

2 ], sin[ (i−1)π
2 ]) i = 1,2,3,4√

2(cos[ (i−5)π
2 + π

4 ], sin[ (i−5)π
2 + π

4 ]) i = 5,6,7,8
(11)

The equilibrium distribution function is given by

f eq
i = ωiρ

[
1 + 3

c2
(ci · u) + 9

2c4
(ci · u)2 − 3

2c2
u2

]
(12)

where the weights ωi = 4/9, i = 0; ωi = 1/9, i = 1,2,3,4; ωi = 1/36, i = 5,6,7,8. Fluid density ρ and velocity u can be
obtained from the first and second moments of the particle distribution functions

ρ =
∑

i

f i (13)

ρu =
∑

i

f ici (14)

The kinematics viscosity in lattice unit is related to the collision time by

υ = c2
s (τυ − 0.5)�t (15)

Eqs. (10) and (12) can recover the NS equations (2)–(3) using Chapman–Enskog expansion.

3. The coupling principle between FVM and LBM

3.1. Coupling simulation strategy

The coupled modeling strategy is developed to avoid the disadvantages of different numerical methods and to take
advantage of these numerical methods. In the implementation of coupled modeling strategy, the computational domain is
divided into sub-domains and in each sub-domain the appropriate numerical methods are applied. As mentioned above, for
the coupling between FVM and LBM, the critical task and major difficulty is to transfer macro scalar to distribution functions
in the LBM. In this study, we develop a general RO for scalar transport based on our recent work to transfer macro velocity,
temperature and gas species concentration to distribution functions in LBM [18,23,29], the expression of which is as follows
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gi = g(0)
i + εg(1)

i + ε2 g(2)
i

= g(eq)

i − τϕ�t
[
Uiαϕ−1 g(eq)

i ∂
(1)
xα

ϕ + 0.5Uiαϕciβ∂
(1)
xα

uβ − 0.5ρ−1ϕciβ∂
(1)
xβ p

]
− τϕ�t

[
Γ ϕ−1 g(eq)

i ∂xα ∂xαϕ + 0.5ϕciβρ−1ν[ρ∂xα ∂xα uβ + Sαβ∂xαρ]]
= g(eq)

i − τϕ�t
[
Uiαϕ−1 g(eq)

i ∂
(1)
xα

ϕ + 0.5Uiαϕciβ∂
(1)
xα

uβ − 0.5ρ−1ϕciβ∂
(1)
xβ p

]
− τϕ�t

[
Γ ϕ−1 g(eq)

i ∂xα ∂xαϕ + 0.5ϕciβρ−1ν[ρ∂xα ∂xα uβ + Sαβ∂xαρ]]
= g(eq)

i

[
1 − τϕ�tϕ−1(Uiα∂

(1)
xα

ϕ − Γ ∂xα ∂xαϕ
)] − 0.5τϕ�tϕciβ

(
Uiα∂

(1)
xα

uβ + ν∂xα ∂xα uβ + ρ−1νSαβ∂xαρ
)

+ 0.5τg�tρ−1ϕciβc−2
s ∂

(1)
xβ ρ (16)

For more details of the derivation and the explanations of the symbols, one can refer to Appendix A. For completeness,
the RO that transfers macro density and velocity to density distribution functions in LBM is given as follows

f i = f (0)
i + ε f (1)

i + ε2 f (2)
i

= f (eq)

i

[
1 − τ�tUiβc−2

s

(
Uiα∂xα uβ + ν∂2

xα
uβ + νρ−1 Sαβ∂xαρ

)]
(17)

For more details of the deviation of Eq. (17), one can refer to [23]. The following finite difference of second order
accuracy is used to calculate the first- and second-order space derivatives of the scalar in Eqs. (16)–(17)

∂xα(ϕ) = ϕ(xα+�xα) − ϕ(xα−�xα)

2�xα
(18)

∂xα∂xα(ϕ) = ϕ(xα+�xα) − 2ϕxα + ϕ(xα−�xα)

(�xα)2
(19)

The space derivatives of the velocities are calculated in the same way. For the density, additional treatment is required
to relate the pressure field in FVM with density field in LBM because both fields contain a constant term which is unknown
a priori [27]. The following expression is used to relate the two fields [27]

ρLBC2
s − ρLBC2

s = pFVM − pFVM (20)

where ρLB and pFVM are the averaged density of LB and the averaged pressure of FVM at the interface, respectively.
In the RO expressed by Eq. (16), up to second order of the distribution function g(2) is derived and calculated, and we

call our scheme as CE (Chapman–Enskog)-2 scheme, namely g = g(0) + g(1) + g(2) . The other two schemes usually used in
the literature are CE-0 scheme and CE-1 scheme, in which g = g(0) and g = g(0) + g(1) , respectively. Note that g(0) only
contains velocity and scalar, g(1) and g(2) are the first-order and second-order space derivative of density, velocity and con-
centration, respectively, as can be clearly seen from Eq. (16). Albuquerque et al. [12,26] simulated a pure-diffusion problem
by coupling FDM and LBM. It was found that CE-0 leads to large errors and CE-1 scheme is required as the concentration
gradient is not zero. Note that CE-2 scheme is not necessary in Refs. [12,26]. This is because for the pure-diffusion problem
studied in Refs. [12,26] the second-order space derivative is zero and thus g(2) is zero. Leemput et al. [15] simulated a
1D diffusion–reaction problem and carefully evaluated the accuracy of CE-0, CE-1 and CE-2 schemes. They concluded that
CE-2 scheme is necessary for the diffusion–reaction problem in which the second-order space derivative of concentration
is not zero due to reaction. In the present study, the reactive transport processes considered are complex and obviously
the second-order space derivative of density, velocity, temperature and concentration is not zero, and thus CE-2 scheme is
necessary.

Only Latt et al. [27] and Mehl et al. [28] used the coupled FVM/FEM/FDM and LBM simulation strategy to simulate fluid
flow problems. However, only relatively simple fluid flow including Poiseuille flow and 2D fluid flow around a cubic obstacle
were simulated [27,28]. Mehl et al. [28] did not directly present their schemes of information exchange at the interface. Latt
et al. [27] used only CE-1 scheme. Although good agreement was obtained in the simulations of Latt et al., it should be
noted that even for the simple Poiseuille flow, the second-order space derivative of the axis velocity is not zero, and f (2)

cannot be neglected and CE-2 scheme is necessary. In the present study, the fluid flow is also very complex and CE-2
scheme, namely Eq. (17) is adopted.

To the best of our knowledge, there is no work published about convective mass (heat) transfer using coupled
FVM/FEM/FDM and LBM simulation. In the work of Refs. [12,15,26–28], only pure diffusion–reaction (or heat conduction)
problems were simulated and the CE-X for concentration scheme only contains the concentration (temperature) and its
space derivative. For convective mass (heat) transfer problems, the CE-X, namely the RO expressed by Eq. (16), must contain
the density, velocity, and their space derivative. Thus, although our ROs are a little more complex than that in Refs. [12,
15,26–28], they are necessary to handle the complex transport processes considered and to guarantee the second-order
accuracy of the coupled simulation.
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Fig. 1. Computational domain decomposed into two sub-regions.

3.2. General simulation procedure

Fig. 1 schematically shows a computational domain decomposed into two regions. FVM and LBM are used to solve NS
equation and scalar transport equation in the left region and right region respectively. Line MN is the FVM region boundary
located in the LBM sub-region, and AB is the LBM region boundary located in the FVM sub-region. Hence, the sub-region
between lines AB and MN is the overlapping region in which both LBM and FVM methods are adopted. This arrangement
of the interface is convenient for the information exchange between the two neighboring regions [6]. The multi-scale sim-
ulation procedures coupling FVM and LBM are as follows. Step 1, with some assumed initial boundary conditions at the
line MN, the FVM simulation in the FVM zone is performed. Step 2, after a temporary solution is obtained, the information
at the line AB is transformed using density distribution function RO proposed in [23] and the general RO proposed in the
present study. Step 3, the LBM simulation is carried out in the LBM zone. Step 4, the temporary solution of LBM at the line
MN is transported into the macro variables and the FVM simulation is repeated. Step 5, such computation is repeated until
the results in the computational domain reach convergence standard. The simulation strategy coupling established herein is
called CFVLBM.

In the present study, an overlapping region is adopted between the FVM region and LBM region which is a common
scheme in the literature [12,26–28]. Such an overlapping region is necessary because in the FVM based SIMPLE type algo-
rithm, the boundary nodes are not solved and the values of the physical quantities at these nodes are specified at each time
step [30]. Thus, if there is no overlapping region between the LBM region and the FVM region, the values of the physical
quantities at the interface will be fixed as the specified values and will not be updated at each iteration. Now that an over-
lapping region is required, the question is how to determine its size. Through preliminary simulations of a pure-diffusion
problem (the problem in Section 4.1 without reaction) we find that changing the size of the overlapping region (1 lattice,
2 lattices, or 5 lattices) has very slight effects on the numerical errors. This confirms the conclusion in Ref. [15] that a
large overlapping region helps little in improving the accuracy of the coupled simulation strategy. However, the size of the
overlapping region should be carefully chosen if a coarse-fine grid system is to be used, as presented in Section 5.2. A very
small overlapping region will limit the maximum ratio of the grid size between the FVM and the LBM. For example, if an
overlapping region with a width of only 2 lattices is used, then the maximum grid size ratio is limited to 2:1, because a ratio
higher than 2:1 will result in less than a grid of the FVM in the overlapping region, leading to large numerical errors. Thus,
in the present study an overlapping region with a size of 10 lattices is generally adopted, as we expect that a maximum
grid size of 10:1 can greatly reduce the requirement for the computational resources.

4. Validation

In this section, some numerical experiments are conducted to evaluate the accuracy of the general RO. Three typical
problems are adopted. The first one is species convention and diffusion in a rectangular with bulk reaction (or convective
heat transfer in a rectangular with bulk sink) which can be described using a signal CD equation with a source term [4,29].
The second one is species diffusion in a rectangular domain with reaction on the top boundary of the rectangle (or heat
conduction in a rectangular domain with heat flux on the top boundary of the domain). Compared to the first problem, this
one has no convection, but more complex boundary conditions [45]. The last one is natural convection in a square cavity
caused by temperature gradient (or concentration gradient), where the temperature (or concentration) affects the fluid flow
and thus the NS equation and CD equation are two-way coupled. Without loss of generality, the following discussions focus
on mass transport; nevertheless it can be directly extended to heat transfer given the similarity between heat transfer and
mass transport. It is worth mentioning that the general RO as well as the coupled simulation strategy can also be used to
predict problems involving other scalars, such as potential.
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Fig. 2. Schematic of the computational domain of species convection and diffusion with bulk reaction.

4.1. Species convection and diffusion with bulk reaction

As shown in Fig. 2, species A enters channel from the left inlet with concentration C in = 1 and leaves the channel at the
right outlet with concentration Cout = 0. The solvent flows with a uniform constant horizontal velocity u and the transport
of species A does not affect the flow field. Bulk reactions of A take place in the whole channel. Obviously, the above process
described is essentially one-dimensional, and the macroscopic governing equation of concentration of A is a CD equation
expressed as

u
dC

dx
= D

d2C

dx2
− kC (21)

where k (s−1) is the reaction rate constant. The analytical solution of Eq. (21) is

C = A1 exp(B1x) + A2 exp(B2x) (22)

where

B1 =
(

u

D
−

√(
u

D

)2

+ 4k

D

)
/2, B2 =

(
u

D
+

√(
u

D

)2

+ 4k

D

)
/2

A1 = Cout − C in exp(B2L)

exp(B1) − exp(B2L)
A2 = C in − A1 (23)

This problem is simulated using the CFVLBM, with left half region using FVM and right half region using LBM. In the
simulation, D = 3 × 10−5 m2 s−1. The length and height of the channel is L = 6 × 10−4 m and H = 3 × 10−4 m, respectively.
J0 in Eq. (7) is 0.2. Uniform grid is adopted for the FVM and LBM zones with grid size as 1 × 10−6 m. Thus, the grid of the
FVM zone is 306 × 151 and that of the LBM zone is 301 × 151. Five additional grids along the x direction for FVM zone are
due to the overlapping zone. On the top and bottom surfaces of the channel zero-flux condition is adopted.

Fig. 3(a) compares the CFVLBM simulation results of C along x axis with the analytical solutions for different Peclet
number Pe, which is defined as uH/D . In Fig. 3(a), the reaction rate constant k is zero, and thus the problem is reduced
to a diffusion–convection problem. It can be seen in Fig. 3(a) that for all the cases the simulation results obtained from
CFVLBM agree well with the analytical solutions, with the maximum deviation less than 0.02%.

Fig. 3(b) compares the simulation results with the analytical solutions for different values of reaction rate constant k. In
Fig. 3(b) Pe is fixed as 3 and the reaction rate constant is changed from 0 to 5000 s−1. Again the simulation results show
good agreement with the analytical solutions, further validating the accuracy and feasibility of general RO and the CFVLBM
proposed in this study.

4.2. Species diffusion in a channel with surface reaction

In this section, single species diffusion in an open channel [45] is simulated to further validate the CFVLBM and the
general RO. Compared to that in Section 4.1, this problem involves reaction at the top surface of the channel. As shown
in Fig. 4, species A with constant concentration C0 diffuses into the channel with size a × b and reacts at the top surface
with first-order linear kinetics. On the bottom surface of the channel there is no reaction. For such a diffusion and reaction
problem, the governing equation and boundary conditions for concentration of A are as follows
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(a)

(b)

Fig. 3. Comparison between the CFVLBM simulation results and the analytical solutions for distribution of C along x axis: (a) different Pe, k = 0; (b) different
k, Pe = 3. Solid lines: analytical solution; dots: simulation results.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2C

∂x2
+ ∂2C

∂ y2
= 0

C = C0, x = 0; D
∂C

∂ y
= −kC, y = b

∂C

∂ y
= 0, y = 0; ∂C

∂x
= 0, x = a

(24)

An analytic solution exists for such a problem described by Eq. (24),

C(x, y) = C0

∞∑
n=0

sin(βnb)

N2
nβn

cosh[βn(x − a)]
cosh[βna] cos(βn y) (25)

where
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(a)

(b)

Fig. 4. Comparison of contours of the normalized concentration between CFVLBM simulation results and the analytical solution: (a) Da = 5, (b) Da = 50.
Solid lines: analytical solution; Dash-dotted lines: simulation results in the LBM region; Dashed lines: simulation results in the FVM region.

N2
n = b

2

(
1 + sin(2βnb)

2βnb

)
(26a)

(βnb) tan(βnb) = Da = kb

D
(26b)

In Eq. (26b), Da is a dimensionless number called Damkömohler number, representing the relative strength of reaction
to diffusion. Simulations with large Da of 50 and small Da of 5 are performed using the CFVLBM. In the simulations,
a = 100 μm, b = 100 μm, D = 3 × 10−5 m2 s−1. The bottom half of the computational domain is simulated using FVM, while
for the top half part LBM is used. The grid of the FVM zone is 100 × 60 and that of the LBM zone is 100 × 50, leading to the
overlapping region of 100 × 10. Fig. 4 displays the contours of the normalized concentration C/C0 obtained from CFVLBM



92 L. Chen et al. / Journal of Computational Physics 255 (2013) 83–105
Fig. 5. Schematics of using CFVLBM simulating the natural convection caused by concentration gradient.

as well as the analytical solutions, showing excellent agreement. Careful examinations find that the maximum deviation is
less than 0.02%.

4.3. Natural convection in a square cavity caused by concentration gradient

In Section 4.2, there is no fluid flow; and in Section 4.1, the fluid flow is very simple and not affected by the scalar
transport. In this section, natural convection in a cavity is considered where the scalar transport influences the fluid flow.
Both temperature gradient and concentration gradient can cause buoyancy flows [50–52]; and double-diffusive problem has
been widely studied where buoyancy flow is induced by the combined temperature and concentration gradients [53–55]. In
this section, natural convection in a square cavity caused by concentration gradient is simulated using CFVLBM.

Fig. 5 shows the schematics of the physical problem. The side length of the square cavity is H . Concentration on the left
boundary (with constant value of Ch) is higher than that on the right boundary (with constant value of Cl), generating a
concentration gradient in the cavity. Flux on the top and bottom boundaries is zero. The Schmidt number Sc (Sc = ν/D) is
fixed as 0.71. The density of the bulk fluid ρ is 1.0 kg m−3 and the kinetic viscosity υ is 1.3 × 10−5 m2 s−1. Buoyancy flow
in the cavity with different solute Rayleigh numbers Ra (Ra = gβ�Y H3/Dυ) of 103, 104 and 105 is simulated using the
CFVLBM. The grid of the left FVM zone is 311 × 601 while that of right LBM region is 301 × 601, with an overlapping region
of 11 × 601. The CFVLBM simulation results are compared carefully with the results obtained using commercial software
FLUENT 6.3.26.

The well known Boussinesq approximation [56], which assumes that all fluid properties (density, viscosity, thermal dif-
fusivity) can be considered as constant except the density ρ in the body force term, is employed. The density ρ in the body
force term is assumed to be a linear function of the concentration

ρ = ρ0
[
1 + β(C − C l)

]
(27)

where ρ0 is the reference fluid density, β is the solute expansion coefficient. Using the Boussinesq approximation, the
gravity term in NS equations (Eq. (3)) is rewritten as

G = ρ0g + ρ0gβ(C − Cl) (28)

where g is the acceleration vector of gravity. In the LBM, this force is considered by adding an external force term Fi to the
right-hand side of Eq. (10) [57]

Fi = ωiρ

(
1 − 1

2τ

)[
3

c2
(ci · F) + 9

c4
(ci · F)(ci · u) − 3

c2
(u · F)

]
(29)

where F = gβ(C − C l).
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Fig. 6. Contour lines of u-velocity, v-velocity, concentration, and streamlines from (a) CFVLBM and (b) FLUENT. The corresponding results for equivalent
natural convection caused by temperature gradient are also presented. Comparison (c) with (a) and (b) shows the distributions are excellently antisymmetric
about the center line of the vertical direction.

The governing equation for concentration with CD form is expressed as

∂C

∂t
+ u · ∇C = D�C (30)

For different Ra, contour lines of u-velocity, v-velocity, streamline and isoconcentration from CFVLBM simulations agree
well with that from FLUENT simulations. For simplicity, only the results for Ra = 105 are presented, as shown in Fig. 6. It can
be seen that the simulation results of CFVLBM and FLUENT are in good agreement with each other. Note that the buoyancy
flow is anti-clockwise. Obviously, for the corresponding natural convection due to temperature (high temperature and low
temperature at the left and right walls, respectively), the buoyancy flow is clockwise [31]. Further, if the Prandtl number
Pr and thermal Rayleigh numbers Ra are made equal to Sc and solute Rayleigh numbers Ra, respectively, the contour lines
of different variables for natural convection caused by temperature gradient and those for natural convection caused by
concentration gradient must be antisymmetric about the center line of the vertical direction. Fig. 6(c) shows the contour
lines for the natural convection caused by temperature gradient for Pr = 0.71 and Ra = 105 [31]. Comparing Fig. 6(c) with
Figs. 6(a) and 6(b), it can be seen that the antisymmetric characteristics are excellent.

Fig. 7 displays the v-velocity along the horizontal center line and u-velocity along the vertical center line for different Ra,
where u is normalized by maximum velocity umax on the vertical center line and v is normalized by the maximum velocity
vmax on the horizontal center line. The good agreement between CFVLBM and FLUENT is again obtained. The variation of
normalized concentration along the horizontal centerline is shown in Fig. 8. It can be clearly seen that the results of CFVLBM
and FLUENT are consistent. At Ra = 103, the concentration drops linearly due to the dominant diffusion mechanism. As Ra
increases, the concentration gradients near the two vertical walls increase and the center part becomes flat.

Simulation results in Section 4 show that the RO proposed and the CFVLBM are reliable and accurate to predict the
proper phenomenon of fluid flow and scalar transport. Thus, in next section the CFVLBM is employed to simulate a relatively
complex problem – coupled multi-scale multiple physicochemical processes in a wall-coated micro reactor.
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(a)

(b)

Fig. 7. Comparison between CFVLBM and FLUENT: (a) v-velocity along the horizontal center line and (b) u-velocity along the vertical center line for different
Ra.

Fig. 8. Comparison of the normalized concentration along the horizontal centerline between CFVLBM and FLUENT.

5. Application

5.1. The physicochemical problem

The situation of transport processes in a relatively wide open region combined with a local porous region is commonly
encountered in a wide range of engineering and science problems. Typical examples include transport of reactants into
the active zones, and the removal of products through the relatively open GC combined with a porous GDL in PEMFC
[29], convective heat transfer in systems including porous inserts [58], and transport processes in macro pores between
particles and in micro pores within the particles in micro reactors [59]. In the present study, the relatively open region is
called free fluid region. The key issue with regard to such transport processes lies in the interface between the free fluid
region and the porous region. At the interface, both the geometrical properties such as porosity and grain size, as well as
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(a)

(b)

Fig. 9. Computational domain of a wall-coated micro reactor with solid catalytic particles near the wall: (a) the entire computational domain, (b) local
details of the catalytic particles.

transport properties related to the geometrical properties, including permeability and diffusivity, may undergo significant
changes [58]. Numerical simulations of such problems can be generally classified into two groups. The first group, called
two-domain approach (TDA) uses different equations in different regions, e.g., NS equations in the free region and Darcy or
Brinkman model in the porous region, and couples them through suitable interface boundary conditions. The second group,
called single-domain approach (SDA) considers the whole composite region as continuum and uses one set of general
governing equations with position-dependent transport properties in the entire domain [60,61]. The TDA heavily depends
on the interface boundary conditions [58]; the SDA, although avoids the interface boundary conditions, requires certain
artifacts and transport phenomena depending on the discretization scheme of governing equations to describe the macro
transport properties at the interface [60].

Basically, problems encountered in both SDA and TDA arise from the homogenous treatment of the porous region in
which detailed porous structures of the porous layer are not explicitly considered. In this section, we use the CFVLBM
to predict such transport processes, where the microstructures of the porous region are explicitly resolved. The transport
processes in a wall-coated micro reactor are chosen because such physicochemical processes present complex coupled multi-
scale characteristics. Fig. 9 is the computational domain of a wall-coated micro reactor with solid catalytic particles near the
top wall. The particles themselves are porous. The chemical reaction considered is the high-temperature catalytic gas-phase
reaction of NH3 decomposition using Ni–Pt/Al2O3 as catalyst, which can produce hydrogen (H2) as fuel for PEMFCs [35].
This reaction is expressed as

NH3 ↔ 1

2
N2 + 3

2
H2 (31)

which is an endothermic reaction with �H = −46.7 kJ mol−1.
The general transport processes can be described as follows. NH3 flows into the wall-coated micro reactor through both

the top porous region and bottom free region. On the surface of catalysts in the porous region, NH3 decomposition reaction
occurs which generates H2 and adsorbs heat. The generated H2 flows out of the reactor. First, since the width of the free
region is about 3.0 mm and the size of micro pores inside the catalyst particle is about 30 μm, the length contrast is
about 100; second, fluid flow, mass transport, heat transfer and chemical reaction simultaneously take place and are highly
coupled with each other. Therefore, such transport processes are coupled multi-scale multiple physicochemical processes
and pose great challenges to developing corresponding accurate and effective numerical models. We use the CFVLBM to
predict the above transport processes.

Here, we assume that heat and mass transfer does not affect the fluid flow. The fluid flow is first simulated and the
obtained velocity field is used for heat and mass transfer. Besides NS equations as described by Eqs. (2)–(3), there are three
scalar governing equations, namely temperature equation, NH3 concentration equation and H2 concentration equation



96 L. Chen et al. / Journal of Computational Physics 255 (2013) 83–105
∂Ck

∂t
+ u · ∇(Ck) = ∇ · (Dk∇Ck) + Sk (32)

∂T

∂t
+ u · ∇(T ) = ∇ ·

(
λ

ρcp
∇T

)
+ ST (33)

where the subscript k denotes the kth species and equals 1 for NH3 and 2 for H2. The source terms Sk and ST in
Eqs. (32)–(33) will be discussed later. The specific heat cp and dynamic viscosity μ of the gas mixture are calculated
using mass weighted mixing law

cp =
∑

mkcpk , μ =
∑

mkμk (34)

where mk , cpk and μk are mass fraction, specific heat, and dynamic viscosity of the kth species, respectively. The conductivity
λ in the void space can be calculated using mass weighted mixing law as that in Eq. (34), while that in the solid space is
set as the conductivity of solid post. The thermal conductivity of solid is five times that of the mixture fluid. The transport
properties (such as viscosity and conductivity) of individual species are computed using kinetic theory and the specific heat
of gases is calculated using piecewise-polynomial relations.

Using Ni–Pt/Al2O3 as the catalyst, Chellappa et al. [62] performed experimental studies and suggested that the reaction
rate depends solely on the NH3 concentration when the reactor is operated around the atmospheric pressure. Inhibition
effects of H2 which will reduce the reaction rate can be neglected. Thus, 1st order kinetics for ammonia decomposition is
reasonable to describe the reaction kinetics of NH3 decomposition, which is expressed as

SNH3 = −A1 exp(−E/RT )(CNH3 RT ) (35)

where A1 is a parameter depending on the catalyst density and is 1 × 1014 in the present study. R is the gas constant. E is
the activation energy and is set as 196 681 J/mol [62]. Correspondingly, the hydrogen generation rate due to the reaction is
given by

SH2 = 3

2
A1 exp(−E/RT )(CNH3 RT ) (36)

Heat transfer in both the void and solid phases is considered. Chemical reaction only takes place at the fluid–solid
interface (the surface of the catalytic particles), where the source term for heat transfer is

ST = SNH3�H/(ρC p) (37)

5.2. Coupled simulation strategy

For solving the above transport processes, four sets of distribution functions in the LBM are required, including the den-
sity distribution function for fluid flow, temperature distribution function for heat transfer, two concentration distribution
functions for NH3 and H2 transfer, respectively. For more details about the LBM part, one can refer to [47]. The computa-
tional domain with the size of 10 × 4 mm is divided into two sub-domains as shown in Fig. 9. The FVM and LBM are used
for the bottom free region and the top porous region, respectively. The width of the FVM region is 3.20 mm and that of the
LBM region is 1.0 mm, with the width of the overlapping region as 0.2 mm. The LBM region is discretized into 1001 × 101
lattices with a resolution of a = 10 μm. Such a fine resolution is necessary, because in the LBM region reactive transport
processes exhibit strong variation at such a small scale due to heterogeneous porous structures and surface reaction. How-
ever, in the FVM region the changes of physical variables are relatively gradual. Thus, combining a coarse grid system in the
FVM region and a fine grid system in the LBM region is desirable. In the present study, the grid size in the FVM is set to a,
2a, 5a and 10a to investigate the efficiency and accuracy of the CFVLBM at different grid resolutions. Note that there is little
work using coarse-fine gird in the coupled FVM/FEM/FDM and LBM simulation strategy. Only Albuquerque et al. [26] used a
grid size ratio of 2:1 between FDM region and LBM region to study pure-diffusion problem. It is worth mentioning that for
different grid size ratio, the RO is the same. The difference between grid size ratio of 1 and that greater than 1 is that for
the latter case, interpolating and averaging techniques of the information at the interface boundaries are required. For the
simulation with grid size ratio greater than 1 during each iteration, the physical variables on a node at the LBM boundary
are interpolated from that of the neighboring coarse FVM nodes, and the physical variables on a node at the FVM boundary
are averaged from the neighboring fine LBM nodes. In the present study, linear interpolation and arithmetic average are
adopted.

For the boundary conditions, at the channel inlet, uniform velocity of 0.04 ms−1 is specified; uniform tempera-
ture T inlet = 870 K is adopted; uniform NH3 concentration fraction of 1 (CNH3/CTotal,in, where CTotal,in = pin/RT and
pin = 101 325 Pa is the inlet pressure) is used; and the H2 concentration fraction is set to zero (CH2/CTotal,in). At the outlet,
fully developed boundary condition is employed. At the top and bottom walls, zero flux and no-slip boundary condition
are used for species transport and fluid flow, respectively, while temperature is set the same as that at the inlet. At the
fluid–solid (catalyst particles) interface within the computational domain, no-slip boundary condition is applied for fluid
flow. The simulation convergence is considered to be obtained if the relative error between successive 200 iterated steps is
less than 1 × 10−7.
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5.3. Simulation results and discussion

Simulations are also performed using the pure LBM for the entire domain for comparison. Fig. 10 shows the velocity
vector distributions obtained from the pure LBM simulation and the CFVLBM with different grid size ratios between the FVM
region and LBM region. As can be seen from Fig. 10, the overall distributions for all the cases agree well with each other.
Although uniform velocity specified at the inlet, the fluid mainly flows in the free region due to the high resistance in the
porous region. The local distributions in the overlapping region near x = 5 mm are also displayed for CFVLBM simulations,
as shown in the images at the right column of Fig. 10. In these images the mesh lines are also shown. For all the CFVLBM
simulations, the velocity vectors of LBM and that of FVM in the overlapping region coincide with each other, suggesting that
the information exchange schemes established in the present study work very well. Quantitative comparisons are further
performed to assess the accuracy of CFVLBM, as shown in Fig. 11. Fig. 11 shows the velocity in the x direction u at different
x cross section. At x = 2 mm, the velocity in the porous region is still relatively large due to the inlet effect. The oscillations
in the porous region are due to porous structures and those regions with zero velocity correspond to solid particles. At
x = 5 mm, the velocity in the porous region is extremely low compared with that in the free region and fluid mainly flows
in the free region. It can be observed that the simulation results using CFVLBM with grid size ratio between FVM and LBM
of 1:1 and 2:1 are in excellent agreement with that using pure LBM, with maximum deviation less than 0.32% for 1:1 case
and 0.57% for 2:1 case. Increasing the grid size ratio to 5:1 or 10:1 leads to small discrepancy between the simulation
results of CFVLBM and that of the pure LBM, but the agreements are still acceptable. The simulation results are encouraging
because the 10:1 case means a great saving of computational resources.

After the flow field is obtained, the velocity field is used for the simulation of heat and mass transfer. The simulation
results of normalized temperature and concentration distributions for different cases are presented in Fig. 12. The overall
distributions for all the cases agree well with each other. On the surface of the catalyst particles, NH3 is decomposed and
H2 is generated, leading to gradually decreased NH3 concentration and increased H2 concentration from the reactor inlet to
the outlet. Temperature in the porous region is lower compared to that in the free region due to the endothermic reaction.
Fig. 13 displays the NH3 concentration, H2 concentration and temperature at y = 2 mm for quantitative comparison. The
agreement between the results of pure LBM, CFVLBM 1:1 and CFVLBM 2:1 is excellent, while slight difference is observed
when further increasing the grid size ratio to 5:1 or 10:1.

Finally, the time variations of the residual are plotted in Fig. 14. In Fig. 14(a) the residual is calculated by

Residual =
∑ |

√
un+1

(i, j) · un+1
(i, j) −

√
un

(i, j) · un
(i, j)|√

un
(i, j) · un

(i, j)

(38)

where n denotes nth iteration step. In Fig. 14(b), the residual is determined by

Residual =
∑ |T n+1

(i, j) − T n
(i, j)|

T n
(i, j)

(39)

Generally, the 1:1 case shows the slowest convergence speed, followed by pure LBM, 2:1 case, 5:1 case and finally 10:1
case. This implies that uniform grid size in FVM and LBM regions is not preferred. The large grid size ratio, while still
capable of predicting the transport phenomena reasonably well, can achieve faster convergence and hence significantly save
the computational resources. The reason for slow convergence speed of LBM is because the maximum time undergone each
iteration step is limited, which is one of its inherent characteristics. The maximum grid size ratio depends on several factors.
On one hand, since the width of the overlapping region is fixed (20 grids in this study) and a wider overlapping region is
not desirable, the maximum ratio available is limited, because further increasing the ratio (beyond 20 in this study) leads to
less than an FVM grid in the overlapping region, which would cause insufficient information exchange. On the other hand,
the maximum ratio also depends on the interface position, the local field gradient near the interface and the algorithm of
the FVM and LBM adopted. If the interface position is suitably chosen that the local gradient of field values doesn’t change
enormously, then the maximum grid size ratio can be increased. Adopting the algorithms of the FVM and LBM with good
stability and robustness also helps increase the maximum grid size ratio.

6. Conclusion

In this paper, a coupled modeling strategy is employed to simulate coupled multi-scale multiple physicochemical pro-
cesses. In the coupled simulation strategy, the computational domain is divided into several sub-domains, for each of which,
an appropriate numerical method is adopted to predict local transport processes; and information is exchanged at the inter-
face between neighboring sub-domains. In the present study, FVM and LBM are adopted to simulate the reactive transport
processes in a computational domain containing a free flow region and a porous region, respectively, which represents a
common problem widely encountered in engineering and science. A general RO is developed to derive the distribution func-
tions in the LBM from the macro scalar, the transport of which is governed by the advection–diffusion equation. The coupled
simulation strategy is validated by several reactive transport processes. Finally, the coupled simulation strategy combined
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Fig. 10. Velocity vector distributions obtained from the pure LBM simulation and the CFVLBM with different grid size ratio between FVM region and LBM
region. Velocity vectors in LBM region are marked by green color and that in FVM region are represented by red color. The right column shows the local
velocity vectors near x = 5 mm in the overlapping region.
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(a)

(b)

Fig. 11. u-velocity at different x cross sections for pure LBM simulations and CFVLBM with different grid size ratios between FVM region and LBM region:
(a) x = 2 mm, (b) x = 5 mm.

with the general RO is applied to simulate fluid flow, heat transfer, mass transport and chemical reaction in a wall-coated
micro reactor, in which the transport processes can be considered as coupled multi-scale multiple physicochemical pro-
cesses. The effects of grid size ratio between FVM and LBM region is explored. It is found that for the problem studied, a
maximum grid size ratio of 10:1 is obtained, which can predict reasonable transport phenomena as well as can save the
computational resources and reduces the convergence time.
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Appendix A

According to the Chapman–Enskog method, we can introduce the following time and space scale expansion:
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Fig. 12. Distribution of concentration and temperature obtained from the pure LBM simulation and the CFVLBM with different grid size ratios between FVM
region and LBM region.

∂t = ε∂
(1)
t + ε2∂

(2)
t (A.1a)

∂xα = ε∂
(1)
xα

(A.1b)

the small expansion parameter ε can be viewed as the Knudsen number Kn which is the ratio of the mean free path over
the characteristic length scale of the flow, and α represents the coordinate directions.

The distribution gi is expanded around the distributions g(0)
i as follows

gi = g(0)
i + εg(1)

i + ε2 g(2)
i (A.2)

with
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Fig. 13. NH3 concentration, H2 concentration and temperature at y = 2 mm obtained from the pure LBM simulation and the CFVLBM with different grid
size ratios between FVM region and LBM region.∑

i

g(n)
i = 0,

∑
i

ci g(n)
i = 0 (n > 0) (A.3)

Then, gi(x + ci�t, t + �t) in Eq. (4) is expanded about x and t leading to

gi(x + ci�t, t + �t) = gi(x, t) + �t Diα gi(x, t) + (�t)2

2
D2

iα gi(x, t) + O
[
(�t)3] (A.4)

where Diα = ∂t + ci∂xα . Substituting Eq. (A.4) into Eq. (4) yields the following equation without the source term

�t Diα gi + (�t)2

2
D2

iα gi = − 1

τϕ

(
gi − g(eq)

i

) + O
[
(�t)3] (A.5)

Furthermore, substituting Eqs. (A.1a), (A.1b) and (A.2) into Eq. (A.5) leads to

εD(1)
iα g(0) + ε2[D(1)

iα g(1)
i + ∂

(2)
t g(0)

i

] + ε2 �t

2

[
D(1)

iα

]2
g(0)

i

= − 1

�tτϕ

(
g(0)

i + εg(1)
i + ε2 g(2)

i − g(eq)

i

) + O
[
(�t)3] (A.6)

Then by matching the scales of ε0, ε1 and ε2, we have

ε0: g(0)
i = g(eq)

i (A.7)

ε1: g(1)
i = −�tτϕ D(1)

iα g(0)
i + O

[
(�t)2] (A.8)

ε2: g(2)
i = −�tτg

[
D(1)

iα g(1)
i + ∂

(2)
t g(0)

i

] − (�t)2τg

2

[
D(1)

iα

]2
g(0)

i + O
[
(�t)3] (A.9)

Therefore, we can derive the macroscopic equations at the t1 = εt and t2 = ε2t time scales by taking zero order moment
of Eqs. (A.8) and (A.9)

∂
(1)
t ϕ + ∂

(1)
xα

(uαϕ) = 0 (A.10)

∂
(2)
t ϕ − 2 J (τϕ − 0.5)

�x2

�t
∂

(1)
xα

∂
(1)
xα

ϕ = 0 (A.11)

The formulas according to the chain rule of derivatives read:

∂t g(eq)

i = ∂ρ g(eq)

i ∂tϕ + ∂uβ g(eq)

i ∂t uβ (A.12)

∂xα g(eq)

i = ∂ρ g(eq)

i ∂xαϕ + ∂uβ g(eq)

i ∂xα uβ (A.13)

From the equilibrium distribution function given by Eq. (6), we can obtain the following expression
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(a)

(b)

Fig. 14. Time variations of the residual: (a) velocity, (b) temperature.

∂uβ g(eq)

i = ∂uβ

[
ϕ( J + 1/2ciγ uγ )

] = 1/2ϕciβ (A.14a)

∂ϕ g(eq)

i = ∂ϕ

[
ϕ(1 + 1/2ciγ uγ )

] = ϕ−1 g(eq)

i (A.14b)

Obviously, different forms of equilibrium distribution function leads to different equation (14), which will generate dif-
ferent final expression of the RO.

The first-order expression of distribution function gi can be derived as

g(1)
i = −τϕ�t D(1)

i g(0)
i

= −τϕ�t
(
∂

(1)
t g(0)

i + ciα∂
(1)
xα

g(0)
i

)
= −τϕ�t

[
∂ϕ g(0)

i ∂
(1)
t ϕ + ∂uβ g(0)

i ∂
(1)
t uβ + ciα

(
∂ϕ g(0)

i ∂
(1)
xα

ϕ + ∂uβ g(0)
i ∂

(1)
xα

uβ

)]
= −τϕ�t
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The second-order expression of distribution function gi can be derived as
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The second-order derivative of g(0)
i can be ignored, then
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At last, the expression of gi is derived as
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