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Pore-scale modeling of multiphase reactive transport with phase transitions and
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A pore-scale model based on the lattice Boltzmann (LB) method is developed for multiphase reactive transport
with phase transitions and dissolution-precipitation processes. The model combines the single-component multi-
phase Shan-Chen LB model [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)], the mass transport LB model
[S. P. Sullivan et al., Chem. Eng. Sci. 60, 3405 (2005)], and the dissolution-precipitation model [Q. Kang et al.,
J. Geophys. Res. 111, B05203 (2006)]. Care is taken to handle information on computational nodes undergoing
solid-liquid or liquid-vapor phase changes to guarantee mass and momentum conservation. A general LB
concentration boundary condition is proposed that can handle various concentration boundaries including reactive
and moving boundaries with complex geometries. The pore-scale model can capture coupled nonlinear multiple
physicochemical processes including multiphase flow with phase separations, mass transport, chemical reactions,
dissolution-precipitation processes, and dynamic evolution of the pore geometries. The model is validated using
several multiphase flow and reactive transport problems and then used to study the thermal migration of a brine
inclusion in a salt crystal. Multiphase reactive transport phenomena with phase transitions between liquid-vapor
phases and dissolution-precipitation processes of the salt in the closed inclusion are simulated and the effects of
the initial inclusion size and temperature gradient on the thermal migration are investigated.
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I. INTRODUCTION

Reactive transport processes in porous media are pervasive
in industrial and natural systems. These include the recovery
of oil, the storage of carbon dioxide (CO2) in the subsurface
[1], precipitation patterns in Liesegang phenomena [2], and
the water flooding issue in proton exchange membrane fuel
cells (PEMFCs) [3,4]. These reactive transport processes are
often associated with multiphase flow, which can be single-
component multiphase (such as water vapor and liquid water)
[5] or multicomponent multiphase flow (such as air-liquid
water) [6] and may contain phase transitions [7]. Such reactive
transport processes can also lead to the dynamic evolution of
pore geometries due to dissolution or precipitation, leading
to different dissolution [8] or precipitation patterns [2]. The
changes of the pore geometries may in turn significantly and
continuously modify the transport properties of the porous
media, such as the permeability [9–11]. Such reactive transport
processes can also alter the physical properties of the related
immiscible or miscible fluids and thus can modify the flow
patterns or trigger new flow patterns [12]. Most of these
reactive transport processes originate from the pore scale, but
often present multiscale characteristics in which the length
or time scale involved covers a wide range and the dominant
factors of the processes change over time, making the situation
more complex [13,14]. Therefore, to accurately model these
processes at the scales of interest, it is important to greatly
enhance our understanding and capability to simulate these
processes at the pore scale as a precursor to incorporating
those pore-scale processes into continuum-scale descriptions.
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Different numerical methods have been used to investigate
pore-scale multiphase reactive transport processes, including
the direct numerical simulation method [15], pore-network
model [16,17], lattice Boltzmann method (LBM) [1,3,8,9,18],
and smoothed particle hydrodynamics [19,20]. Each of these
methods has its own advantages and disadvantages. We base
our model on the LBM, which is well suited for solving fluid
flow in complex geometries and has been successfully used
in the study of flow in porous media [21]. Furthermore, the
kinetic nature of the LBM enables it to conveniently represent
microscopic interactions between different fluids, thereby
facilitating the automatic tracking of the fluid interfaces in
a multiphase system [22,23]. In contrast, other multiphase
modeling methods such as the level set method and the volume
of fluid method rely on additional auxiliary algorithms to
track the fluid interfaces. The fluid-solid interactions can also
be implemented conveniently in the LBM without including
additional complex kernels [21,24].

To account for the dynamic evolution of the solid-fluid
interface, several models have been developed to track the
moving solid-fluid interface, some of which are directly related
to models of tracking fluid interfaces. These models can be
classified in two groups: the diffusion interface model and
the sharp interface model. In the diffusion interface model,
a scalar field is used as a phase indicator. The characteristic
feature of the diffusion interface model is that the scalar varies
continuously and smoothly across the fluid-solid interface
[25]. Similarly, a scalar field is also solved as the phase
indicator in the front-capturing method embodied in the sharp
interface model. Typical examples are the level set method
[11] and the volume of fluid method [26]. However, unlike
the smooth transition of the scalar field across the phase
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interface in the diffusion interface model, in the sharp interface
model the scalar field generally alters sharply across the
phase interfaces and usually additional auxiliary algorithms
are required to reconstruct the interfaces near the phase
interface [11,26]. Another category of the sharp interface
model is the front-tracking method. In this method, the
evolving solid-fluid interfaces in dissolution (or melting) and
precipitation (or solidification) problems are represented by
connected Lagrangian marker points that are updated at each
computational time step [27,28]. Since in most cases there is
no fluid flow and mass transport in the solid phase, and flow at
the solid-fluid interfaces is subject to a no-slip condition, the
front-tracking method is especially suitable for tracking the
solid-fluid interfaces. Kang et al. [28] developed a volume of
pixel (VOP) method, which is a type of front-tracking method,
to track the solid-fluid interface. In the VOP method, the entire
domain is divided into pixels (or computational nodes). Each
pixel is assigned a value representing the volume of the solid
phase. At each time step, the volume of solid pixels at the
solid-fluid interfaces is updated based on the local dissolution
or precipitation rate. If the volume of a solid pixel decreases
to zero due to dissolution (or melting), this solid pixel is
removed and changed into a fluid pixel. In contrast, if the
volume of a solid pixel increases to a threshold value due to
precipitation (or solidification), one of its neighboring fluid
pixels is changed into a solid pixel. Note that only the solid
pixels at the solid-fluid interfaces require treatment since the
reactions only take place at the solid-fluid interface. In the
simplest version of the VOP method, the solid-fluid interface
is stepwise [28]. However, one can also use some additional
geometrical algorithms around the interfaces to obtain curved
interfaces [27]. The VOP method has many advantages such
as a clear physical concept, simple and stable arithmetic,
easy implementation of various kinds of surface reactions,
and flexible coupling with different nucleation and crystal
growth mechanisms. For this reason, the method has been
used successfully to predict many moving solid-fluid interface
phenomena such as crystal growth [18], rock dissolution due to
acid injection [9], Liesegang bands or rings [2], and dissolution
and precipitation in CO2 sequestration [1,29].

There have been a few numerical studies to investigate
reactive flow with an evolving solid-fluid interface at the
pore scale. Single-phase fluid flow and reactive transport with
dissolution and precipitation was studied by Kang et al. [8,9]
in which LBM was used to simulate flow, transport, and
reaction and the VOP method was adopted to track the moving
solid-fluid interfaces due to dissolution and precipitation.
They predicted the relationship between permeability and
porosity under different Péclet number (Pe) (representing the
relative strength of convection to diffusion) and Damköhler
number (Da) (representing the relative strength of reaction
to diffusion). Li et al. [11] studied a similar problem using
a projection method to solve the fluid flow and the level set
method to track the solid-fluid interfaces. In addition, Luo et al.
[25] implemented a model using a diffuse interface method to
track the solid-fluid interface, in which they also considered
the natural convection caused by concentration gradients.
Later, Kang et al. extended their model to multicomponent
systems [28] and used the model to study reactive transport
processes associated with geological CO2 sequestration [1].

The numerical studies of multiphase fluid flow and reactive
transport with moving solid-fluid interfaces are sparse in the
literature [30]. Recently, Parmigiani et al. [30] used the LBM
to study the process of injection of a nonwetting fluid into
a wetting fluid coupled with dynamic evolution of the solid
geometries. While they suggested that their model can be
used for reactive transport with dissolution or precipitation,
the study demonstrated only melting of the solid phase. From
this review, it can be seen that further studies are warranted
to understand multiphase reactive transport processes with
moving solid-fluid interfaces.

The present study is primarily motivated by thermal-
gradient migration of brine inclusions in a single crystal of
salt [31]. Salt deposits have been considered as an attractive
disposal medium for heat-generating wastes such as used
nuclear fuel. However, because thermally driven migration
of brine could have deleterious effects on the performance of
waste canisters or impact the mechanical behavior of the salt
medium [32], models of the brine migration process are needed
to ensure the safe disposal of heat-generating nuclear waste in
salt. During the migration, several coupled physicochemical
processes take place including multiphase fluid flow with
phase transition, heat transfer, mass transport, heterogeneous
reactions, dissolution and precipitation, and dynamic evolution
of the pore geometry. The challenges of numerical simulation
of such a problem at the pore scale are to accurately model the
coexistence of three phases (gas, liquid, and solid phases),
predict dynamic evolution of phase interfaces (liquid-gas
interfaces due to fluid flow and liquid-solid interfaces due
to dissolution and precipitation), and consider the complex
interplay between the multiple processes. In addition, brine
inclusion inside the salt crystal is a closed system, which
requires careful treatment to ensure strict mass and momentum
conservation.

The goal of the present study is to establish a pore-
scale model that helps gain a fundamental understanding of
coupled nonlinear, nonequilibrium multiphase reactive trans-
port including liquid-vapor phase transitions and dissolution-
precipitation processes. We develop a pore-scale model that
combines the single-component multiphase Shan-Chen model
[22,23], a lattice Boltzmann (LB) mass transport model [3,33],
and a dissolution and precipitation model [9,18]. To guarantee
mass and momentum conservation in a closed system, we
develop schemes for handling flow and transport information
associated with computational nodes undergoing liquid-vapor
or liquid-solid phase changes. We also propose a general
LB concentration boundary condition that can handle various
concentration boundaries including complex moving and
reactive boundaries. The pore-scale model established from
these basic building blocks can be used to comprehensively
simulate multiphase reactive transport problems including
multiphase flow with phase transitions, solute transport, heat
transfer, chemical reactions, dissolution and precipitation, and
dynamic evolution of pore structures. The pore-scale model
developed can also be used to simulate multiphase reactive
transport during geological storage of CO2 and to simulate
two-phase reactive flows in PEMFCs. Currently, our model
is restricted to two-dimensional applications, but it should
be relatively straightforward to extend this model to three
dimensions.
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In the remainder of the paper we describe the physico-
chemical model (Sec. II) established and briefly introduce the
multiphase reactive transport processes involved. In Sec. III we
present the single-component multiphase Shan-Chen model,
the mass transport LB model, and the dissolution-precipitation
model adopted in the present study. We validate our models
in Sec. IV. In Sec. V we present simulation results on thermal
migration of a brine inclusion in a salt crystal. We then
conclude with a summary and suggested avenues for future
work in Sec. VI.

II. GENERAL PHYSICOCHEMICAL PROCESSES

If heat-generating nuclear waste is disposed in salt, the salt
in the vicinity of the waste will heat up and a temperature
gradient will be established between the waste and the salt
distant from the waste. Our study is motivated by the thermal
gradient migration of a brine inclusion in a single crystal of salt
under these circumstances. The physicochemical problem is
schematically shown in Fig. 1 and can be generally described
as follows. A solid matrix (the single crystal of salt) contains
an intragranular inclusion of brine in chemical equilibrium
with the solid salt. Then the solid matrix is subjected to
a temperature gradient. The solubility of the salt increases
as the temperature increases. Thus the salt dissolves on the
hot side of the inclusion, then the dissolved salt transports
through the fluid to the cold side, and finally the salt
precipitates on the cold side. The net effect is the microscopic
dynamic evolution of the geometries of the inclusion and the
macroscopic migration of the inclusion toward the regions with
higher temperature. During the migration process, the total
volume of the inclusion may change due to unequal amounts
of dissolution and precipitation. In a closed system, if the
volume of the inclusion increases due to dissolution outpacing
precipitation, at a certain critical condition the brine in the
closed inclusion will separate into a vapor phase and a liquid
phase, leading to two-phase flow in the inclusion. Based on
the above description, the corresponding governing equations
for the fluid flow, mass transport, and heat transfer are as
follows:

∂ρ

∂t
+ (u · ∇)ρ = 0, (1a)

FIG. 1. (Color online) Schematic of the thermal migration of a
brine inclusion in a salt crystal.

∂ρu
∂t

+ ρ∇ · (uu) = −∇p + ∇ · (∇μu), (1b)

∂Caq

∂t
+ (u · ∇)Caq = D�Caq, (1c)

∂T

∂t
+ (u · ∇)T = α�T . (1d)

In the above equations, t is time, ρ is the total density of the
fluid mixture, u is the velocity, p is the pressure, μ is the
dynamic viscosity, Caq is the concentration of the dissolved
salt in the solution, D is the diffusivity, T is the temperature,
and α is the thermal diffusivity.

Clearly, the physicochemical problem under consideration
is significantly complex, involving several coupled processes
including multiphase flow with phase separation, heat transfer,
mass transport, heterogeneous surface reactions, dissolution
and precipitation, and dynamic evolution of the geometry of
the inclusion. Such multiple coupled nonlinear physicochem-
ical processes pose great challenges to numerical simulations.
In the present study, two assumptions are adopted to make
the numerical studies feasible: (i) when present, the phase
transition during the thermal gradient migration of brine
inclusion is approximated by a single-component multiphase
system consisting of the liquid water phase in equilibrium
with the vapor phase, neglecting the effect of the dissolved
salt on the thermodynamics of the liquid-water–vapor system,
and (ii) due to the small size of the inclusion compared to
the solid matrix, the latent heat during the phase transition is
neglected, as well as the effect of the inclusion on temperature
distribution. As a result, the temperature field can be described
by the heat conduction in the solid matrix.

The complex interactions of the multiple processes and
the dynamic evolution of the complex interfaces between
liquid-vapor-solid phases in the physicochemical problems
mentioned above are described by a large set of nonlinear
partial differential equations. Solving this set of equations
with the common finite-element and finite-volume techniques
is extremely challenging due to the complicated nonlinear
characteristics as well as the complex structures. Alternatively,
the LBM is more promising for solving such coupled nonlinear
physicochemical problems at the pore scale because of its
ability to account for complex structures and all relevant
physicochemical processes. In the present study, the single-
component multiphase Shan-Chen LB model, the mass trans-
port LB model, and the VOP method are combined to study
the multiphase reactive transport process with phase transitions
and dissolution-precipitation processes.

III. NUMERICAL MODEL

A. Shan-Chen LB model for single-component multiphase flow

In the LB method, the motion of fluid is described by a
set of particle distribution functions. Based on the simple and
popular Bhatnagar-Gross-Krook collision operator [34], the
evolution of the density distribution function is written as

fi(x + cei�t,t + �t) − fi(x,t) = − 1

τυ

[
fi(x,t) − f

eq
i (x,t)

]
,

(2)
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where fi(x,t) is the density distribution function at the lattice
site x and time t , f eq is the equilibrium distribution function,
c = �x/�t is the lattice speed with �x and �t the lattice
spacing and time step, respectively, and τv is the dimensionless
relaxation time. The discrete velocities ei depend on the
particular velocity model. For the D2Q9 model with nine
velocity directions at a given point in two-dimensional space
[35], ci are given by

ei =

⎧⎪⎪⎨
⎪⎪⎩

0, i = 0(
cos

[ (i−1)π
2

]
, sin

[ (i−1)π
2

])
, i = 1,2,3,4

√
2
(
cos

[ (i−5)π
2 + π

4

]
,
[ (i−5)π

2 + π
4

])
, i = 5,6,7,8.

(3)

The equilibrium distribution functions f eq for the D2Q9 lattice
are of the form

f
eq
i = ωiρ

[
1 + 3

c2
(ei · u) + 9

2c4
(ei · u)2 − 3

2c2
u2

]
,

(4)

where the weight factors ωi are given by ω0 = 4/9, ω1−4 =
1/9, and ω5−8 = 1/36. The fluid density ρ and fluid velocity
u can be obtained from the first and second moments of the
particle distribution functions

ρ =
∑

i

fi, (5a)

ρu =
∑

i

fiei . (5b)

The viscosity in the lattice unit is related to the collision time
by

υ = c2
s (τυ − 0.5)�t, (6)

where cs is the lattice sound speed.
Microscopically, the segregation of a fluid system into

different phases results from the forces between molecules.
In Shan and Chen’s pseudopotential model, an interaction
force (cohesive force) calculated from an effective mass ψ

is introduced to model the molecule forces

Fc = −Gψ(x)
N∑

α=1

w(|eα|2)ψ(x + eα)eα, (7)

where G reflects the interaction strength and w(|eα|2) are the
weights. If only the interactions of four nearest neighbors with
|eα|2 = 1 and the four next-nearest neighbors |eα|2 = 2 are
considered, w(1) = 1/3 and w(2) = 1/12.

Besides fluid-fluid interactions, there are also forces be-
tween the fluid and solid. The adhesion force between the
fluid and the solid wall can be calculated by

Fw = −wψ(x)
N∑

α=1

w(|eα|2)s(x + eα)eα, (8)

where w determines the strength of the interaction between
the fluid and the solid wall and s represents the wall density,
with a value of 1 for solid nodes and 0 for fluid nodes.

For the physicochemical problems investigated in the
present work, gravity force is considered, which is a body

force

Fb = ρg. (9)

With the cohesive force of Eq. (7) considered, the equation of
state (EOS) is given by

p = ρ

3
+ G

6
ψ2. (10)

Theoretically, different EOSs can be obtained by changing the
effective mass ψ [36]. Several evaluation criteria should be
considered when choosing a suitable ψ [36]. The first criterion
is that the maximum density ratio between the liquid and vapor
available should be as large as possible. The second criterion is
that the spurious currents at the liquid-vapor interface should
be as low as possible. The spurious currents are ubiquitous
for most of the multiphase numerical models, which usually
increase as the density ratio increases. Large spurious currents
can lead to the divergence of the simulation and are also
difficult to distinguish from the real flow velocities [36].
The third criterion is the stable temperature range, or the
lowest reduced temperature (Tmin/Tc, with Tc the critical
temperature). As the temperature is increasingly lower than
Tc, the density ratio increases and the spurious currents
increase. Thus the stable temperature range available is also
limited by the spurious currents. The last criterion is the
agreement between the mechanical stability solution and the
thermodynamic theory, which is due to the thermodynamic
inconsistency of the Shan-Chen pseudopotential model. This
criterion is usually invoked by comparing the coexistence
curves obtained from simulation results of liquid and vapor
densities with the theoretical one predicted by the Maxwell
equal-area construction. Yuan and Schaefer [36] thoroughly
investigated several EOSs according to the above four criteria.
Based on their studies, the Carnahan-Starling EOS is adopted,
which generates small spurious currents, a wide stable tem-
perature range, a high density ratio, and good agreement of the
coexistence curves [36]

p = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − bρ/4)3
− aρ2, (11)

where a = 0.4963(RTc)2/pc and b = 0.1873RTc/pc. In the
present study, we set a = 1, b = 4, R = 1, Tc = 0.094, and
ρc = 0.13044 [36]. Thus ψ can be obtained by

ψ =
√

6

G

(
ρRT

1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − bρ/4)3
− aρ2 − ρ

3

)
.

(12)

Compared to the original ψ = exp(–1/ρ) used in the Shan-
Chen model, ψ here contains a defined temperature T . Thus
G becomes unimportant now and is only required to guarantee
the whole term under the square root to be positive [36]. In the
present study, G = −1.

The correct incorporation of the forcing terms into the LBM
is an importance issue. The forcing scheme greatly affects
the spurious currents, stable temperature range, maximum
density ratio, and agreement of the coexistence curves [37–39].
Recently, Huang et al. [38] and Li et al. [39] compared different
forcing schemes in the Shan-Chen pseudopotential model
including that proposed by Shan and Chen [22], Guo et al. [40],
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Ladd and Verberg’s [41] and Kupershtokh et al. [37]. Based
on the evaluation in [38,39], we adopt the exact difference
method (EDM) developed by Kupershtokh et al. [37], which
is directly derived from the Boltzmann equation. In the EDM,
a source term is added on the right-hand side of the evolution
equation (1),

�fi = f
eq
i (ρ,u′) − f

eq
i (ρ,u), (13)

where u is obtained by Eq. (5b) and u′ equals

u′ = u + F�t

ρ
, (14)

where F is the sum of the forces, including the force between
fluid particles, the force between the fluid and solid, and the
body force. By averaging the moment before and after the
collision, the real fluid velocity is expressed as

ur = u + F�t

2ρ
. (15)

There have been several studies using the single-component
multiphase flow Shan-Chen model to investigate fluid flow
with phase transitions. Joshi and Sun [5] adopted the model to
study the multiphase flow with solid particles inside the liquid
phase. In their studies, an evaporation scheme is used to obtain
the isothermal evaporation process by artificially removing
the vapor mass from the computational domain. Recently,
Márkus and Házi [42] combined the Shan-Chen model with
a heat transfer model to study the nonisothermal evaporation
process. Adding a small and random density perturbation on
the initial uniform density is a common numerical scheme
to promote the phase transition [22,43]. Shan and Chen [22]
simulated the phase transition phenomenon by adding a
random perturbation of 1% on the initially uniform density
field ρ0. We investigated such a scheme in detail and found
the following in the single-component multiphase Shan-Chen
model. (i) The perturbation is necessary; otherwise the phase
transition will not take place even when ρ0 is extremely
low. (ii) At a certain temperature, ρ0 should be lower than
a critical value. For example, we found that for T = 0.7Tc

[under this temperature the densities of the liquid water and
vapor simulated by our code are 0.3589 and 0.00670 (in lattice
units), respectively, with good agreement with the theoretical
densities predicted by the Maxwell equal-area construction of
0.3572 and 0.00312], ρ0 should be lower than 0.27, above
which the phase transition cannot be activated. (iii) The higher
the value of ρ0, the lower the maximum perturbation should
be; otherwise the simulation will diverge. For example, when
ρ0 = 0.27, the maximum perturbation should be as low as
0.1%; in contrast, when ρ0 = 0.1, a stable solution is still
available with a maximum perturbation as high as 5%. Since
in our simulations the initial inclusion is in the liquid phase
with the liquid density at the corresponding temperature, for
example, 0.3572 at T = 0.7Tc, and the averaged density in
the closed inclusion gradually decreases as the volume of
the inclusion increases during the migration, the maximum
perturbation should be small enough and is set as 0.1% in the
present study after prior simulation tests.

B. The LB model for mass transport

There have been several studies to solve the convection-
diffusion equation of solute transport using the LBM [44].
The following evolution of the LB equation is used to describe
species transport [33]:

gi,k(x + cei�t,t + �t) − gi,k(x,t)

= − 1

τg

[
gi,k(x,t) − g

eq
i,k(x,t)

] + Ji,k�tS, (16)

where gi,k is the concentration distribution function for k

component and S the source term related to homogeneous
reactions.

Note that the convection-diffusion equation is linear in
velocity u. This means that the equilibrium distributions for
scalar transport need only be linear in u and thus lattices with
fewer vectors can be used for scalar transport. Noble [45]
performed a Chapman-Enskog expansion for the LB model
with equilibrium distributions linear in u and with a reduced
number of lattice velocities, recovering the advection-diffusion
equations. Thus a reduced D2Q5 lattice model of the original
D2Q9 model given by Eq. (3) is used by abandoning the lattice
speed in the diagonal directions (ei , i = 5 − 8). An equilibrium
distribution that is linear in u is adopted [33]:

g
eq
i,k = Ck

[
Ji,k + 1

2 ei · u
]
, (17)

where C is the concentration and Ji is given by [33]

Ji =
{

J0, i = 0

(1 − J0)/4, i = 1,2,3,4,
(18)

where the rest fraction J0 can be selected from 0 to 1.
The equilibrium distribution function given by Eq. (17) can
cover a wide range of diffusivity by adjusting J0, which is
a prominent advantage of such an equilibrium distribution
[3,33]. Note that different forms of equilibrium distribution
functions with the D2Q5 model are employed in the literature.
For example, in the study of Huber et al. [46], the equilibrium
distribution function is chosen as g

eq
i = C [Ji + 0.5ei · u] with

J0 = 1/3 and J1−−4 = 1/6, in the study of Chen et al. [47]
g

eq
i = C [Ji + 0.5ei · u] with J0−4 = 1/5, and in the study

of Kang et al. [48] g
eq
i = C [Ji + 0.5ei · u] with J0 = 0 and

J1−4 = 1/4. We point out that Eq. (16) in the present study
is a general formula, which becomes that in [46] if J0 = 1/3,
that in [47] if J0 = 1/5, and that in [48] if J0 = 0. Such a
general formula is also adopted in Ref. [44]. The accuracy and
efficiency of the reduced D2Q5 model has been confirmed in
other studies [2,3,13,33,44–49]. The concentration is obtained
by

C =
∑

gi. (19)

The diffusivity is related to the relaxation time by

D = 1
2 (1 − J0)(τg − 0.5). (20)

In the present study, solid salt dissolves or precipitates
only at the liquid-solid salt interface; correspondingly, the
aqueous salt transports only in the liquid water and not in
the vapor. Therefore, we solve the solute transport only in
the liquid phase and consider the liquid-vapor interface as
zero-flux boundaries. We use the following simple approach
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to distinguish the liquid phase and vapor phase: If the density
of a node is higher than a critical density (chosen as half of
the maximum density in the system), the node is regarded as a
liquid node; otherwise it is a vapor node. It is well known that
as the density ratio between liquid and vapor phases becomes
large, the spurious currents around the interface become large.
Such large spurious currents would have unphysical effects
on the mass transport and thus must be avoided or reduced.
Close examination reveals that large spurious currents around
the liquid-vapor phase are mainly in the vapor phase; thus such
spurious currents are avoided in the present study as we solve
only the mass transport in the liquid phase.

The moving liquid-vapor interface poses significant chal-
lenges to the simulation of solute transport in the liquid phase.
Two issues are required to be resolved. The first issue is how
to handle the concentration of the solute associated with a
node that is changed from liquid phase to vapor phase, or
vice versa, during the evolution of the liquid-vapor interface.
This issue is discussed in Sec. III F. The second issue is that
since the liquid-vapor interfaces are moving boundaries and
liquid-solid boundaries are reactive boundaries for the solute
transport, a unified concentration boundary condition that can
handle moving and reactive boundaries is required. This issue
is discussed in Sec. III G.

C. Heat transfer

In this study, the top and bottom walls of the salt are fixed
as a higher temperature and a lower temperature, respectively,
while the left and right wall are adiabatic walls. Based on
assumption (ii) in Sec. II and assuming that the thermal proper-
ties of the salt are independent of temperature, the temperature
field reduces to a linear function of distance from the top wall
to the bottom wall. Under this circumstance, therefore, we
simply prescribe this linear temperature distribution during the
simulations. Nevertheless, if the heat transfer process is very
complex and cannot be easily solved analytically, a thermal LB
model also can be adopted to predict the heat transfer processes
involving conjugated heat transfer between the fluid and solid
phase; for more detail on simulations of this sort, the reader
is referred to our recent work on coupled physicochemical
processes in microreactors [49].

D. Heterogeneous reactions at the solid-liquid interface

Since the solute exists only in the liquid phase, dissolution
and precipitation occur only at the liquid-solid salt interface.
At the liquid-solid salt interface, the following heterogeneous
chemical reaction takes place:

Saq ⇀↽ SS, (21)

where Saq and Ss represent the aqueous phase (solute) and solid
phase of the salt, respectively. Obviously, local supersaturated
conditions result in precipitation and local undersaturated
conditions lead to dissolution. From Eq. (21) it follows that the
boundary condition at the liquid-solid interface for the aqueous
phase is represented by

D
∂Caq

∂n
= −k(1 − KCaq), (22)

where k is the reaction rate and Caq is the concentration of the
aqueous phase salt. The term n represents the surface normal
that points into the fluid and K is the equilibrium constant,
with higher K implying lower salt solubility. Further, K is a
function of temperature, which is represented in the present
study using the relatively simple relationship

K = (aT + b)−1, (23)

where a and b are constants. Thus, if K is high (or the
solubility is low) and the right-hand side of Eq. (22) is positive,
then precipitation takes place; conversely, if K is low (or
the solubility is high) and the right-hand side of Eq. (22) is
negative, then dissolution takes place.

E. The VOP method for dissolution and precipitation

In the VOP method, the entire domain is divided into
pixels (or computational nodes). Each pixel is assigned a value
representing the volume of the solid phase. At each time step,
at the reactive solid-fluid interfaces, the volume of a solid node
Vs with initial value of V0 is updated by

∂Vs

∂t
= −AVmk(1 − KCaq), (24)

where A is the reaction area and Vm is the molar volume. Thus
Vs is updated at each time step by

Vs(t + �t) = Vs(t) − Vmk(1 − KCaq)�tA, (25)

where �t is the time step and equals that in Eq. (2) in the
simulation.

If Vs reaches zero, dissolution is complete and the solid
node is removed and converted to a fluid node; meanwhile, the
fluid flow and mass information in this new fluid node must
be initialized. In contrast, when the volume of a solid node
exceeds a certain threshold value, for example, if it doubles
in the present study, precipitation takes place and one of the
nearest-neighbor fluid nodes becomes a solid node. At the
same time the volume of the original solid node is set back
to V0 and the initial volume of the new solid node is assigned
as V0. Because there may be several fluid nodes around the
original solid node, several rules have been proposed by Kang
et al. [28] to determine which one of these fluid nodes is chosen
for the precipitation. In the present study, this node is simply
randomly determined.

F. Treating information on nodes undergoing phase change

Figure 2 schematically shows the time evolution of the
solid-liquid-vapor interfaces. During the interface evolution,
the phase of a computational node may switch between
liquid and solid phases (due to dissolution or precipitation)
or between liquid and vapor phases (due to phase separation).
Note that there is no switch between vapor and solid phases
because the dissolution-precipitation process takes place only
at liquid-solid interfaces. How to treat the fluid flow and mass
transport information associated with computational nodes
undergoing phase changes is of great importance to guarantee
the mass and momentum conservation in a closed system. For
example, there are multiple ways to initialize the information
at a new fluid node during dissolution and to distribute the
information stored at a newly added solid node into the
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FIG. 2. (Color online) Dynamic evolution of liquid-vapor-solid
interfaces during the multiphase reactive transport process. There are
three types of nodes in the domain, namely, solid nodes, liquid nodes,
and vapor nodes, and there are four kinds of changes of node type:
namely, liquid to solid due to precipitation, solid to liquid due to
dissolution, liquid to vapor, and vapor to liquid, the third and fourth
of these due to evolution of the liquid-vapor interfaces. Note that there
is no exchange between the vapor node and solid node as dissolution
and precipitation take place only at the liquid-solid interface.

neighboring fluid nodes during precipitation. The desirable
method should treat phase changes consistently and accurately
while obeying basic physical laws, i.e., conservation of mass
and momentum. These considerations are discussed in this
section.

The switches between the solid phase and fluid phase are
common in the problems of suspended particles transporting
in fluid [41,50,51], dissolution and precipitation [2,9,18],
and melting and solidification [46,52]. When a solid node
is changed into a fluid node due to dissolution, the density
as well as the velocity at this node must be initialized in a
way that guarantees mass conservation of the closed system
and convergence of the simulation. In this study we set the
density of this new liquid node (ρnew) as the averaged density
of the nearest-neighbor liquid nodes and unew as that of the
corresponding solid node, namely, zero. Obviously, at each
time step if m nodes are dissolved, additional fluid mass∑m

1 ρnew is added into the closed system. To guarantee mass
conservation of the closed system after the dissolution and
precipitation step of the current time step is completed, the
density of each fluid node (including the liquid nodes newly
formed) is modified by

ρt (i,j ) = (1 + δ)ρt−�t (i,j )

∑
ρt−�t (i,j )∑m

1 ρnew+∑
ρt−�t (i,j )−∑n

1ρold
,

(26)

where
∑

ρt−�t is the total density of the closed system at
the former time step. Superscripts t and t − �t represent
the current time and the former time, respectively. The term∑n

1 ρold accounts for the effects due to precipitation and will
be discussed later. Note that a random perturbation δ (–0.1%,
0.1%) is also added as shown in Eq. (26) to activate the phase
transition. Since the velocities of these newly created liquid

nodes are zero, (i) no additional momentum is added into
the system and (ii) the distribution functions of these new
fluid nodes can be initialized as the equilibrium distribution
functions [13]. This scheme is reasonable because a solid node
is gradually dissolved (typically requires several thousand
time steps in our simulations). During this period of time, the
reduction of fluid density due to the volume increase caused
by dissolution has already been transferred to the entire fluid
field. However, because our numerical model removes the solid
node in a single time step when its volume is reduced to
zero, it is reasonable to reset the entire density field at this
single time step using Eq. (26) to account for the accumulated
effect during the past several thousand time steps of dissolution
process. This scheme not only guarantees mass and momentum
conservation, but also predicts reasonable phase transition
processes.

In the study of suspended particles transporting in fluid,
when a fluid node is covered by a solid node, the common
practice is to simply remove this fluid node from the system
[50,51]. This is acceptable for open systems considered in
other studies [49,50]. However, for a closed system, the mass
and momentum attached to the fluid node must be transferred
to the fluid region in order to guarantee mass and momentum
conservation. Similar to the scheme described above for
handling dissolution, the density of this fluid node is uniformly
distributed over the entire flow field when it is converted to a
solid node. Supposing n fluid nodes are converted at a certain
time step, the total mass loss is

∑n
1 ρold, which is subtracted

from the denominator of Eq. (26).
In the present study, we solve the solute transport equation

in the liquid phase. The liquid-vapor interface is moving and
computational nodes will undergo liquid-vapor phase changes.
Thus it is also a requirement to handle the concentration
of the solute associated with a node that is changed from
the liquid phase to the vapor phase, or vice versa, during
the evolution of the liquid-vapor interface (Fig. 2). The
scheme similar to treating dissolution-precipitation processes
is adopted here. When a vapor node is changed into a liquid
node, the concentration of this node is initialized as the
averaged concentrations of surrounding pre-existing liquid
nodes. The newly formed liquid nodes due to two-phase
interface evolution or dissolution of solid nodes cannot be
included for averaging. If there is no pre-existing liquid node
around the newly formed liquid node, then its concentration
is set as the local saturation concentration. The solute mass
associated with the newly formed liquid node is considered
to be uniformly taken from all the liquid nodes and thus
an equation similar to Eq. (26) is employed to reset the
concentration field. When a liquid node is changed into a
vapor node, its concentration is uniformly distributed over all
the liquid nodes.

G. A general concentration boundary condition

For solute transport in the liquid phase, the solid-liquid
interfaces are reactive boundaries and the liquid-vapor in-
terfaces are moving boundaries. To handle these complex
structured boundaries, a unified LB concentration boundary
condition is required that can handle moving and reactive
boundaries. Several concentration boundary conditions have
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FIG. 3. (Color online) Schematic illustration of a liquid-solid (or
vapor) interface node R. Here F is the fluid node and S is the solid
(or vapor) node.

been developed for different boundary condition types in
the literature; for a recent review, the reader is referred
to [44,53]. There have also been a few studies treating
reactive boundaries [9,48,53,54]. To discuss the concentration
boundary conditions, a schematic illustration of the fluid-solid
interface is presented in Fig. 3. Following Ref. [53], the
boundary condition at this interface is

b1
∂C

∂n
+ b2C = b3, (27)

which is a general formula that can describe all three types of
boundary conditions: the Dirichlet boundary condition, with
b1 = 0 and b2 �= 0; the Neumann boundary condition, with
b2 = 0 and b1 �= 0; and a mixed boundary condition, with b1

�= 0 and b2 �= 0.
Kang et al. [48] provided a correct expression of the con-

centration distribution function in terms of the corresponding
concentration and its gradient∑

giei = Cu − D∇C. (28)

In Fig. 3, after each streaming step, g2 is unknown and g4 is
known; g1 and g3 do not affect the fluid domain and hence are
not needed to calculate their values.

In the study of Kang et al. [48], the reactive wall is static.
Kang et al. [48] pointed out that since g2 enters the domain
and g4 leaves the domain, based on Eq. (28) the following
equation is obtained at the reactive node R:

g2 − g4 = −D

c

∂C

∂y
= k(1 − KC). (29)

Then they derived a relation in which the nonequilibrium
portion of the distribution functions in opposite directions
takes the opposite sign for a static wall, from which they
obtained another equation

g2 + g4 = (
g

eq
2 + g

neq
2

) + (
g

eq
4 + g

neq
4

) = g
eq
2 + g

eq
4 . (30)

Combining Eqs. (28) and (30), the unknown distribution g2

can be obtained.
Zhang et al. [53] proposed a so-called general bounce-

back scheme for concentration boundary conditions. First, they
solved Eq. (27) directly to obtain the concentration at the
boundary using the difference scheme

∂C

∂n
= CR − CF

|�x| , (31)

where CR and CF are the concentrations at interface node R

and adjacent fluid node F , respectively, and �x is the vector
connecting nodes F and R. Thus

b1
CR − CF

|�x| + b2C = b3; (32)

CR is only unknown variable in Eq. (32) and thus can be
directly solved. Zhang et al. then used Eq. (30) to solve the
unknown g2. It is worth mentioning that Eq. (30) holds only for
static walls [44]. Therefore, the boundary condition proposed
by Zhang et al. [53], just like the one developed by Kang
et al. [44], can treat only static wall boundaries.

In this study, we propose to use Eq. (28) to solve the
unknown distribution function after CR is obtained from
Eq. (27). For the boundary node shown in Fig. 3, the boundary
condition herein can be written as

b1
CR − CF

c
+ b2C = b3, (33a)

g2 − g4 = CRv − D

c

∂C

∂y
. (33b)

Equation (33a) is used to solve CR , after which Eq. (33b) is
used to solve g2. In this way, this boundary condition treatment
can handle moving boundary conditions. Note that a scheme
similar to the boundary condition in the present study was
adopted by Walsh and Saar [54] to construct the reactive
and moving boundary condition. However, their boundary
condition can treat only the Neumann boundary condition as
pointed out by Zhang et al. [53], while our scheme can treat all
three types of boundary conditions. In addition, our boundary
condition based on the D2Q5 model can greatly reduce the
computational burden, compared with the D2Q9 model used
by Walsh and Saar [54] and Zhang et al. [53].

The boundary condition described by Eq. (33) can be uni-
formly used to treat both a reactive liquid-solid boundary and
a zero-flux liquid-vapor boundary. For the static liquid-solid
boundary, a precipitation or dissolution reaction described by
Eq. (22) leads to the following reduced form of Eq. (33)
(supposing a boundary such as that shown in Fig. 3):

D
CR − CF

c
= −k(1 − KCR), (34a)

g2 − g4 = −D

c

∂C

∂y
. (34b)

In contrast, for the moving liquid-vapor boundary, there is no
reaction and the concentration gradient of solute is zero. Thus
Eq. (33) reduces to (supposing a boundary like that shown in
Fig. 3)

D
CR − CF

c
= 0, (35a)

g2 − g4 = CRv. (35b)

H. Numerical procedure

After initialization, each iteration involves the follow-
ing substeps: (i) updating the fluid field using the single-
component multiphase Shan-Chen LB model, (ii) solving
the solute (namely, the concentration of salt in the aqueous
phase) transport in the liquid water with the heterogeneous
reaction at the liquid-solid interface using the LB mass

043306-8



PORE-SCALE MODELING OF MULTIPHASE REACTIVE . . . PHYSICAL REVIEW E 87, 043306 (2013)

transport model, and (iii) updating the density of solid salt
nodes and updating the geometry of the solid phase using the
dissolution-precipitation model. For the systems considered
here, the evolution of the solid geometry due to dissolution or
precipitation is very slow compared to fluid flow or solute
transport. Thus, at each configuration of the solid phase,
the steady state of the fluid flow and mass transport can be
obtained. The time step for flow and transport is kept the same
by adjusting the relaxation time and J0.

IV. VALIDATION

Our numerical model is constructed incrementally by
combining different models including the multiphase flow
Shan-Chen model [3,24], mass transport with homogeneous
and heterogeneous reactions [13,48], and dissolution and
precipitation including nucleation and crystal growth [2,18].
Since no analytical solutions or experimental results of
these complex coupled nonlinear multiple physicochemical
processes are available for performing quantitative compar-
isons with our simulation results, our validation consists of
testing each of the submodels, each of which has appropriate
theoretical results with which to compare to our pore-scale
model.

A. Single-component two-phase flow

Several physical problems are selected for validation of
the single-component multiphase Shan-Chen model. The first
one is first-order phase separation. We carried out a series
of simulations with different initial uniform densities added
with different perturbations in a 201 × 201 lattice periodic
system with different temperature. In this and all subsequent
simulations, the relaxation time τυ = 1.0. The conclusions of
simulations of the phase separation have been discussed in
Sec. III A and are not repeated here.

The second comparison is the circular static liquid droplet
embedded in the vapor phase in a gravity-free field. We
simulate this problem using a 201 × 201 lattice periodic
system. In the simulation, a liquid droplet with initial radius
r0 is placed at the center of the domain. The density field is
initialized using the method in Ref. [38]:

ρ(i,j ) = ρliquid + ρvapor

2
− ρliquid − ρvapor

2
tanh

×
[

2[
√

(i − icenter)2 + (j − jcenter)2 − r0]

W

]
, (36)

where (icenter = 101, jcenter = 101) is the center position of
the domain, tanh is the hyperbolic tangent function, and
tanh(x) = (e2x – 1)/(e2x + 1). Values for ρ liquid and ρvapor

are set as the theoretical densities predicted by Maxwell
equal-area construction at the corresponding temperature. A
typical steady-state density contour obtained from simulations
of this problem is shown in Fig. 4(a), in which T = 0.7Tc

and r0 = 30. To check the coexistence curves, a series of
simulations is carried out by changing T while fixing r0.
The LB simulated coexistence curves are in good agreement
with the theoretical one as shown in Fig. 4(b), where the
discrepancy is due to the thermodynamic inconsistency of the

Shan-Chen pseudopotential model. The lowest temperature
we can achieve is 0.57Tc, which is slightly higher than that
of Yuan and Schaefer [36]. Besides, to calibrate the Laplace
law, a series of simulations is conducted by changing r0 while
fixing T = 0.7Tc. The Laplace law states that the pressure
difference �p inside and outside a liquid droplet is inversely
proportional to the droplet radius

�p = σ

r
, (37)

where σ is the surface tension coefficient. Pressure measure-
ments are taken from the pressure profile along line AB, the
horizontal centerline of the domain as shown in Fig. 4(a).
A typical pressure distribution along line AB for T = 0.7Tc

and r0 = 30 is plotted in Fig. 4(c). As shown in Fig. 4(c),
�p is calculated as the difference between the steady high
pressure inside the droplet and the steady low pressure outside
the droplet. Note that large fluctuations of the pressure near
the liquid-vapor interface are unphysical due to a sharp change
of density and are ignored when calculating �p. Figure 4(d)
plots �p as a function of 1/r , where the linear relationship can
be clearly observed. The value of σ obtained by linear fitting
of our simulation results is 0.0152, which is in acceptable
agreement with the theoretical value of 0.009386, compared
to the available numerical study in the literature [38]. The
discrepancy is also due to the thermodynamic inconsistency
[38].

The last problem for validation of two-phase flow is the
equilibrium contact angle for a liquid droplet on a flat and
uniform solid wall. The contact angle is usually considered as
a measure of the solid surface wettability. A surface is wetting
or hydrophilic if the contact angle θ < 90◦ and liquid tends to
spread as a film on the solid surface. In contrast, the surface
is nonwetting or hydrophobic if θ < 90◦ and liquid tends to
form a droplet on the solid surface. We carried out a series of
simulations in which an initially semicircular static droplet is
placed on a horizontal solid surface and w is changed in the
range from −0.1 to ∼0.1 to obtain different contact angles.
The simulations are performed in a 201 × 201 lattice system
with the top and bottom boundaries as solid walls and the left
and right boundaries as periodic boundaries. Figure 5 shows
the relationship between w and the predicted contact angles for
the case of T = 0.7Tc and r0 = 30. The insets in Fig. 5 show
typical droplets with different contact angles. The relationship
between the contact angle and w is almost linear, agreeing
with the simulation results in Ref. [55].

B. Mass transport

Two reactive transport problems with analytical solutions
are adopted to validate our mass transport LB model and the
concentration boundary condition. The first reactive transport
problem for validation is species diffusion in a channel with
surface reaction [48]. Species A with constant concentration
C0 diffuses into a channel of size a × b and reacts at the top
surface with first-order linear kinetics. On the bottom surface
of the channel there is no reaction. Both the top and bottom
walls are static walls. The boundary condition at the right
wall is nonflux. For the details of the governing equations and
analytical solution for such a reactive transport problem, the
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FIG. 4. (Color online) Simulation results of a circular static liquid droplet embedded in the vapor phase in a gravity-free field using a
201 × 201 lattices periodic system. (a) Steady-state density contours for the case at T = 0.7Tc and with the initial droplet radius of 30 lattices.
(b) Comparison of coexistence curves obtained from LB simulations with the theoretical one predicted by Maxwell equal-area construction.
The initial droplet radius is 30 lattices. (c) Pressure distribution along the horizontal center of the computational domain. The initial droplet
radius is 30 lattices and T = 0.7Tc. (d) Summary of LB results for the droplet with different radius and calibration of the Laplace law at T =
0.7Tc.

w

C
o

n
ta

ct
 a

n
g

le
   

 (
d

eg
re

es
)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

40

80

120

160

θ= 110.8o

= 45.5o θ= 88.5o

θ

w= 0.05

w= - 0.05 w= 0

θ

FIG. 5. (Color online) Simulation results of different equilibrium
contact angles for a liquid droplet on a flat and uniform solid wall
with different liquid-solid strength w. The insets show droplets with
different contact angles. The system is a gravity-free field with top
and bottom solid walls and periodic left and right boundaries. The
system is discretized by 201 × 201 lattices. Here T = 0.7Tc and r0 =
30.

reader is referred to our previous studies [48]. The top wall is
a static reactive boundary and is handled using the present
concentration boundary condition. Figure 6 compares the
contours of the normalized concentration C/C0 obtained from
simulations with those obtained from the analytical solution.
In Fig. 6, two cases are presented with Damköhler number
(Da = kb/D, representing the relative strength of reaction to
diffusion, where k is the reaction rate of the first-order linear
kinetics) values 50 and 5. Other parameters are a = 100 μm,
b = 100 μm, C0 = 0, D = 3 × 10−5 m2s−1, and J0 = 0.2. The
computational domain is discretized by 101 × 101 lattices.
As shown in Fig. 6, excellent agreement is obtained between
simulation results and the analytical solutions.

The second reactive transport problem for validation is
diffusion in a channel with bulk reaction [3]. Species A

enters a channel with size a × b from the left inlet with
concentration Cin = 1 and leaves the channel at the right outlet
with concentration Cout = 0. The solvent flows with a uniform
constant horizontal velocity u and the transport of species A

does not affect the flow field. The bulk reaction of A takes
place in the entire domain with bulk reaction rate k (s−1). Thus
the left and right walls are moving boundaries with known
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FIG. 6. (Color online) Contours of concentration at steady state for (a) Da = 5 and (b) Da = 50. The solid line and the dashed line are the
analytical solution and simulation results, respectively. The size of the channel is 100 × 100 μm. The first-order linear kinetic reaction occurs
on the top surface at y = 100 μm. Other parameters are C0 = 0, D = 3 × 10−5 m2 s−1, and J0 = 0.2.

concentration. The problem is essentially a one-dimensional
problem. For details of the governing equations and analytical
solution for this reactive transport problem, the reader is
referred to our previous studies [3,13]. Figure 7 shows the
simulation results for different values of Pe (Pe = ub/D,
representing the relative strength of convection to diffusion)
and different k. In Fig. 7, a = 200 μm, b = 120 μm, D =
1 × 10−8 m2 s−1, and J0 = 0.2. The computational domain
is discretized by 101 × 61 lattices. Figure 7(a) compares the
simulation results of the steady-state profile of C along the x

axis with the analytical solutions for different Pe, with k = 0.
It can be seen in Fig. 7(a) that for all the cases the simulation
results agree well with the analytical solutions. Figure 7(b)
compares the simulation results with the analytical solutions
for different reaction rate constants k for the Pe = 3 case.
Again the simulation results show excellent agreement with

the analytical solutions, further validating our mass transport
LB model and the present concentration boundary condition.

V. RESULTS AND DISCUSSION

A. Thermal migration of the inclusion

In this section we apply our numerical model to the study of
thermal migration of a brine inclusion in a single salt crystal.
The computational domain is shown in Fig. 1, which is a salt
crystal containing a brine inclusion at the center. The sizes
of the salt crystal and the inclusion are L × H = 1 × 1 cm2

and A × B = 0.2 × 0.2 cm2, respectively. The system is
discretized by 202 × 202 lattices. Initially, the system is set
at a uniform temperature T0 = 0.7Tc and the inclusion is
filled with liquid brine with density ρ l = 0.3572 (the liquid

x (m)

C
/C

in

0.0000 0.0001 0.0002
0

0.2

0.4

0.6

0.8

1

Pe=-10

Pe=10

Pe=3

Pe=0

Pe=-3

(a) Diamond: LB results
Line: Analytical solutions

x (m)

C
/C

in

0.0000 0.0001 0.0002
0

0.2

0.4

0.6

0.8

1

k = 0

(b) Diamond: LB results
Line: Analytical solutions

k =500

k = 2

k = 10

FIG. 7. (Color online) Concentration in the x direction at steady state for (a) different Pe with k = 0 and (b) different k for the Pe =
3 case. Solid lines and diamonds are the analytical solution and simulation results, respectively. The size of the channel is 200 × 100 μm. Other
parameters are D = 1 × 10−8 m2 s−1 and J0 = 0.2. The computational domain is discretized by 101 × 61 lattices.
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FIG. 8. (Color online) Simulation results of the thermal migration of the inclusion in the salt crystal: (a) time evolution of the density field
in the inclusion and (b) time evolution of the aqueous salt concentration.

density at T0 = 0.7Tc). Then the salt crystal is subjected to a
temperature gradient with TH = 10 + T0 at y = 1 cm and
TL = −10 + T0 at y = 0 cm. Based on the discussion in
Sec. III C, the analytical temperature distribution is linear,
with T = TL + (TH –TL) y/H , which is symmetrical about

y = H/2, where T = T0. The terms a and b in Eq. (22) are
taken to be 1 × 10−4 and 0.952, respectively. The kinetic vis-
cosity is υ = 1 × 10−6 m2 s−1, with corresponding relaxation
time τ = 1.0, and the diffusion coefficient of salt in water is
D = 9 × 10−8 m2 s−1 with corresponding J0 and τ in Eq. (19)
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as 0.9 and 0.8, respectively. Setting the relaxation times and
J0 in this way leads to equal time in each time step for fluid
flow and mass diffusion. Other parameters for simulations
are Vm = 0.625 × 10−12 m3 mol−1 and k = 9 × 10−5 m3 s−1.
The contact angle between liquid water and the solid salt is
about 78◦, which is relatively hydrophilic. For fluid flow, the
nonslip boundary conditions are applied on all the solid-fluid
interfaces that are obtained using the bounce-back scheme
in LBM. Dissolved salt transports only in the liquid phase
and reacts at the liquid-solid interface, where the dissolution-
precipitation process takes place. The present concentration
LB boundary condition for mass transport developed in
Sec. IV B is employed on the reactive liquid-solid boundaries
and the moving liquid-vapor boundaries.

The thermal migration of the inclusion is shown in Fig. 8,
which displays the time evolution of the shape of the inclusion
as well as the density field inside the inclusion in Fig. 8(a) and
corresponding concentration of the solute in Fig. 8(b). The time
required for this simulation is about three days on a Dell T7400
Workstation with eight processor cores (Intel Xeon E5420)
and 3 GB of memory (the current two-dimensional computer
code is not parallel and runs only on a single processor core).
Subjected to the temperature gradient, the solute concentration
at the bottom of the inclusion is supersaturated, while that at
the top of the inclusion it is undersaturated. Therefore, the
salt precipitates at the bottom of the inclusion (cold sites) and
dissolves at the top of the inclusion (hot sites) (t = 0.08 and
8.3 s). Such microevolution of the geometry of the inclusion
leads to the macro-observable migration of the inclusion (t =
0.08–83.3 s). Since the migration is towards the hot site and
the solubility gradually increases, the amount of dissolution is
larger than the amount of precipitation, leading to a volume
increase of the inclusion during migration. This is shown in
Fig. 9, which plots the volume of the inclusion with time, where
the volume is normalized by the initial volume of the inclusion.
Because the inclusion is a closed system, a volume increase
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FIG. 9. (Color online) Variation of inclusion volume and total
density of fluid with time. The volume is normalized by the initial
volume of the inclusion. The inclusion volume increases due to a
greater amount of dissolution relative to precipitation. The rate of
the volume increase slows down after phase separation takes place.
The mass conservation in the closed inclusion is acceptable, with a
maximum relative change of 3.02% in 250 s.

leads to decreased fluid density. For example, at t = 83.3 s,
the density of the fluid is reduced to about 0.29, compared
to the initial density 0.35. When the density of the fluid is
dropped to a critical value (0.27 for T = 0.7Tc, as mentioned
in Sec. III A), the phase separation takes place (t = 112.5 s),
with the fluid partitioning into liquid and vapor phases with
densities of 0.3572 and 0.00312, respectively. As shown in
Fig. 9, the rate of the increase of the inclusion volume slows
after the phase separation occurs. This occurs because the
solute once in the entire inclusion now is concentrated in the
liquid phase during the short time of phase separation, leading
to a higher concentration of solute in the liquid phase. The
higher solute concentration facilitates the precipitation while
slowing down the dissolution, leading to a reduced rate of
the inclusion volume growth. In addition, the reactive surface
area for dissolution-precipitation reactions, which take place
only at liquid-solid interfaces, decreases [t = 112.5–187.5 s in
Figs. 8(a) and 8(b)]. In addition, from the set of images in Fig. 8
it can be seen that there are many extremely small inclusions
left behind in the wake of the inclusion. This is due to the
randomness of the precipitation process. Finally, it is worth
mentioning that during the entire process the fluid flow in the
closed system is extremely slow, which leads to the dominance
of diffusion over advection for mass transport in the inclusion.
The concentration profiles in Fig. 8 are consistent with this
interpretation.

Figure 9 also presents the variation of total fluid density
in the inclusion with time. The mass conservation constraint
is reasonably satisfied, with a maximum relative variation of
the density of 3.02% in 250 s, indicating that our scheme of
handling information associated with nodes undergoing phase
change is reliable. Note that there is sudden drop of the total
density when phase separation of liquid-vapor phases occurs,
as shown in Fig. 9. This is because the current Shan-Chen
model and the force scheme employed in the present study
introduce an unphysical source term into the mass conservation
equation, as reported in Ref. [39]. Since the source term is the
time derivative of the forces, it is relatively large when phase
separation takes place, which generates forces between liquid
and vapor phases in a very short time, thus resulting in the
sudden drop of total density.

Overall, the macrothermal migration of the inclusion and
the microscopic complex coupled multiple physicochemical
processes including multiphase flow with phase separation,
mass transport, surface reactions, and dissolution and precipi-
tation are well captured by our pore-scale model.

B. Effects of initial inclusion size and temperature gradient

We now present parameter sensitivity studies examining the
effects of initial inclusion size and the temperature gradient on
the thermal migration processes. To simplify the discussion,
we ignore the phase separation and assume a liquid phase
during the entire migration process. Since the migration of
the brine inclusion is very slow and the fluid flow inside
the inclusion is inconsequential, this analysis considers only
the mass transport and dissolution-precipitation subprocesses.
Figure 10(a) shows the relationship between inclusion volume
and time for different initial inclusion size for simulations in
which the inclusion travels from the starting point to the top
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FIG. 10. (Color online) Effects of inclusion size on the migration
process: (a) relationship between inclusion volume and time and (b)
inclusion shape and location at a given time (249.8 s).

boundary of the salt crystal. Figure 10(b) shows the inclusion
geometries and positions for different initial inclusion size at
t = 249.8 s. In the simulations, all the parameters are the
same as in the preceding section, except the initial inclusion
size. Figure 10(a) shows that the volume increase depends
strongly on the inclusion size such that the larger inclusions
exhibit a smaller relative volume increase. For example, for
the inclusion with an initial size of 0.5 mm, the ratio between
the final volume and initial volume is nearly 5, while for the
inclusion with an initial size of 2 mm, the corresponding ratio is
only about 1.7. This is due to more efficient and quicker mass
transport from hot sites to cold sites for smaller inclusions.
In addition, the macromigration velocity is larger for larger
inclusions, as shown in Fig. 10(b). For example, the time
required for the inclusion to reach the top boundary of the
salt crystal is about 250 s for the 2-mm inclusion, while for
the 0.5-mm inclusion the travel time is almost 400 s. However,
in the limit of very small inclusions, such as those with a size
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FIG. 11. (Color online) Effects of temperature gradient on the
migration process: (a) relationship between inclusion volume and
time and (b) inclusion shape and location at a given time (249.8 s,
except for the leftmost figure, for which the inclusion reaches the
boundary at 124 s).

of 0.15 mm, the volume variation is small [the oscillation in
Fig. 10(a) is due to the small initial inclusion size and model
discretization issues in which one lattice of dissolution or
precipitation leads to large V /V0] and migration is extremely
slow. This is because the concentration difference required
for dissolution and precipitation cannot be established in such
a narrow space due to the tiny temperature difference across
that space. Therefore, there is rare dissolution and precipitation
and thus the inclusion is almost static. Such phenomena are
consistent with the conclusion in Ref. [31] that at a given
thermal gradient there is a critical inclusion size under which
the inclusion velocity becomes very small.

Figure 11(a) shows the relationship between the inclusion
volume and time and Fig. 10(b) shows the inclusion geometries
and position at a certain time for different temperature
gradients. The volume variation and the macromigration
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velocity are larger for larger temperature gradients. This is
expected, as the larger temperature gradient leads to larger
solubility differences and thus a greater driving force for
dissolution-precipitation driven inclusion migration. Similar
to the phenomenon of a critical inclusion size described above,
there is a critical temperature gradient at which the inclusion
velocity becomes very small. As shown in Fig. 11, for �T of
2 K, the inclusion is almost static after some dissolution and
precipitation at the initial stage.

VI. CONCLUSION

Multiphase flow and reactive transport with moving solid-
fluid interfaces are widespread in nature and industrial sys-
tems. In this paper, a pore-scale model based on the LBM was
developed to investigate the coupled multiple physicochemical
processes including multiphase flow with phase transitions,
heat transfer, mass transport, surface chemical reactions,
dissolution and precipitation, and dynamic evolutions of
the pore-scale geometries of the solid phase. The single-
component multiphase Shan-Chen LB model [22,23] was used
to simulate the liquid-vapor two-phase flow, the mass transport
LB model with a general form of equilibrium function [33] was
used to account for mass transport, and the VOP method was
adopted to describe dissolution and precipitation [28].

The scheme of adding a small and random density pertur-
bation to obtain phase separation of a fluid system with initial
uniform density ρ0 was investigated in detail and it was found
that (i) at certain temperature, ρ0 should be lower than a critical
value, above which the phase transition cannot be activated,
and (ii) the higher the value of ρ0, the lower the maximum
perturbation should be, otherwise the simulation will be
divergent. In addition, a scheme was developed for handling
the density, velocity, and concentration associated with a
node undergoing phase change between liquid-solid phases
or liquid-vapor phases, which was designed to ensure mass
and momentum conservation in a closed system. In addition,
a general LB concentration boundary condition was also
developed. The present LB concentration boundary condition
can handle concentration boundaries with the general form

b1∂C/∂n + b2C = b3 and the boundaries can be moving and
can have complex structures. Two reactive transport problems
were employed to validate the present general LB concentra-
tion boundary condition and the simulation results are in good
agreement with the corresponding analytical solutions.

The pore-scale model was used to simulate the thermally
driven migration of a brined inclusion in a salt crystal. The
macrothermal migration of the inclusion and the microscopic
coupled multiple physicochemical processes (multiphase flow
with phase separations, mass transport, surface reactions,
and dissolution-precipitation processes) are well captured by
our pore-scale model. The effects of the initial inclusion
size and temperature gradient on the migration process were
investigated. It was found that variation of the volume of the
inclusion is larger for smaller inclusions due to more efficient
mass transport from hot sites to cold sites in the smaller closed
spaces of a smaller inclusion. In addition, the macromigration
velocity is larger for larger inclusions. However, when the
inclusion is extremely small, the concentration difference
required for dissolution and precipitation cannot be established
in the extremely narrow space of the small inclusion and thus
the inclusion is almost static. With respect to the temperature
gradient, the volume variation and the macromigration velocity
are larger for larger temperature gradients, due to the larger
solubility difference, which leads to greater amounts of
dissolution and precipitation. However, for a given inclusion
size, there is a critical temperature gradient below which the
inclusion does not migrate.

Further work would include instigating the behavior of
multiple brine inclusions in salt crystals with more complex
pore structures and temperature fields, extending the present
model to three dimensions, and incorporating the pore-scale
model results into continuum models.
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