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A multi-scale modeling framework combining finite volume method (FVM) and lattice Boltzmann
method (LBM) previously developed by our group is used to predict electrochemical transport reaction
in proton exchange membrane fuel cell (PEMFC) cathode with a parallel gas channel (GC), a gas diffusion
layer (GDL) with porous structures and a catalyst layer (CL) with idealized microstructures. In this frame-
work, the PEMFC cathode is divided into two sub-domains, one is GC and the other contains GDL and CL.
The FVM is used to simulate transport phenomena in the GC sub-domain, while the LBM is employed for
pore-scale transport phenomena in the GDL and CL as well as proton conduction in the CL in the other
sub-domain. Two reconstruction operators are adopted to transfer macro density, velocities and concen-
tration in the FVM to density distribution functions and concentration distribution functions in the LBM
at the interface between the two sub-domains. Simulation results show that the coupled (hybrid) simu-
lation strategy developed is able to predict transport phenomena in the GC and to capture the pore-scale
transport processes in porous GDL and CL. In addition, some techniques to save the computational
resources and to improve the efficiency of the coupled (hybrid) simulation strategy are discussed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Proton exchange membrane fuel cell (PEMFC) has been consid-
ered as an alternative power source for various applications and
has received much attention during the past decades, due to its
advantages including high power density, low operation tempera-
ture, high efficiency, low emissions and low noise. A typical PEMFC
consists of the following components with different length scales:
bipolar plates, gas channels (GC) curved in bipolar plates, gas diffu-
sion layers (GDL), catalyst layers (CL) and proton exchange mem-
brane (PEM) sandwiched between anode and cathode.
Correspondingly, transport phenomena involved in these compo-
nents show the characteristics of multi-scale and should be consid-
ered at different length scales [1]. For example, reactants flow into
the GC with dimensions of centimeters, permeate into porous GDL
with mean pore size of tens of micrometers, finally diffuse into
porous CL with pore size ranging from a few tens of nanometers
to a few micrometers where electrochemical reaction occurs.

Modeling and simulation have been used extensively during the
past years to investigate coupled phenomena of fluid flow, mass,
heat and the electric charge transfer in PEMFC. Recently, high-per-
formance computing and advanced numerical methods have en-
abled researchers to numerically study such nonlinear coupled
multi-scale transport processes in PEMFC as well as individual
components with higher fidelity. Based on whether the actual mor-
phology of porous components (GDL, CL and PEM) in PEMFC is con-
sidered explicitly, modeling and simulation of PEMFC can be
divided into two major categories: macro-scale models solving
the volumetric averaging of conservation equations in each ele-
mentary volume assuming a homogeneous porous components
with isotropic or anisotropic transport properties; and pore-scale
models incorporating realistic or approximately realistic micro-
structures of porous components. A brief review of the two kinds
of models is presented as follows.

There have been extensive studies using macro-scale models to
predict hydrodynamics mechanism and electrochemical reactions
in PEMFC. The macro-scale models based on the continuity assump-
tions numerically solve a set of conservation equations including
mass, momentum, energy, species and ionic and electronic charges
with appropriate boundary and initial conditions, using conven-
tional computational fluid dynamics (CFD) method such as finite
volume method (FVM) and finite element method (FEM). With
the help of a group of empirical and constitutive relationships as
well as kinetic equations for electrochemical reaction, such macro-
scopic models have been providing full image of operating pro-
cesses taking place in PEMFC. More and more comprehensive
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Nomenclature

a, b length
c lattice speed
cs lattice sound speed
C concentration
Da Damkömohler number
D diffusivity
f density distribution function
F Farady constant
g concentration distribution function
h potential distribution function
H height
I current density
l0 length scale
L length
J specially chosen constant in Eq. (10)
k reaction rate in Eq. (36)
K specially chosen constant in Eq. (10)
n normal vector
Nn variables in Eq. (37)
R gas constant
S stress tensor
t time
t0 time scale
T temperature
u velocity vector
u,v velocities along in x, y directions
x, y cartesian coordinates
Dx space step
Dt time step
e small expansion parameter
a transfer coefficient

bn variables in Eq. (37)
e knudsen number porosity
/ variable
rc cathode concentration dependence
g over-potential
m kinematic viscosity
q density
r proton conductivity
s relaxation time
x weight factor
C nominal diffusion coefficient

Superscript
eq equilibrium

Subscript
A species A
e electrolyte
g gas
i direction of the lattice velocity
in inlet
k kth component
L lattice unit
n nitrogen
o oxygen
P physical unit
ref reference
a,b,c coordinate direction indexes
w water vapor
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macro models, from initial one-dimensional models [2–4] to com-
plex three-dimensional two-phase models [5,6], have been devel-
oped to profoundly understand multi-scale and multiple
physicochemical transport phenomena in PEMFC, among which
the multiphase mixture model [7] and multi-fluid multi-phase
model [8] are the most famous. Recently, a general model coupling
mass, charge, momentum, energy transport and particularly liquid
water dynamic behaviors was developed by Le and Zhou [9]. This
model can predict the liquid water dynamics in the GC, GDL and
CL and reveal the effects of liquid water distributions on the distri-
butions of flow field, temperature, concentration and current den-
sity. Overall, macro-scale models, with the advantage of
computational efficiency, play prominent roles in understanding
transport processes in PEMFC. A complete review of literatures
using macro-scale models is beyond the scope of this paper and
more details can be found in [10].

Several components in PEMFC, including GDL, CL, PEM and
sometimes micro pore layer (MPL), are porous medium. Com-
monly, the GDL is carbon fiber based porous media such as carbon
paper and carbon cloth. It shows complex structures with hetero-
geneous characteristics which concretely present as heterogeneous
porosity, wettability, effective diffusivity and permeability [11].
Macro-scale models mentioned above, although allow computa-
tionally efficient larger scale simulations, usually neglect the
influence of porous structures and related heterogeneous charac-
teristics of GDL because the averaged length of a computational
element in macro-scale models is much larger than typical pore
size of GDL. Due to such ignorance, macro-scale models have to
employ several flow empirical relations expressing the relationship
between macroscopic transport properties (such as effective diffu-
sivity, permeability) and macroscopic structural parameters (such
as porosity and tortuosity), for example, relation between perme-
ability and porosity and that between effective diffusivity and
porosity. The accuracy of some of these empirical relations applied
to GDL materials is questionable and these relations sometimes
predict unreasonable distributions in the porous components
[12], thus they still need further validation. MPL, CL and PEM also
show the similar heterogeneous characteristics as GDL, and macro-
scale models also do not resolve the realistic structures of these
porous components. Thus, macro-scale models simulating these
components suffer the same problems encountered in modeling
GDL.

Pore-scale models directly describe the transport processes in
porous media based on the realistic structures and thus do not
need the relative macroscopic transport properties. They can be
used to improve the fundamental understanding of the reactive
transport in porous components of PEMFC. The pore-scale studies
can be broadly categorized into rule-based and first-principle-
based models [13]. Rule-based models, such as pore-network
(PN) modeling approaching, use a somewhat idealized network
to represent the porous medium. PN partly considers the porous
morphology of GDL by constructing the GDL as a regular cubic net-
work of pores connected by throats, and in each pores and throats,
simplified hydrodynamic and reactive equations are solved. Re-
cently, several studies adopting this method have been reported
to investigate effects of GDL structures on liquid water distribution
[12], to obtain the GDL specific capillary pressure versus saturation
correlation [14] and to acquire liquid water transient distribution
in GDL [15]. Because of the topologically and geometrically ideal-
ized structures used and the simplified hydrodynamics considered,
PN do not always fully account for the pore-scale processes occur-
ring in realistic porous media.
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The first-principle-based methods resolve the underlying trans-
port processes by solving the governing equations, namely the Na-
vier–Stokes equations. The governing equations can be solved by
either ‘‘top-down’’ approach or ‘‘bottom-up’’ approach. The con-
ventional numerical methods such as FVM fall into the ‘‘top-down’’
approach category, while the lattice Boltzmann method (LBM) and
molecular dynamics (MD) belong to the ‘‘bottom-up’’ approach
[13]. Among these pore-scale modeling using top-down CFD meth-
ods, FVM-based commercial software FLUENT is widely used [16–
19]. The general procedures using this software are as follows: con-
structing the microstructures of the porous components; meshing
the microstructures using mesh generation software; and finally
importing the meshes into FLUENT to solve related conservation
equations. Recently, Park et al. [16] constructed the GDL by ran-
domly placing impermeable cylinders and studied the processes
of liquid water removal from the GDL with different GDL contact
angle and driving pressure. Wang et al. [17,18] simulated the oxy-
gen and charge transport in CL with regular and random micro-
structures and later they further simulated transport and
reaction in CL with real CL structures reconstructed using stochas-
tic method [19]. The major difficulty encountered in pore-scale
models using top-down CFD methods is the discretization, namely
the grid generation, of the porous media. Actually, grid generation
of porous media, the quality of which significantly affects the con-
vergence, stability and accuracy of subsequent numerical simula-
tions, is not very successful due to irregular regions usually
presenting high tortuosity and distortion in porous media. Fortu-
nately, bottom-up numerical methods such as LBM and MD have
the inherent capacity of accounting for the porous structures due
to their remarkable ability of treating complex boundaries. There
have been an increasing number of studies adopting LBM to inves-
tigate the transport processes and structural properties in GDL
[20–23]. Park et al. [20] simulated the motion and break-up of a li-
quid droplet subject to air flow in a two dimensional GDL with ac-
tual porous structures. Mukherjee et al. [22] investigated the
effects of porous structures on liquid water transport process.
Liang and Cheng [21] explored the effect of GDL wettability on li-
quid water transport and distribution. Chen et al. [23] investigated
the dynamic behaviors of liquid water suffered to the air flow in
GDL under interdigitated GC. Currently, using LBM to predict cou-
pled reactive transport phenomena in CL is a challenge work. Kim
and Pitsch [24] adopted LBM to simulate the transport of oxygen
and protons through a constructed CL represented by carbon
spheres surrounded by an ionomer film. In addition, MD has also
been used to predict transport phenomena and structural charac-
teristics of the PEM [25,26].

From the above reviews, it can be found that macro-scale mod-
els are computationally efficient and can handle large scale simu-
lations, but they heavily rely on phenomenological descriptions
of fluid flow and transport processes and require effective macro-
scopic transport properties of the porous components, and thus
they cannot resolve local transport details within the porous com-
ponents. Pore-scale models, especially those using bottom-up
numerical methods, can capture the fundamental pore-scale de-
tails of transport processes, but require large and even prohibitive
computational resources and thus are limited to a small fraction of
the porous components. Therefore, simulation strategies that com-
bining the merits of macro-scale and pore-scale models while
avoiding the disadvantages of each are currently required to be
developed to simulate multi-scale transport phenomena in PEMFC.
Of particular interest is regionally coupling the FVM macro-scale
model with LBM pore-scale model, which requires information ex-
change between the fluid variables in the macro-scale model and
the distribution functions in the LBM.

The author’s group has done some preliminary work regarding
such subject by using a coupled simulation strategy [27,28]. In this
strategy, instead of pursuing a single uniform numerical method for
the entire domain, different numerical methods (or models) are
used to predict transport process in different local regions and
information is exchanged at the interfaces between neighboring re-
gions. During the implementation of such strategy, the computa-
tional domain is divided into several sub-domains and in each
sub-domain the appropriate numerical method corresponding to
the transport processes in this sub-domain is applied. For example,
when simulating transport processes in PEMFC using such coupled
modeling strategy, a PEMFC can be divided into four sub-domains,
namely, GC, GDL, CL and PEM. Then, FVM can be used for simulating
transport processes in GC, LBM for that in GDL, LBM or MD for that
in CL, and MD for that in PEM. Therefore, advantages of different
numerical methods are fully used, leading to the resolution of
pore-scale details of transport processes in complex porous compo-
nents with acceptable computational cost. Currently, this coupled
simulation strategy is experiencing a rapid growth in the modeling
of multi-scale problems. The critical task and major difficulty in the
coupled stimulation strategy is how to exchange information at the
interface of neighboring subdomains, or essentially between differ-
ent numerical methods [27]. Recently the author’s group has done
much work on the coupled simulation strategy by coupling differ-
ent methods: FVM and LBM [29–32], FVM and MD [33] and FVM
and direct-simulation Monte Carlo method (DSMC) [34].

In a previous study, we conducted some preliminary simula-
tions on the transport processes in cathode side of PEMFC by using
the coupling FVM and LBM [31]. In that study, that GC and GDL
were considered while CL was treated as an ultra thin interface;
and only fluid flow, mass transport and chemical reaction were in-
volved without taking into account the conduction of irons. In the
present study, we go on further to demonstrate the implementa-
tion of the coupled stimulation strategy to simulate transport pro-
cesses in PEMFC cathode, where the porous structures of CL are
considered and the transport process of protons is involved. Be-
sides, the using of coarse-fine grid system is evaluated and factors
affecting the maximum grid ratio available are discussed. The rest
of this paper is arranged as follows. First, FVM and LBM involved
are briefly introduced in Section 2 and the coupled scheme be-
tween FVM and LBM is described in Section 3. Section 4 presents
the validation of the multi-scale coupled simulation scheme. Then,
the coupled simulation scheme is applied to simulate the fluid
flow, multi-component species and proton transport and electro-
chemical reaction in PEMFC cathode side in Section 5. Finally, some
conclusions drawn from this work are given in Section 6.
2. LBM and FVM

2.1. Brief introduction to LBM

Due to its excellent numerical stability and constitutive versa-
tility, the LBM has developed into an alternative and promising
numerical approach for simulating fluid flow in recent years and
is particularly successful in applications involving interfacial
dynamics and complex geometries [35,36]. LBM simulates pseu-
do-fluid particles on a mesoscopic level based on Boltzmann equa-
tion using a small number of velocities adapted to a regular grid in
space. The obvious advantages of LBM are the simplicity of pro-
gramming, the parallelism of the algorithm and the capability of
incorporating complex microscopic interactions. For simplicity,
only brief introductions for fluid flow, species transport and proton
conduction LB models are given in the following paragraphs.
2.1.1. LB model for fluid flow
The LB fluid flow model employed is based on the simple and

popular Bhatnagar–Gross–Krook (BGK) method [37]. DnQb lattice
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is adopted where n denotes the dimension and b represents num-
ber of discrete velocities [38]. The evolution of LB equation is de-
scribed by

fiðxþ ciDt; t þ DtÞ � fiðx; tÞ ¼ �
1
sm
ðfiðx; tÞ � f eq

i ðx; tÞÞ ð1Þ

where fi(x, t) is the particle distribution function with velocity ci at
the lattice site x and time t, f ðeqÞ

i is the ith equilibrium distribution
function, Dt is the time increment, and s is the collision time. ci is
the discrete velocities. For D2Q9 model in this study, ci is given by

ci ¼

0 i ¼ 0
cos ði�1Þp

2

h i
; sin ði�1Þp

2

h i� �
i ¼ 1;2;3;4ffiffiffi

2
p

cos ði�5Þp
2 þ p

4

h i
; sin ði�5Þp

2 þ p
4
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i ¼ 5;6;7;8
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>>: ð2Þ

The equilibrium distribution function is given by

f eq
i ¼ xiq 1þ 3

c2 ðci � uÞ þ
9

2c4 ðci � uÞ2 �
3

2c2 u2
� �

ð3Þ

where the weights xi=4/9, i = 0; xi=1/9, i = 1,2,3,4; xi=1/36,
i = 5,6,7,8. Fluid density q and velocity u can be obtained from the
first and second moments of the particle distribution functions

q ¼
X

i

fi ð4Þ

qu ¼
X

i

fici ð5Þ

The kinematics viscosity in lattice unit is related to the collision
time by

m ¼ c2
s ðsm � 0:5ÞDt ð6Þ

Through Chapman–Enskog expansion, Eqs. (1) and (3) lead to the
continuity and the Navier–Stokes equations near the incompress-
ible limit

@q
@t
þr � ðquÞ ¼ 0 ð7Þ

q
@u
@t
þ ðu � rÞu

� �
¼ �rpþr � ½qlðruþruTÞ� ð8Þ
2.1.2. LB model for species transport
The following evolution of LB equation is used to describe spe-

cies transport [39]

gi;kðxþ ciDt; t þ DtÞ � gi;kðx; tÞ ¼ �
1

sD;k
ðgi;kðx; tÞ � geq

i;kðx; tÞÞ ð9Þ

where gi,k is the concentration distribution function of kth compo-
nent in the direction i. The equilibrium concentration distribution
function geq

i;kðx; tÞ is commonly chosen as [39]

geq
i;k ¼ Ck½Ji þ Kici � u� ð10Þ

where Ki is constant and equals 1/2 for two-dimensional case. C is
the concentration.

For mass transport simulation, the D2Q9 square lattice for 2D
simulation can be reduced to D2Q5 square lattice by ignoring
velocities at the diagonals, namely four velocities with subscript i
greater than 4 in Eq. (2). This reduction of discrete velocities does
not create loss of accuracy [39,40].

Ji in Eq. (10) is given by [39]

Ji ¼
J0; i ¼ 0
ð1� J0Þ=4; i ¼ 1;2;3;4

�
ð11Þ

where the rest fraction J0 can be selected from 0 to 1 depending on
the diffusivity D. Species concentration C is obtained by
Ck ¼
X

gi;k ð12Þ

The diffusivity in lattice unit is related to the collision time by

Dk ¼ CQ ð1� J0ÞðsD;k � 0:5ÞDx2

Dt
ð13Þ

where CQ is a lattice dependent coefficient and equals 1/2 for 2D
simulation [39].

Eqs. (9) and (10) can be recovered to the following advection–
diffusion equation for concentration C using Chapman–Enskog
expansion

@Ck

@t
þ u � rCk ¼ r � ðDkrCkÞ ð14Þ
2.1.3. LB model for proton conduction
The macro governing equation of proton conduction is similar

to that of mass transport, both of which are passive-scalar trans-
port equations. Thus, similar to that in Section 2.1.2, for proton
conduction the evolution of LB equation is as follows

hiðxþ ciDt; t þ DtÞ � hiðx; tÞ ¼ �
1
sh
ðhiðx; tÞ � heq

i ðx; tÞÞ ð15Þ

where hi is the potential distribution function. Note that the macro
velocity u is zero for proton conduction, thus, the equilibrium con-
centration distribution function heq

i ðx; tÞ for the D2Q5 lattice is

heq
i ¼

K0g; i ¼ 0
ð1�K0Þ

4 g; i ¼ 1;2;3;4

(
ð16Þ

where the rest fraction K0 can also be selected from 0 to 1 depend-
ing on the proton conductivity r. Potential g is obtained by

g ¼
X

hi ð17Þ

The proton conductivity in lattice unit is related to the collision
time by

r ¼ 1
2
ð1� K0Þðsr � 0:5ÞDx2

Dt
ð18Þ

The following conduction equation of proton can be obtained from
Eqs. (15) and (16) using Chapman–Enskog expansion method

@g
@t
¼ r � ðrrgÞ ð19Þ
2.2. Brief introduction to FVM

FVM is the most widely adopted numerical method for fluid
flow and heat transfer due to its conservation properties of the dis-
cretized equation and the clear physical meaning of the coeffi-
cients. The differential governing equations are as follows [41]

@ðq/Þ
@t

þrðqu/Þ ¼ rðC/r/Þ þ S/ ð20Þ

where / is a scalar dependent variable (such as velocity, tempera-
ture and concentration). C is the nominal diffusion coefficient,
and S/ is the source term.

In this article, the two-dimensional IDEAL collocated grid algo-
rithm is adopted [42,43], and the SGSD scheme [44] is used to dis-
cretize the convective term.
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3. Coupled simulation strategy

3.1. Reconstruction operator

Attention now is turned to design the coupling principle be-
tween FVM and LBM. The critical task and major difficulty in the
coupled modeling strategy is how to exchange information at the
interface of neighboring sub-domains, or essentially between dif-
ferent numerical methods [27,28]. For the coupling between LBM
and FVM, it is straightforward to transfer the distributions func-
tions obtained in the LBM framework to macro variables (velocity,
density, temperature, concentration and so on) through statistic
methods [35]. However, evaluation of the distribution function in
LBM from macroscopic variables is not straightforward, since the
expansion of a small number of macroscopic variables into a large
number of particle distribution functions in LBM is not unique and
quite difficult to implement [28]. Thus, operators that reconstruct
the distribution function in the LBM from the macro are required,
and we call them distribution function reconstruction operator
(RO). Our group has developed several RO including that trans-
forming macro density and velocity into density distribution func-
tions [30], that transforming macro temperature into temperature
distribution functions [32] and that transforming macro concen-
tration into concentration distribution functions [31].

In the present study, the density and concentration distribution
function ROs developed in [29,31] are adopted to calculate the
density distribution function f and concentration distribution func-
tion g from macro density, velocity and concentration

fi ¼ f ð0Þi þ ef ð1Þi þ e2f ð2Þi þ � � �

¼ f ðeqÞ
i 1� sDtUibc�2

s Uia@xa ub þ m@2
xa

ub þ mq�1Sab@xaq
� 	
 �

ð21Þ

gi ¼ gð0Þi þ egð1Þi þ e2gð2Þi þ � � �

¼ gðeqÞ
i 1� sgDtC�1ðUia@

ð1Þ
xa

C � D@xa@xa CÞ
h i

� 0:5sgDtCcibðUia@
ð1Þ
xa

ub þ m@xa@xa ub þ q�1mSab@xaqÞ

þ 0:5sgDtq�1Ycibc�2
s @

ð1Þ
xb q ð22Þ

where Uia = cia � ua, Sab = @xbua + @xaub. For the readers’ conve-
nience, the derivation processes of the two ROs are presented in
the Appendix where the explanations of the variables and symbols
in Eqs. (21) and (22) also are given.

3.2. General simulation procedure

In this section, the basic idea of coupled simulation strategy by
coupling FVM and LBM is introduced. Fig. 1 schematically shows a
Fig. 1. Computational domain decomposed into two sub-regions.
computational domain decomposed in two regions. FVM and LBM
are used to simulate fluid flow and mass transport in the left region
and right region, respectively. Line MN is the FVM region boundary
located in the LBM sub-region, and AB is the LBM region boundary
located in the FVM sub-region. Hence, the sub-region between
lines AB and MN is the overlapping region in which both LBM
and FVM methods are adopted. This arrangement of the interface
is convenient for the information exchange between the two
neighboring regions [27]. The multi-scale simulation procedures
coupling FVM and LBM are summarized as follows. Step 1, with
some assumed initial boundary conditions at the line MN, the
FVM simulation in the FVM zone is performed. Step 2, after a tem-
porary solution is obtained, the information at the line AB is trans-
formed into the density-velocity distribution function by Eq. (21)
and the concentration distribution function by Eq. (22). Step 3,
the LBM simulation is carried out in the LBM zone. Step 4, the tem-
porary solution of LBM at the line MN is transported into the macro
variables and the FVM simulation is repeated. Step 5, such compu-
tation is repeated until the results in the computational domain
reach the convergence standard. The convergence standard in the
present study is that the relative error between successive 200
iterated steps is less than 1 � 10�7 for variables related such as
velocity, concentration or potential.

Here we want to make some comments on the RO and the over-
lapping region. First, on the interface boundary for LBM, Eq. (21)
(Eq. (22)) is adopted to derive the density (concentration) distribu-
tion functions from macro density and velocities (concentration).
Note that in Eq. (21) f = f(0) + f(1) + f(2) (here we call it CE-2 scheme,
in which distribution function up to second order is contained). We
point out that for some relatively simple fluid flows, reduced
schemes, namely CE-1 scheme in which f = f(0) + f(1) can also be
used. As can be seen from their expressions in Appendix, f(0) only
contains the density and velocity, f(1) contains the density gradient
and velocity gradient (first order space derivative) and f(2) contains
second order space derivative of density and velocity. Thus for fluid
flows with second order space derivatives of density and velocity
of zero, CE-1 is sufficient. Note that when the first order space
derivatives of density and velocity are zero, it means the density
and velocities in the whole domain are constant, which do not re-
quire numerical simulations. Thus CE-0 scheme where f = f(0) is not
used generally. In our simulations, the fluid flow in PEMFC is com-
plex and thus CE-2 is necessary. In fact, even for the relatively sim-
ple Poiseuille flow, the second order space derivatives of velocities
are not zero.

For deriving concentration distribution functions from concen-
tration, also CE-1 and CE-2 schemes can be used depending on
the specific mass transport problems studied. For mass transport
problems with constant concentration gradient, CE-1 is sufficient.
Albuquerque et al. [45] coupled FDM (finite difference method)
and LBM for a two-dimensional (2D) pure diffusion system where
the concentration gradient is constant, and in their simulations CE-
1 scheme leads to good accuracy. Leemput et al. [46] coupled LBM
and FDM for diffusion system with bulk reaction where second or-
der spaced derivatives of concentration are not zero, and thus they
used CE-2 scheme. In our simulations for mass transport in PEMFC,
CE-2 is required.

The overlapping region is necessary for coupling FVM and LBM
in our simulations. This is because for SIMPLE algorithm used in
FVM, the boundary nodes are not solved and the values of the
physical quantities at the boundary nodes are specified by the
users at each time step. Thus, if there is no overlapping region be-
tween LBM region and FVM region, the values of the physical quan-
tities at the interface will fix as the initial values specified. Then,
another question arises, namely how to determine the size of the
overlapping region? It is obvious that information exchange is
increasingly sufficient if the size of the overlapping region in-
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creases. However, too large overlapping region is not allowed
which is a waste of computational resources. Besides, for using
the coupled simulation strategy for fluid flow and mass transport
in PEMFC, a coarse (FVM region)–fine (LBM region) grid system is
required for saving computation recourses. If the overlapping re-
gion is too small, there will be less than a grid in the overlapping
region for FVM which certainly causes insufficient information ex-
change. Thus, in our work, the size of the overlapping region for
simulating fluid flow and mass transport in PEMFC is 10 with the
lattice space step being of 1, and we can obtain a maximum grid
size ratio of 10:1 between FVM region and LBM region.

4. Computational domain and boundary conditions

4.1. Computational domain

The two-dimensional computational domain representing the
PEMFC cathode in the along-the-channel direction is shown in
Fig. 2, including a rectangle GC, a porous GDL, and a CL with ideal-
ized microstructures. The black obstacles in the GDL describe the
carbon fibers and the porosity of the GDL is about 0.7.

CL in PEMFC has complex microstructures composed of three
phases including carbon, platinum (Pt), ionomer and pores. Carbon
allows the conduction of electrons, Pt serves as the catalyst for
electrochemical reactions, ionomer provides pathway for proton
conduction and void space allows reactant and product gases to
diffuse. Indeed, it is a great challenge to reconstruct the realistic
porous structures of the CL due to its complex compositions [24].
According to the basic features of the CL, an idealized microstruc-
ture of CL with thickness of 20 lm is constructed in this study, as
shown in Fig. 2, with periodic repeating units composed of rectan-
gular solid phase and void space (see dashed rectangle in Fig. 2(b)
for a typical unit). The solid phase is assumed to be a mixture of
electrolyte/electronic phase. Protons migrate into the mixed phase
from the PEM (the top bottom of the computational domain) and
oxygen diffuses into the void space from the GDL. Electrochemical
reaction takes place at the interface (red thin film in Fig. 2(b)) be-
tween the solid phase and the void space (The interface is assumed
to be completely activated by Pt and thus is completely available
for reaction) and the local current density generated by the reac-
tion is determined by the Tafel equation

Ilocal ¼ Iref
Co

Co;ref

� 
rc

exp
aF
RT

g
� 


ð23Þ
Fig. 2. Computational domain representing cathode side of PEMFC, (a) entire
computational domain including a GC, a porous GDL and a CL with idealized porous
structures and (b) idealized porous structures of CL.
where Iref is the reference exchange current density, a is the transfer
coefficient and R is the gas constant. g is the local surface over-po-
tential. rc is the cathode concentration dependence. Co,ref is the oxy-
gen reference concentration. Note that the idealized CL
microstructures is similar to that used in [18]. Also as in [18], elec-
tron transport is neglected because proton transport is assumed to
be the limiting factor for the oxygen reduction reaction. The proton
conductivity in the mixture phase is determined by the following
equation [18]

r ¼ r0 �
ee

1� eg

� 
1:5

ð24Þ

where r0 is the intrinsic conductivity of the electrolyte, and ee and
eg are the electrolyte and pore volume fractions, respectively.

The computational domain constructed above is divided into
two sub-domains: GC, and porous region including GDL and CL.
FVM is used to simulate fluid flow and mass transport in GC, while
LBM is adopted to simulate fluid flow and mass transport in GDL as
well as to simulate fluid flow, mass transport, proton conduction
and electrochemical reaction in CL, as shown in Fig. 2(a). Since pro-
ton transfer completely takes place in the sub-domain using LBM,
coupling between FVM and LBM for proton transfer is not required;
only coupling between FVM and LBM for fluid flow and mass trans-
port is implemented at the interfaces of the two sub-domains.

The size of the computational domain is 1000 � 320 lm, with
GC height of 200 lm, GDL height of 100 lm and CL height of
20 lm (The width of each unit in CL is 10 lm). The GC is extended
by 300 lm to achieve the fully-developed boundary condition at
the GC outlet. Besides, 5 lm is added to the top boundary of the
whole domain representing the PEM from where proton transfers
into the computational domain. When dividing the whole compu-
tational domain into two parts using coupled modeling strategy,
the height of the FVM sub-domain is 190 lm, the height of the
LBM sub-domain is 145 lm and the width of the overlapping re-
gion is 10 lm, as shown in Fig. 2(a). The final size of the computa-
tional domain is 1300 � 325 lm, which is descritized by
1300 � 325 lattices with a resolution of 1 lm per grid after grid
independency check.

It is worth mentioning that in the present work the primary
objective is to illustrate the implementation of the coupled simu-
lating strategy. Thus the present study does not completely con-
sider the realistic porous geometries of the GDL and CL in detail;
instead it adopts a GDL with simplified porous structures and a
CL with idealized microstructures. However, the coupled simulat-
ing strategy developed is applicable for real structures of GDL
and CL, as there is no essential difference in the schemes of treating
obstacles with simplified or realistic structures in the framework of
LBM. In fact, coupled simulating strategy proposed in this work can
eliminate, to a great extent, the dependence of numerical models
on macroscopic geometrical parameters of the porous components
(such as porosity and tortuosity) as well as constitutive relations
between macroscopic transport properties and the macroscopic
structural parameters. This is also one of the major objectives that
motivates us to develop the coupled simulating strategy.

4.2. Boundary conditions

The transport processes and the electrochemical reactions in
the computational domain can be briefly described as follows:
the reactant (air in the present study) is supplied into GC from
the GC inlet, penetrates through the porous GDL, and diffuses into
the void space in CL; meanwhile, the proton transfers from the top
surface of the computational domain (PEM) and conducts through
the mixture phase into the CL; at the interface between the void
space and mixture phase in the CL, the proton and reactants react,
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generating current density and water vapor; the water vapor gen-
erated then transports through the GDL and is finally removed out
of the GC. The boundary conditions for simulating the above pro-
cesses are presened in the following sections. Section 4.2.1 de-
scribes the boundary conditions expressed by macro variables in
the whole computational domain and Section 4.2.2. discusses
how to implement these boundary conditions involved in the
LBM region in the LBM framework.

4.2.1. Boundary conditions for macro variables
At the GC inlet (BC1), uniform air velocity and concentration

fraction of species are specified

u ¼ uin; v ¼ 0; Co ¼ 0:21; Cn ¼ 0:79; Cw ¼ 0 ð25Þ

where the subscripts o, n and w represent oxygen, nitrogen, and
water vapor, respectively. In the simulation, only the transport pro-
cesses of oxygen and water vapor are simulated. Concentration of
the nitrogen can be obtained by subtracting the oxygen concentra-
tion and water vapor concentration from the total concentration.

At the GC outlet (BC2), GC is extended 300 lm to obtain fully-
developed boundary condition:

@u
@x
¼ 0;

@v
@x
¼ 0;

@Co

@x
¼ 0;

@Cn

@x
¼ 0;

@Cw

@x
¼ 0 ð26Þ

On all the solid walls the no-slip boundary condition is applied. Be-
sides, on all the solid walls except the reactive walls no mass flux
and no proton flux boundary condition is used (BC3 (bottom wall
of GC), BC4 (left and right walls of GDL), and solid surfaces of carbon
fibers in GDL)

u ¼ 0; v ¼ 0;
@Co

@n
¼ 0;

@Cn

@n
¼ 0;

@Cw

@n
¼ 0;

@g
@n
¼ 0 ð27Þ

On the top surface (PEM, BC5), over-potential is specified:

g ¼ gin ð28Þ

At the interface between void space and mixture phase in CL, elec-
trochemical reactions take place and the boundary conditions at the
reactive interfaces are

Do
@Co

@n
¼ � Ilocal

4F
; Dw

@Cw

@n
¼ Ilocal

2F
; r @g

@n
¼ �Ilocal ð29Þ
Fig. 3. Schematic of reactive surface.
4.2.2. Boundary conditions of distribution functions in LBM
Now attention is turned to how to implement the above bound-

ary conditions that is involved in the LBM region, because distribu-
tion functions rather than macro variables are required on the
boundaries in the LBM.

Since part of the GC inlet region (BC1) and GC outlet (BC2) is in
the LBM region, as shown in Fig. 2(a), LBM boundary conditions at
these boundaries should be specified. For fluid flow, at the GC inlet
where the velocity is known, the boundary condition proposed by
Zou and He [47] is used, which is based on an idea of bounce-back
of non-equilibrium distribution. At the GC outlet, the unknown dis-
tribution functions of the boundary nodes are set to be equal to the
corresponding distribution functions of the neighboring nodes in
the fluid to describe the fully-developed boundary conditions. Be-
sides, on the surface of the solid walls in the LBM region, bounce-
back scheme is used to achieve the no-slip boundary conditions.

For mass transport, at the GC inlet where the concentration is
known, only one distribution function is unknown for the D2Q5
square lattice, which can be easily determined by subtracting the
other four known distribution functions from the concentration
specified at the GC inlet. At the GC outlet, method similar to that
for fluid flow is employed to obtain the fully-developed boundary
conditions. On the surface of solid walls without electrochemical
reactions, bounce-back scheme is used to achieve the no-flux
boundary condition; for the proton transfer, such scheme is also
adopted on these no-reactive walls.

Emphasis is put on the treatment of the reactive surface in the
CL where mass flux and proton flux exist (red thin film at the inter-
face of void space and mixture phase, as shown in Fig. 2(b)). We
utilize the boundary condition proposed by Kang et al. [40] to
determine unknown part of distribution functions. Fig. 3 is a sche-
matic illustration of reactive surface between void domain and so-
lid domain. For oxygen transport, after each streaming process, the
unknown distribution function of the red node R on the reactive
surface is g2,o, while the other four distribution functions are
known. Since g2,o enters the fluid domain, g4,o leaves the fluid do-
main and g1,o, g3,o and g0,o do not affect the fluid domain, the fol-
lowing equation can be obtained [40]

g2;o � g4;o ¼ �
Do

c
@Co

@n
ð30Þ

For a stationary wall, non-equilibrium portion of the distribution
function takes on opposite signs in opposite directions [40], thus

g2;o þ g4;o ¼ geq
2;o þ gneq

2;o þ geq
4;o þ gneq

4;o ¼ geq
2;o þ geq

4;o ð31Þ

Combining Eqs. (10), (23), (29), (30) and (31) leads to the following
equations

g2;o þ g4;o ¼ 1�J0
2 Co

g2;o � g4;o ¼ � 1
c

Iref
4F

Co
Co;ref

exp aF
RT g
� 	

8<
: ð32Þ

with two unknown variables g2,o and Co which can be easily solved.
For water vapor transport, the same method can be adopted to

determine the unknown distribution function g2,w. For proton con-
duction, the only unknown distribution function is h4 as proton
transfers inside the mixture phase. Because h4 enters the mixture
phase, h2 leaves the mixture phase and the remaining three distri-
bution functions do not contribute to the computational domain,
thus the following equation is obtained [40]

h4 � h2 ¼ �
r
c
@g
@n

ð33Þ

This equation combined with the following equation

h4 þ h2 ¼ heq
4 þ heq

2 ð34Þ

and Eqs. (16), (23) and (29) leads to the following equations

h4 þ h2 ¼ 1�K0
2 g

h4 � h2 ¼ � 1
c Iref

Co
Co;ref

exp aF
RT g
� 	

(
ð35Þ
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There are two unknown variables required to be solved, namely h4

and g. The above equations are nonlinear and Newton–Raphson
iteration is used to calculate g. After g is determined, the unknown
distribution function h4 can be easily calculated.

It has been proved by Kang et al. [40] that the above scheme
treating the reactive surface guarantees the mass conservation
very well. The other reactive surfaces with different normal direc-
tions can be treated in the same way as described above.
5. Validation

Several classical flow problems have been used to validate the
accuracy and efficiency of the coupled modeling strategy, including
flow over a backward-facing step, lid-driven cavity flow, diffusion–
convection–reaction problem in a rectangular domain, and natural
convection in a square cavity caused by concentration difference.
For more details of these validations one can refer to [29,31]. In
the present study, single species diffusion in an open rectangular
domain [40] is simulated to further validate the coupled modeling
strategy. In such a problem, boundary reaction, which is not in-
volved in our previous validations [29,31], is considered. As shown
Fig. 4. Comparison of contours of the normalized concentration between simulation resu
problem, (a) Da = 5, coupled simulation strategy, (b) Da = 50, coupled simulation strateg
in Fig. 4, species A with constant concentration C0 diffuses into the
rectangular domain with size a � b and reacts at the top surface
with first-order linear kinetics. No-flux boundary condition is used
on the bottom boundary and the outlet of the rectangular domain.
For such a diffusion and reaction problem, the governing equation
and the boundary conditions are

@2CA
@x2 þ @2CA

@y2 ¼ 0

CA ¼ C0; x ¼ 0; DA
@CA
@y ¼ �kCA; y ¼ b

@CA
@y ¼ 0; y ¼ 0; @CA

@x ¼ 0; x ¼ a

8>>><
>>>:

ð36Þ

An analytic solution exists for such problem described by Eq. (36)

CAðx; yÞ ¼ C0

X1
n¼0

sinðbnbÞ
N2

nbn

cosh½bnðx� aÞ�
cosh½bna� cosðbnyÞ ð37Þ

where

N2
n ¼

b
2

1þ sinð2bnbÞ
2bnb

� 

ð38-aÞ

ðbnbÞ tanðbnbÞ ¼ Da ¼ kb
D

ð38-bÞ
lts using coupled simulation strategy and analytical solutions for boundary reaction
y, (c) Da = 5, analytical solutions and (d) Da = 50, analytical solutions.



Fig. 5. Velocity distribution, (a) velocity vector distributions in the computational
domain, (b) local detailed velocity vectors in the blue rectangle in GDL and (c) x-
component velocity u profiles at different cross-sections of the PEMFC cathode side.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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In Eq. (38-b), Da is a dimensionless number called Damkömohler
number, representing the relative strength of reaction to diffusion.

Simulations with large Da of 50 and small Da of 5 are performed
using the coupled simulation strategy. In the simulations,
a = 100 lm, b = 100 lm, D = 3 � 10�5 m2 s�1. Since in the LBM
model, the simulation variables are in the lattice units which
should be transformed from corresponding variables in physical
units. To connect the lattice space to physical space, length scale
l0, time scale t0, and density scale q0 are chosen in this study.
Accordingly, the physical variables such as velocity up, pressure
pp, viscosity tp and diffusivity Dp can be calculated from the quan-
tities in lattice system (subscripted by L) as follows

uP ¼ uL
l0

t0
; pP ¼ pLq0

l0

t0

� 
2

; DP ¼ DL
l20
t0
; mP ¼ mL

l2
0

t0
ð39Þ

In the validation as well as other simulations presented in this
work, the characteristic parameters are chosen as l0=1.0 � 10�6 m,
t0=1.33 � 10�8 s and q0=1.0 kg m�3.

The domain size is set to 100 � 100 grids. The lower part of the
domain with the size of 100 � 60 grids is simulated by FVM and
the upper part of the domain with the size of 100 � 50 grids is sim-
ulated by LBM, leading to the overlapping region with a size of
100 � 10. Fig. 4 displays the contours of the normalized concentra-
tion C/C0 obtained from the coupled simulations as well as the ana-
lytical solutions, showing an excellent agreement. Careful
examinations find that the maximum deviation is less than
0.02%. This provides us strong confidence in further investigation
of the multi-scale reactive transport phenomena in PEMFC using
the coupled simulation strategy.

6. Results and discussion

In this section, the coupled simulation strategy is used to simu-
late transport phenomena and electrochemical reactions in the
PEMFC cathode. The simulation conditions are listed in Table 1.

6.1. Fluid flow distribution

Fig. 5(a) shows the velocity vector distributions in the computa-
tional domain. As expected, there is a large difference in the veloc-
ity magnitude between GC and GDL. Due to the blockage of the
carbon fibers in GDL, reactant gas mainly flows in the GC and the
magnitude of the velocity in GC is significantly greater than that
in the GDL, leading to a diffusion-dominated mechanism of mass
transport in GDL. Fig. 5(b) displays the local detailed velocity vec-
tors in the blue rectangle in GDL in Fig. 5(a). It can be seen that
fluid flow in the GDL is greatly affected by carbon fibers. Our cou-
pled simulation strategy can predict the main flow in the GC as
well as capture detailed pore-scale flow within the GDL.
Table 1
Physical parameters.

Quantity Value

Pressure of the operation condition,P 1.0 � 101,325 Pa
Temperature of the operation condition,T 343 K
Universal gas constant,R 8.314 J mol�1 K�1

Faraday’s constant, F 96,487 C mol�1

Air inlet velocity, u 1.5 m s�1

Diffusivity of oxygen in air, DO 2.84 � 10�5 m2s�1

Diffusivity of water vapor in air, DH 3.55 � 10�5 m2 s�1

Cathode volumetric reference exchange current
density/reference oxygen concentration,Avjref/
CO,ref

120 A mol�1

(assumed)

Intrinsic conductivity of the electrolyte, r0 5 X�1 m�1

Electrolyte volume fractions, ee 0.25
Pore volume fractions, eg 0.75
The oxygen and water vapor concentration distributions pre-
dicted by the coupled simulation strategy are illustrated in Figs. 6
and 7, respectively. Applied over-potential on the top boundary of
the computational domain (PEM) is 0.2, 0.6 and 0.8 V, respectively.
As can be seen in Fig. 6, oxygen concentration gradually reduces in
the flow direction as oxygen is consumed in CL. Besides, oxygen
concentration decreases as the over-potential in PEM increases,
due to the increased electrochemical reaction rate. In accordance
with Fig. 6, water vapor is continuously generated from the elec-
trochemical reaction, resulting in increased water vapor concen-
tration along the channel. In addition, water vapor concentration
rises as the over-potential in PEM increases. Note that the mole
fraction of oxygen at the reactive sites is about 0.1 in Fig. 6(c), indi-
cating concentration polarization does not occur even the over-po-
tential is as high as 0.8 V. This is due to the relatively short channel
used in the present simulation. Besides, it can be seen that



Fig. 6. Oxygen mole fraction distribution under different over-potentials, (a) 0.2 V,
(b) 0.6 V and (c) 0.8 V.

Fig. 7. Water vapor mole fraction distribution under different over-potentials, (a)
0.2 V, (b) 0.6 V and (c) 0.8 V.
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although a wide range of over-potential is simulated, the difference
of mole fraction in the set images of Figs. 6 and 7 is not evident.
This is because in our simulations only a small part of the GC near
the PEMFC inlet with length of only 1 mm is simulated, which is
extremely shorter than the typical length of GCs in PEMFC of a
few centimeters. Thus, the concentration difference is not
significant.

In fact, fluid flow and mass transport in structures composed by
a porous layer and an adjacent clean fluid region, like in GC and
GDL considered here, are widely encountered in industrial applica-
tions and environment. The key issue related to such transport pro-
cesses lies in the interface between the clean fluid region and the
porous layer, where geometrical properties such as porosity and
grain size as well as macroscopic transport properties including
permeability and effective diffusivity undergo great changes [48].
Generally, there are two distinct modeling approaches regarding
such transport processes: single-domain approach (SDA) and
two-domain approach (TDA) [48,49]. The SDA considers the whole
composite region as continuum and one set of general governing
equations with position-dependent transport properties is applied
for the whole domain [49]. Explicit formulation of boundary condi-
tions is avoided at the interface. On the contrary, in the TDA, two
sets of governing equations are applied to describe the flow in
the clean fluid region (Navier–Stokes equation) and the porous
layer (Darcy equation) respectively, and additional boundary con-
ditions are applied at the interface to couple these two sets of
equations. Several kinds of interfacial boundary conditions have
been proposed in the literature [48]. The accuracy of both SDA
and TDA, especially at the interface, depends on the numerical
treatment of the interfacial region. In the SDA, the change of the
macro transport properties at the interface is achieved by certain
artifacts and transport phenomena at the interface depend on the
discretization scheme of the governing equations [49]. In the
TDA, additional parameters are usually required in the interfacial
boundary conditions, which depend on the specific structural char-
acteristics of the porous interface.

Basically, problems encountered in both SDA and TDA arise
from the homogenous treatment of the porous layer in which de-
tailed porous structures of the porous layer are not explicitly con-
sidered [31]. Obviously, if real structures of the porous layer are
taken into account, the requirement of macro transport properties
undergoing large variations at the interface can be released; and
thus special treatments of the interfacial region will not be needed
[31]. In the present study, the porous structures of the GDL are
explicitly considered in the LBM framework and no special treat-
ment is required at the GDL/GC interface. Although large computa-
tional resources are required in the LBM compared to
homogeneous models used in SDA and TDA, the rapid development
of computational techniques increasingly enables the LBM simula-
tions at the pore scale. Fig. 5(c) further shows the x-component
velocity u profiles at different cross-sections of the PEMFC cathode
side. u uniformly given at the inlet develops into bimodal distribu-
tions and then gradually grows into the quasi-parabolic profiles.
The local interfacial porous structures of GDL indeed affect the
velocity distributions in GC from the comparison of u profiles at
x = 400 lm and x = 800 lm.

Commonly, the SDA method is widely used in the modeling and
simulation of transport processes in PEMFC. To the best of our
knowledge, however, it is found that little attention has been de-
voted to the interfacial region in the PEMFC, including GDL/GC
interface and GDL/CL interface. Actually, interfacial behaviors in
PEMFC are of great importance when transport processes in PEMFC
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are concerned, especially when two-phase phenomena are consid-
ered. Liquid water saturation at the GDL/GC interface greatly af-
fects liquid water content in the GDL [50]. Besides, the capillary
pressure required for forming a droplet at the GDL/GC interface
plays important roles on liquid water distribution [51] and liquid
water dynamic transport processes within the GDL [52]. Therefore,
further work is required to investigate the interfacial phenomena
in PEMFC where realistic porous structures of GDL are considered,
which is ongoing in our group.

6.2. Over-potential distributions

Fig. 8 shows the over-potential distributions in the CL corre-
sponding to Figs. 6 and 7. It can be seen that the potential drop in-
creases as the over-potential in the PEM increases. This is expected
because reaction rate increases as over-potential in the PEM in-
creases, leading to more current density generated and thus bigger
ohmic loss. In the present study, the CL adopted has an idealized
structure with several assumptions, which extremely simplifies
the realistic porous complex structures of the CL. It is expected that
when the complex multiple phases in CL are considered, more
important pore-scale reactive transport phenomena can be ob-
served [19]. Our further work is to use the coupled simulation
strategy to study the transport phenomena and electrochemical
reactions in PEMFC by taking into account the realistic micro struc-
tures of GDL and CL.

6.3. Computational resource saving techniques

In the LBM region, the gird size should be fine enough to resolve
the microstructures of the porous components. In the FVM clean
region, however, such a fine grid size is not necessary because rel-
atively coarse grid size is enough to capture the transport phenom-
ena in the FVM region. Using the same grid size in the FVM as that
in the LBM takes up too many computational resources which can
be saved by using different grid sizes in different sub-regions. In
Fig. 8. Potential distributions under different over-potential distributions , (a) 0.2 V,
(b) 0.6 V and (c) 0.8 V.
this section, we increase the grid size in the FVM region while fix-
ing the grid size in the LBM region. The grid size ratio between the
FVM and LBM ranges is set as 10, 5, 2, and 1 respectively. Fig. 9
schematically shows the interface region between the FVM and
LBM using coarse and fine grids with grid ratio of 5:1. Note that
in each iteration step of the simulation, the field values at the
white open circles on the LBM region interface boundary (fine re-
gion boundary AB in Fig. 9) should be interpolated from the results
of the neighboring coarse grids. Simply linear interpolation is used
in this study to determine the values at the white circles. Besides,
the field values at the blue solid circles on the FVM region interface
boundary (coarse region boundary MN in Fig. 9) are an averaged
value of the neighboring fine grids. The boundary conditions for
the simulations with coarse (FVM) – fine (LBM) grid system are
the same as that in Section 6.1.

Figs. 10 and 11 show the u and v velocity on the interface
boundary of LBM region and FVM region respectively. It can be
seen that even for the case with grid ratio 10:1, the simulation re-
sults are still in good agreement with that of 1:1 case (Here we as-
sume the result of 1:1 case is the benchmark solution). The u
velocities for all the cases are almost coincident except at the re-
gion with fluctuations. This is because average (at the FVM inter-
face) and interpolation (at the LBM interface) at regions with
large fluctuations obviously lead to large errors, thus the discrep-
ancy increases as the grid ratio increases at these fluctuating re-
gions. The v velocities show some discrepancy, but the overall
fluctuation trends for all the cases are consistent. It can be seen
that the fluctuations of v velocities on the interface boundary for
LBM decrease as the grid ratio increases, while that on the interface
boundary of FVM increase as the grid ratio increases. This is be-
cause on the interface boundary of LBM the interpolations smooth
the fluctuations. On the boundary interface of FVM, the grid of LBM
region closest to the FVM grid currently calculated is given the
largest weight factor for average, thus somewhat magnifying the
fluctuations. Fig. 12 shows the mole fraction of oxygen and water
vapor on the interface boundary of LBM with over-potential of
0.5 V. Again the simulation results for all the cases show a good
agreement.
Fig. 9. Interface between FVM region and LBM region using coarse grid and fine
grid.



Fig. 10. Velocity on the interface boundary of LBM region with different ratio of
grid size between FVM region and LBM region.

Fig. 11. Velocity on the interface boundary of FVM region with different ratio of
grid size between FVM region and LBM region.

Fig. 12. Mole fraction on the interface boundary of FVM region with different ratio
of grid size between FVM region and LBM region.

Fig. 13. Schematic of multi grid system adopted in the coupling simulation
strategy.
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The maximum grid size ratio between FVM and LBM regions
that can guarantee the accuracy depends on several factors. On
the one hand, since the width of overlapping region is fixed (10 lat-
tices this study), the maximum ratio is limited (10 in this study)
because further increasing the ratio (beyond 10 in this study) leads
to less than a FVM grid in the overlapping region which would
cause insufficient information exchange. On the other hand, the
maximum ratio also depends on the interface position, the local
field gradient near the interface, and the algorithms of FVM and
LBM. If the interface position is suitably chosen that the local gra-
dient of variables is small, then the maximum ratio of grid size can
be increased. Adopting stable and robust algorithms of FVM and
LBM can also lead to high maximum grid size ratio.

There are other techniques to save computational resources in
the framework of the coupled simulation strategy. A buffer zone
can be added between the FVM region and LBM region, which
serves as a bridge between the coarse FVM grid and fine LBM grid
[30], as shown in Fig. 13. The grid size of the buffer zone can be
chosen between the FVM grid size and LBM grid size. For example,
the grid size of the buffer zone can be set as 4 assuming the grid
size of LBM is 1. If the ratio of grid size between FVM region and
the buffer region is 4, then the maximum grid size ratio between
FVM region and the LBM region can be as big as 16, leading to
greatly reduced computational resources. The buffer region can
be either solved using FVM or LBM. In addition, multi-block tech-
niques can be used to increase the efficiency of coupled simulation
strategy. For example, fine LBM grid can be used to simulate trans-
port phenomena in CL with more compact porous structures and
coarse LBM grid can be used to simulate transport phenomena in
GDL with relatively larger pores, as shown in Fig. 13. On the whole,
a multi-grid system, for example from the coarsest FVM grid in the
clean region (GC), to relatively coarse grid in the buffer zone, to rel-
atively fine LBM grid in porous region with large pores (GDL) and
finally finest LBM grid in porous media with compact microstruc-
tures (CL), as shown in Fig. 13, can be adopted to improve the effi-
ciency of the coupled simulation strategy.

We have to admit that the LBM region takes a majority of the
total computational resources required in the coupled simulation
strategy, which cannot be easily reduced because realistic micro-
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structures of porous components needs to be resolved, although
multi-block LBM is of some help. Improving computational effi-
ciency in the LBM region depends on the development of computer
simulation capacities.

7. Conclusion

A coupled simulation strategy is used to simulate the multi-
scale transport phenomena in PEMFC. In this strategy, different
numerical methods are used to predict transport processes in dif-
ferent local regions with different length-scales. Information is ex-
changed at the interfaces between neighboring regions. During the
implementation of coupled modeling strategy, the computational
domain is divided into several sub-domains and in each sub-do-
main the appropriate numerical method corresponding to the
length scale of this sub-domain is applied.

In this study, single-phase fluid flow, oxygen and water va-
por transport, proton conduction and electrochemical reaction
in the cathode side of a PEMFC are simulated using the coupled
simulation strategy. During the implementation of the coupled
simulation strategy, PEMFC cathode side is divided into two
sub-domains, one is GC and the other includes the GDL and
CL. Top-down numerical method FVM is used for fluid flow
and mass transport in GC sub-domain, while bottom-up numer-
ical method LBM is employed for pore-scale flow and mass
transport in GDL and CL and proton conduction in CL. Two
ROs transferring macro density and concentration in FVM to
density distribution function and concentration distribution
function in LBM are used to transfer information at the inter-
face between the two sub-domains. The simulation results show
that the coupled simulation strategy is able to capture the pore-
scale transport process and electrochemical reactions in porous
components of PEMFC.

Computational resource saving techniques in the framework of
coupled simulation strategy are also discussed. Coarse grid is used
in the FVM region and fine grid is used in LBM region. Good simu-
lation results can be obtained even the ratio of grid size between
FVM region and LBM region is 5. Further increasing the grid size ra-
tio to 10 leads to no-ideal results although the simulation is con-
verged. Factors affecting the maximum grid size ratio are
discussed, including the interface position, the local variable gradi-
ent near the interface and the algorithms of FVM and LBM. A multi-
grid system is proposed to simulate transport processes and elec-
trochemical reactions in PEMFC, which consists of coarsest FVM
grid in GC, relatively coarse grid in buffer zone, relatively fine
LBM grid in GDL, and finally finest LBM grid in CL.

Extending the coupled simulation strategy to the whole PEMFC
based on three-dimensional realistic microstructures of GDL and
CL is under way, where multi-grid system is adopted.
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Appendix A

A.1. Reconstruction operator for density distribution function

According to the Chapman–Enskog method, we can introduce
the following time and space scale expanding

@t ¼ e@ð1Þt þ e2@
ð2Þ
t ðA- 1aÞ

@xa ¼ e@ð1Þxa
ðA-1bÞ
the small expansion parameter e can be viewed as the Knudsen
number Kn which is the ratio of the mean free path over the char-
acteristic length scale of the flow, and a represents the two coordi-
nate directions.

The distribution function fi is expanded around the distributions
f ð0Þi as follows

fi ¼ f ð0Þi þ ef ð1Þi þ e2f ð2Þi ðA-2Þ

WithX
i

f ð1Þi ¼ 0;
X

i

cif
ð1Þ
i ¼ 0;

X
i

f ð2Þi ¼ 0;
X

i

cif
ð2Þ
i ¼ 0 ðA-3Þ

Then, fi(x + ciDt,t + Dt) in Eq. (1) is expanded about x and t
which gives

fiðxþ ciDt; tþDtÞ ¼ fiðx; tÞ þDtDiafiðx; tÞ þ
ðDtÞ2

2
D2

iafiðx; tÞþO½ðDtÞ3�

ðA-4Þ

where Dia ¼ @t þ ci@xa for concise expression.
Substituting Eq. (A-4) into Eq. (1) yields the following equation

DtDiafi þ
ðDtÞ2

2
D2

iafi ¼ �
1
sf
ðfi � f ðeqÞ

i Þ þ O½ðDtÞ3� ðA-5Þ

Furthermore, substituting Eqs. (A-1) and (A-2) into Eq. (A-5)
obtains

eDð1Þia f ð0Þ þ e2 Dð1Þia f ð1Þi þ @ð2Þt f ð0Þi

h i
þ e2 Dt

2
Dð1Þia

h i2
f ð0Þi

¼ � 1
Dtsf

f ð0Þi þ ef ð1Þi þ e2f ð2Þi � f ðeqÞ
i

� �
þ O½ðDtÞ3� ðA-6Þ

Then by matching the scales of e0, e1 and e2, we have

e0 : f ð0Þi ¼ f eq
i ðA-7Þ

e1 : f ð1Þi ¼ �Dtsf D
ð1Þ
ia f ð0Þi þ O½ðDtÞ2� ðA-8Þ

e2 : f ð2Þi ¼ �Dtsf Dð1Þia f ð1Þi þ @ð2Þt f ð0Þi

h i
� sf

ðDtÞ2

2
Dð1Þia

h i2
f ð0Þi þ O½ðDtÞ3�

ðA-9Þ

Considering Eqs. (4) and (5), we can sum Eq. (A-8) over the
phase space. Then the first order of the continuity equation and
momentum equation can be derived

e1 : @
ð1Þ
t qþ @ð1Þxa

ðquaÞ þ O½ðDtÞ2� ¼ 0 ðA-10Þ
@
ð1Þ
t ðquaÞ þ @ð1Þxb

ðquaub þ pdabÞ þ O½ðDtÞ2� ¼ 0 ðA-11Þ

By the same way, we can obtain the second order of continuity
equation and momentum equation according to Eq. (A-9)

e2 : @
ð2Þ
t qþ O½ðDtÞ3� ¼ 0 ðA12-aÞ

@
ð2Þ
t ðquaÞ � m@ð1Þxb

q @ð1Þxa
ub þ @ð1Þxb

ua

h in o
þ O½ðDtÞ3� ¼ 0 ðA12-bÞ

The formulas according to the chain rule of derivatives read:

@tf
eq
i ¼ @qf eq

i @tqþ @ub f eq
i @tub ðA-13aÞ

@xa f eq
i ¼ @qf eq

i @xaqþ @ub f eq
i @xa ub ðA-13bÞ

From Eq. (3), we can get

@ub
f eq
i ¼ xiq

1
c2

s
ðcib � ubÞ þ

1
c4

s
ciacibua

� �
ðA-14aÞ

@qf eq
i ¼

1
q

f eq
i ðA-14bÞ

Furthermore, substituting Eqs. (A-10)-(A.14) into Eq. (A-8), we
can derive the first order expression of distribution function fi
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f ð1Þi ¼�sf Dt @ð1Þt f ð0Þi þ ci@
ð1Þ
xa

f ð0Þi

h i
¼�sf Dt @qf ð0Þi @

ð1Þ
t qþ@ub

f ð0Þi @
ð1Þ
t ubþ ci @qf ð0Þi @ð1Þxa

qþ @ub
f ð0Þi @ð1Þxa

ub

� �h i
¼�sf Dt Uiaf ð0Þi

1
q
@ð1Þxa

qþUiaxiq
1
c2

s
Uibþ

1
c4

s
cibcicuc

� 

@ð1Þxa

ub

�

�f ð0Þi @ð1Þxa
ua�xi

1
c2

s
Uiaþ

1
c4

s
ciacicuc

� 

@ð1Þxa

p
�

ðA-15Þ

where Uia = cia � ua.
The second-order expression offiin Eq. (A-9) is calculated as

follows

f ð2Þi ¼ �Dtsf Dð1Þia f ð1Þi þ @ð2Þt f ð0Þi

h i
� ðDtÞ2sf

2
Dð1Þia

h i2
f ð0Þi

¼ �Dtsf Dð1Þia �sDtDð1Þia f ð0Þi

� �
þ @ð2Þt f ð0Þi

h i

� ðDtÞ2sf

2
Dð1Þia

h i2
f ð0Þi

¼ �Dtsf@
ð2Þ
t f ð0Þi þ ðDtÞ2sf sf �

1
2

� 

Dð1Þia

h i2
f ð0Þi ðA-16Þ

We can ignore the second-order derivative of f ð2Þi , then

f ð2Þi ¼ �Dtsf@
ð2Þ
t f ð0Þi ðA-17Þ

By the chain rule of derivatives, it gives

@
ð2Þ
t f ð0Þi ¼ @qf ð0Þi @

ð2Þ
t qþ @ub f ð0Þi @

ð2Þ
t ub ¼ @ub f ð0Þi @

ð2Þ
t ub ðA-18Þ

Using Eqs. (A-12b) and (A-14), we get

@
ð2Þ
t f ð0Þi ¼ @ub

f ð0Þi @
ð2Þ
t ub ¼

1
q
@ub

f ð0Þi @
ð2Þ
t ðqubÞ

¼ mxi
1
c2

s
ðcib � ubÞ þ

1
c4

s
ciacibua

� �
@ð1Þxa

q @ð1Þxa
ub þ @ð1Þxb

ua

� �� �

¼ mxiq
1
c2

s
ðcib � ubÞ þ

1
c4

s
ciacibua

� �

� 1
q
@ð1Þxa

q @ð1Þxa
ub þ @ð1Þxb

ua

� �
þ @ð1Þxa

@ð1Þxa
ub þ @ð1Þxb

ua

� �� �
ðA-19Þ

So the following expression is obtained

f ð2Þi ¼ �Dtsf mxiq
1
c2

s
Uib þ

1
c4

s
ciacibua

� 


� 1
q
@ð1Þxa

q @ð1Þxa
ub þ @ð1Þxb

ua

� �
þ @ð1Þxa

@ð1Þxa
ub þ @ð1Þxb

ua

� �� �� �
ðA-20Þ

Here, we introduce an approximation of @ub
f ð0Þi by dropping terms of

a higher order than u2 as follows

@ub f ð0Þi ¼ xiq
1
c2

s
Uib þ

1
c4

s
cibcicuc

� 

� Uib

c2
s

f ð0Þi ðA-21Þ

Assuming the velocity fields is divergence-free, written as

@xa ua ¼ 0 ðA-22Þ

According to Eqs. (A-21) and (A-22), we can rewrite the expres-
sions of f ð1Þi and f ð2Þi as

f ð1Þi ¼ �sf Dt Uiaf ð0Þi

1
q
@ð1Þxa

qþ UiaUibf ð0Þi

1
c2

s
@ð1Þxa

ub � Uiaf ð0Þi

1
qc2

s
@ð1Þxa

p
� �

¼ �sf DtUiaUibf ð0Þi c�2
s @ð1Þxa

ub ðA-23Þ

f ð2Þi ¼ �Dtsf mUibf ð0Þi c�2
s

1
q
@ð1Þxa

q @ð1Þxa
ub þ @ð1Þxb

ua

� �
þ @ð1Þxa

� �2
ub

� �

¼ �Dtsf mUibf ð0Þi c�2
s

1
q

Sð1Þab @
ð1Þ
xa

qþ @ð1Þxa

� �2
ub

� �
ðA-24Þ
where Sab ¼ @xb
ua þ @xa ub.

Finally, we can derive the expression of fi

fi ¼ f ð0Þi þ ef ð1Þi þ e2f ð2Þi

¼ f ð0Þi � sDtUiaUibf ð0Þi c�2
s @xa ub

� sDtmUibf ð0Þi c�2
s

1
q

Sab@xaqþ @2
xa

ub

� �

¼ f ðeqÞ
i 1� sDtUibc�2

s Uia@xa ub þ m@2
xa

ub þ mq�1Sab@xaq
� 	
 �

ðA-25Þ

Eq. (A-25) is an analytic expression for reconstructing the density
distribution function from the macro variables. We call it as density
distribution function reconstruction operator.
Appendix B. Reconstruction operator for concentration
distribution function

Following Eqs. (A-2)–(A-9), we can obtain gi in the scales of e0,
e1 and e2

e0: gð0Þi ¼ geq
i ðB-1Þ

e1: gð1Þi ¼ �DtsgDð1Þia gð0Þi þ O½ðDtÞ2� ðB-2Þ

e2 : gð2Þi ¼ �Dtsg Dð1Þia gð1Þi þ @
ð2Þ
t gð0Þi

h i
� ðDtÞ2sg

2
Dð1Þia

h i2
gð0Þi

þ O½ðDtÞ3� ðB-3Þ

Therefore, we can derive the macroscopic equations at the
t1 = et and t2 = e2t time scales

@
ð1Þ
t C þ @ð1Þxa

ðuaCÞ ¼ 0 ðB-4Þ

@
ð2Þ
t C � 2Jðs� 0:5ÞDx2

Dt
@ð1Þxa

@ð1Þxa
ðCÞ ¼ 0 ðB-5Þ

Introducing the formulas according to the chain rule of
derivatives

@tg
eq
i ¼ @Y geq

i @tC þ @ub
geq

i @tub ðB-6Þ
@xa geq

i ¼ @Y geq
i @xa C þ @ub

geq
i @xa ub ðB-7Þ

and from the equilibrium distribution function given by Eq. (10), we
can get the following expression

@ub geq
i ¼ @ub ½CðJ þ 1=2cicucÞ� ¼ 1=2Ccib ðB-8Þ

@Y geq
i ¼ @Y ½Cð1þ 1=2cicucÞ� ¼ C�1gðeqÞ

i ðB-9Þ

The first order expression of distribution function gi can be de-
rived as

gð1Þi ¼ �sgDtDð1Þi gð0Þi ¼ �sgDt @
ð1Þ
t gð0Þi þ cia@

ð1Þ
xa

gð0Þi

� �
¼ �sgDt @Y gð0Þi @

ð1Þ
t C þ @ub

gð0Þi @
ð1Þ
t ub þ cia @Y gð0Þi @ð1Þxa

C þ @ub
gð0Þi @ð1Þxa

ub

� �h i
¼ �sgDt �@Y gð0Þi @ð1Þxa

ðuaCÞ � ua@ub
gð0Þi @ð1Þxa ub

h

� 1
q
@ub

gð0Þi @
ð1Þ
xb pþ cia @Y gð0Þi @ð1Þxa

C þ @ub
gð0Þi @ð1Þxa

ub

� ��

¼ �sgDt UiaC�1gðeqÞ
i @ð1Þxa

C þ 0:5UiaCcib@
ð1Þ
xa

ub � 0:5q�1Ccib@
ð1Þ
xb p

h i
ðB-10Þ

The second order expression of distribution function gi can be
derived as
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gð2Þi ¼ �sgDt @
ð2Þ
t gð0Þi þ 1� 1

2sg

� 

Dð1Þi gð1Þi

� �

¼ �sgDt @
ð2Þ
t gð0Þi � sg �

1
2

� 

DtDð1Þi Dð1Þi gð0Þi

h i� �
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t gð0Þi � sg �

1
2

� 

Dt Dð1Þi

� �2
gð0Þi

� �
ðB-11Þ

The second-order derivative of gð0Þi can be ignored in the above
equation, then

gð2Þi ¼ �sgDt@ð2Þt gð0Þi ¼ �sgDt @Y gð0Þi @
ð2Þ
t C þ @ub

gð0Þi @
ð2Þ
t ub

h i
¼ �sgDt DY�1gðeqÞ

i @ð1Þxa
@ð1Þxa

C þ 0:5Ccibq�1@t2 ðqubÞ
h i

¼ �sgDt DC�1gðeqÞ
i @ð1Þxa

@ð1Þxa
C þ 0:5Ccibq�1m

h
� q@ð1Þxa

@ð1Þxa
ub þ @ð1Þxb

ua
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q
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¼ �sgDt DC�1gðeqÞ
i @ð1Þxa

@ð1Þxa
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At last, the expression of gi is derived as

gi ¼ gð0Þi þ egð1Þi þ e2gð2Þi þ � � �

¼ gðeqÞ
i � sgDt UiaC�1gðeqÞ

i @ð1Þxa
C þ 0:5UiaCcib@

ð1Þ
xa

ub � 0:5q�1Ccib@
ð1Þ
xb p

h i
� sgDt DC�1gðeqÞ

i @xa@xa C þ 0:5Ycibq�1m q@xa@xa ub þ Sab@xaq

 �h i

¼ gðeqÞ
i � sgDt UiaC�1gðeqÞ

i @ð1Þxa
C þ 0:5UiaCcib@

ð1Þ
xa

ub � 0:5q�1Ccib@
ð1Þ
xb p

h i
� sgDt DC�1gðeqÞ

i @xa@xa C þ 0:5Ccibq�1m q@xa@xa ub þ Sab@xaq

 �h i

¼ gðeqÞ
i 1� sgDtC�1ðUia@

ð1Þ
xa

C � D@xa@xa CÞ
h i

� 0:5sgDtCcibðUia@
ð1Þ
xa

ub þ m@xa@xa ub þ q�1mSab@xaqÞ
þ 0:5sgDtq�1Ccibc�2

s @
ð1Þ
xb q ðB-13Þ

Eq. (B-13) is an analytic expression for the reconstruction of the
concentration distribution function gi from the macro
concentration.
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