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THREE-DIMENSIONAL NUMERICAL STUDY OF FLUID
AND HEAT TRANSFER CHARACTERISTICS OF
DIMPLED FIN SURFACES

J. F. Fan, W. K. Ding, Y. L. He, and W. Q. Tao
Key Laboratory of Thermo-Fluid Science and Engineering of MOE,
School of Energy & Power Engineering, Xi’an Jiaotong University,
Xi’an, Shaanxi, P.R. China

In the present study, a code based on the nonorthogonal curvilinear coordinates is developed

with a collocated grid system generated by the two-boundary method. After validation of

the code, it is used to compare simulated results for a fin-and-tube surface with coupled

and decoupled solution methods. The results of the coupled method are more agreeable with

the test data. Simulation for dimpled and reference plain plate fin-and-tube surfaces are

then conducted by the coupled method within a range of inlet velocity from 1.0m/s to

5m/s. Results show that at identical pumping power the dimpled fin can enhance heat trans-

fer by 13.8–30.3%. The results show that relative to the reference plain plate fin-and-tube

surface, heat transfer rates and pressure drops of the dimpled fin increase by 13.8%–30.3%

and 31.6%–56.5% for identical flow rate constraint. For identical pumping power constraint

and identical pressure drop constraint, the heat transfer rates increase by 11.0%–25.3% and

9.2%–22.0%, respectively. By analyzing the predicted flow and temperature fields it is

found that the dimples in the fin surface can improve the synergy between velocity and fluid

temperature gradient.

1. INTRODUCTION

Studies on enhancing heat transfer have been conducted along the lines of
understanding enhancement mechanisms and developing enhancing techniques.
The recently developed field synergy principle [1–4] is one of the successful research
results in the study of the mechanism. According to this principle the better the syn-
ergy between velocity and temperature gradient, the more intensive the heat transfer
is between solid and fluid. It is found by the field synergy principle [3, 5–7] that the
fin surface can not only increase the heat transfer area but also greatly improve the
synergy between the velocity and temperature gradient. Before the development of
the field synergy principle, different kinds of plate fin-and-tube surfaces had been
developed and adopted as important enhancing structures, including wavy fin,
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NOMENCLATURE

a coefficient of discrete

equation

Ao total heat transfer surface

area, m2

b source term of discrete

equations

cp heat capacity, kJ �kg�1 �K�1

dA heat transfer surface area, m2

do characteristic size, m

D0 tube outside diameter, m

ei basic vector in oblique

curvilinear coordinates

ei reciprocal basic vectors in

oblique curvilinear

coordinatesffiffiffi
g

p
Jacobi factor, ei � (ej� ek)

gij metric tensor, ei � ej
ho convection heat transfer

coefficient, W �m�2 �K�1

HQD dimple height, m

J total fluxdensityof convection

and diffusion, Wm�2

l air flow channel length, m

p pressure, Pa

p0 pressure-correction value, Pa

P pumping power, W

qm mass flow, kg � s�1

Q heat transfer rate, W

R source term in oblique

curvilinear coordinates

RA,RB,RC three axes length of ellipsoid,

m

RQb radius of circular in stamped

surface, m

RQA,RQB major and minor axes of

ellipse in stamped surface, m

S source term in the Cartesian

coordinate system

S1 transverse tube spacing, m

S2 longitudinal tube spacing, m

Tin inlet temperature of air, K

Tout outlet temperature of air, K

Tw wall temperature of tube, K

T temperature, K

u velocity in the Cartesian

coordinate system, m � s�1

um mean flow velocity in the

minimum free area, m � s�1

U,V,W contravariant velocity

components in curvilinear

coordinates, m � s�1

V volume, m3

*

V
velocity vector in curvilinear

coordinates, m � s�1

Vi contravariant velocity in

curvilinear coordinates,

m � s�1

x coordinate component in the

Cartesian coordinate

system, m

C/ generalized diffusion

coefficient, Pa � s
Cj
ik

second remark of

Christoffel, ei � qej=qnk
Dp pressure drop, Pa

rT temperature gradient, K

/ solving variable

U total heat transfer rate from

the hot to the cold fluid, W

d fin thickness, m

f,g,n coordinates component in

curvilinear coordinates, m

nk coordinates component in

curvilinear coordinates, m

hm mean synergy angle

ka thermal conductivity of air,

W �m�1 �K�1

m dynamic viscosity,

kg �m�1 � s�1

na kinematic viscosity of air,

m2 � s�1

q density, kg �m�3

Superscripts

i, j summation indicators

k free indicator

e, w, n, s, t, b faces of control volume of

main node

f,g,n component in curvilinear

coordinates

Subscripts

a air

d dimpled fin

e, w, n, s, t, b faces of control volume of

main node

E, W, N, S, T, B node adjacent to the main

node

i, j summation indicators

k free indicator

m mean

P main node

0 plain plate fin

1, 2, 3 coordinates component in

curvilinear coordinates
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louvered fin, slotted fin, and fin with longitudinal vortices generators. Application of
the field synergy principle further improves the structure of the slotted fin-and-tube
surfaces [5, 6].

In the study of heat transfer enhancement, both experimental [8–13] and
numerical methods have been used, and with the rapid development of computer
technology the numerical method becomes more and more popular and reliable.
Numerical methods can obtain detailed results of temperature and velocity field,
which are very useful to the analysis for further improvement of the geometric struc-
ture studied. In this study, numerical method will be used to predict the performance
of a new-type enhanced surface.

As far as the numerical approach is concerned, since the flows in the plate
fin-and tube heat exchangers are incompressible the pressure-correction method, rep-
resentative by the SIMPLE algorithm, based on a staggered grid arrangement has
been predominantly adopted [5–7, 14, 15] to deal with the coupling between pressure
and velocity. A staggered grid system can successfully overcome the difficulty of
checker board pressure distribution [16, 17], and hence, have been widely adopted
in computational fluid dynamics and heat transfer. However, its implementation is
somewhat more complicated than the nonstaggered grid system. With the increasing
of domain complexity this drawback becomes more obvious. In 1983, Rhie and
Chow [18] proposed the idea of a nonstaggered grid and momentum interpolation
method for interface velocity to deal with the appropriate coupling between velocity
and pressure, and in 1988 Peric et al. [19] further expounded this issue; henceforth,
the collocated grid has been developed rapidly [20–22]. The advantages of the
collocated grid are especially prominent for the domains in nonorthogonal curve
coordinates which will be used in the present numerical study.

In the simulation of heat transfer characteristics of a fin-and-tube structure care-
ful attention should be paid to the boundary condition of the fin surface. Actually, the
heat conduction in the fin and convection heat transfer over the fin surface are mutu-
ally coupled with each other. This is the so-called conjugated problem in the computa-
tional heat transfer [16, 17]. In this kind of problem the boundary conditions of the
fluid-solid interface is not known a priori but is the result of the calculation. Since
1978 when Patanker conducted the numerical simulation of conjugated heat transfer
for a thick-walled rectangular channel with uniform outer surface temperature [23],
much numerical research has been made [5, 14, 24–28]. But these studies were mainly
based on the staggered grid arrangement in Cartesian coordinates, and the stepwise
approximation was usually used for simulating the curve boundary in irregular region.
For a complicated fin-tube structure, the nonorthogonal curvilinear coordinates
system have obvious advantages in approximating irregular boundaries.

Now, attention is turned to the air-side enhanced techniques. Apart from the
plate fin-and-tube surfaces mentioned above and vortex generators [29–31], a new
type of attractive enhanced heat transfer surface, called the dimple surface, have
been extensively studied in the literature [32–44]. Originally, dimples were used in
internal cooling passages [33–36]. In this article, they are used to enhance heat trans-
fer of a plain plate fin-and–tube surface and their performance will be numerically
investigated.

Dimples are arrays of indentations along surfaces. Generally, these are spheri-
cal in shape, while a variety of other shapes have also been employed, ranging from
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triangular to tear drop. The influences of different arrangements and geometric para-
meters on flow and heat transfer characteristics have been investigated by experi-
mental method in cooling passages, and the flow visualization investigations reveal
that the flow structure in the dimple is mainly of vortex type. Because the dimples
do not protrude into the flow to produce significant amounts of form drag, the
dimpled surface generally produces lower friction penalties compared with several
other types of augmentation ones. When dimples are used in the fin-and-tube sur-
face, on one side of the fin there are indentations, and on the other side there are
protrusions or turbulators. The vortices generated can enhance the local and down-
stream heat transfer.

In this article, a computational code for simulating a conjugated heat transfer
problem of a complicated fin-and-tube surface with dimpled structures will be
developed by a nonorthogonal curvilinear coordinates system with collocated grid
arrangement. After validation of the code it is then used to simulate the heat transfer
and fluid flow characteristics of the new type fin surfaces, i.e., dimpled fin surfaces. In
the proposed dimpled fin surface an array of staggered shallow ellipsoid dimples are
stamped along the fin surface. The present numerical investigation is focused on
engineering applications in lower velocities; hence, laminar flow is assumed. In
addition, the fluid thermophysical properties are regarded as constant.

2. SIMULATION OF FLUID-SOLID COUPLING HEAT TRANSFER WITH
COLLOCATED CURVILINEAR NONORTHOGONAL GRIDS

The effective numerical methods for solving a conjugated problem can be
classified into two types: domain decomposition with interface information
exchanges and solving the whole-field with general governing equations (hereafter,
it will be simply called whole-field solving) [15]. The former is that the fluid and solid
areas are solved separately; thus, for the momentum equation only the fluid region
needs to be solved. In this regard, some saving may be made in the computing time,
however, the interface information exchange may take some additional computa-
tional time. For the following reasons the whole-field solving method will be used
here. First, in the computational domain of a fin-and-tube unit the two directions
in the streamwise flow direction and in the spanwise direction are often much larger
than the direction of fin pitch. Such geometric structure may lead to some difficulty
in solution convergence, and the shorter the fin-pitch direction the severer the
difficulty. If the whole-field solving method is used, the height of this direction is
obviously larger than that of the two regions in the domain decomposition method.
According to the authors’ practice, this will help to accelerate the convergence pro-
cess. Second, when the entire field is taken as computational domain, the mass and
flux continuity conditions at the solid-fluid interface will be automatically satisfied.
When the harmonic-mean method (with special care to be mentioned later) is
adopted to deal with large difference in thermophysical properties between solid
and fluid, the entire field containing both solid and fluid can be solved with ease.

In the following, the general governing equations and boundary conditions will
first be presented, followed by a detailed description of a grid generation method
to deal with the irregular geometry. The details of numerical treatment for the
conjugated problem in a collocated grid system with nonorthogonal curvilinear
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coordinates will be presented. Then, numerical results of fluid flow and heat transfer
surfaces for the dimpled fin-and-tube surfaces will be provided, and discussion from
the view point of the field synergy principle will be presented. Finally, some conclu-
sions will be drawn.

2.1. Transformation of Governing Equations

In the three-dimensional coordinates the general governing equations for
steady, incompressible, laminar flow with constant physical properties can be
expressed by the following vector form of scalar variables:

r � ðq*

V/Þ ¼ r � ðC/r/Þ þ S/ ð1Þ

where / is the general scalar variable, and when /¼ 1, uk, T, Eq. (1) represents the
continuity equation, momentum equation and the energy equation, respectively; C/

is the generalized diffusion coefficient, and >C/¼ 0, m, k=cp represent the diffusion
coefficient of the above three equations, respectively; and S/ is the generalized source
term, and S/¼ 0, �qp=qxk, 0 represent the source term of the above three equations,
respectively.

In order to cope with the irregular shape of the dimple, we need to transform
the governing equations from an orthogonal coordinate system to a curvilinear non-
orthogonal coordinate system by tensor calculus. In the nonorthogonal coordinates
there are a number of choices for the dependent variables. However, from the satis-
faction of conservation law, it is found that the choice of physical velocity compo-
nents of the Cartesian coordinates for the momentum equations in conjunction
with the contravariant component of velocity at the interface for the continuum
equation is the best one [45]. In this article, this practice is adopted. The details of
the transformation are omitted here. Following is the transformed results of the
general governing equation:

qð ffiffiffi
g

p
q/ViÞ
qni

¼ q

qni
C/g

ji q/

qnj
ffiffiffi
g

p
� �

þ ffiffiffi
g

p
R/ ð2Þ

where R/ is a general source term of the governing equations in the curvilinear

coordinates, and R/¼ 0, 0, �Ai
kðqp=qn

iÞ for the continuity, energy and momentum

equations in the computation domain, respectively.
The diffusion term can be decomposed into an orthogonal (i¼ j) and a non-

orthogonal (i 6¼ j) part. In order to ensure that the coefficient matrix of discretized
equations is unconditionally diagonally dominant, the nonorthogonal terms is incor-
porated into the source term and is treated explicitly. So, the transformed general
form of the governing equations is as follows.

qð ffiffiffi
g

p
q/ViÞ
qni

¼ q

qni
C/g

ii q/

qni
ffiffiffi
g

p
� �

þ ffiffiffi
g

p
R/ þ q

qni
i 6¼j

C/g
ji q/

qnj
ffiffiffi
g

p
� �2

64
3
75 ð3Þ
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where the last term in the square bracket of the right-hand side of Eq. (3) is the
extended source term of the general governing equation, into which the nonorthogo-
nal diffusion terms are included.

The general variable in the above equation is a scalar one which stands for the
temperature and velocity components. Based on the finite-volume concept, a general
discretized equation for the momentum and energy equations can be obtained as
follows.

aP/P ¼ aE/E þ aW/W þ aN/N þ aS/S þ aT/T þ aB/B þ b ð4Þ

where ak and b are coefficient and source term of the discretized equation,
respectively.

It is worth noting that the coefficient ak includes the influence of convection
and diffusion actions, and it depends on F and D, i.e., ak¼ fk(F, D), where F is
the flow rate at the control volume interface and D is the interface diffusion conduc-
tivity. The specific form of the function fk depends on the discretization scheme and
can be found in reference [17]. In the nonorthogonal curvilinear coordinates F and D
can be determined as follows

Fe ¼ ðq ffiffiffi
g

p
VnDgDfÞe; De ¼

C/
ffiffiffi
g

p
gnn

dn
DgDf

� �
e

; Fw ¼ ðq ffiffiffi
g

p
V nDgDfÞw

Dw ¼
C/

ffiffiffi
g

p
gnn

dn
DgDf

� �
w

;Fn ¼ ðq ffiffiffi
g

p
VgDnDfÞn;Dn ¼

C/
ffiffiffi
g

p
ggg

dg
DnDf

� �
n

Fs ¼ ðq ffiffiffi
g

p
VgDnDfÞs; Ds ¼

C/
ffiffiffi
g

p
ggg

dg
DnDf

� �
s

;Ft ¼ ðq ffiffiffi
g

p
V fDnDgÞt

Dt ¼
C/

ffiffiffi
g

p
gff

df
DnDg

� �
t

;Fb ¼ ðq ffiffiffi
g

p
V fDnDgÞb; Db ¼

C/
ffiffiffi
g

p
gff

df
DnDg

� �
b

b ¼ ffiffiffi
g

p
R/DnDgDfþ ðC/

ffiffiffi
g

p
gng/gDgDfÞew þ ðC/

ffiffiffi
g

p
gnf/fDgDfÞew

þ ðC/
ffiffiffi
g

p
gng/nDnDfÞns þ ðC/

ffiffiffi
g

p
gng/nDnDfÞns

þ ðC/
ffiffiffi
g

p
ggf/fDnDfÞns þ ðC/

ffiffiffi
g

p
gnf/nDnDgÞtb þ ðC/

ffiffiffi
g

p
ggf/gDnDgÞtb ð5Þ

To deal with the coupling between pressure and velocity, the SIMPLE algor-
ithm will be adopted. For the pressure correction, the following discretized equation
can be obtained.

aPp
0 ¼

X
nb

anbp
0
nb þ b ð6Þ

where

aE ¼ ðqD1Þe; aW ¼ ðqD1Þw; aN ¼ ðqD2Þn; aS ¼ ðqD2Þs; aB ¼ ðqD3Þb
aT ¼ ðqD3Þt; Dk ¼ ðAk

j Þ
2=a

ðujÞ
P ; aP ¼ aE þ aW þ aN þ aS þ aT þ aB

b ¼ ðqU�Þw � ðqU�Þe þ ðqV�Þs � ðqV�Þn þ ðqW �Þb � ðqW �Þt ð7Þ
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The contravariant velocities at the control volume faces are needed when the
convective mass flux at the control volume faces is to be estimated. In order to over-
come the checkerboard oscillations in pressure, a close coupling between pressure
and velocity is required. This is achieved by the Rhie and Chow interpolation
method in the collocated grid system [18].

2.2. Numerical Techniques for the Conjugated Problem in
Collocated Grid System

In numerical simulation of fluid flow and heat transfer problems within irregu-
lar geometries, especially for three-dimensional irregular domain, the collocated grid
system in the nonorthogonal coordinates have their special advantages. For the
fluid-solid coupling problem in the staggered gird system, the numerical treatment
techniques have been well-developed [17]. However, for the collocated grid system
some special care should be taken. It is well-known that the influencing factor anb
in Eq. (4) represents the influence of convection and diffusion of the adjoining node
on the main node P through the interface. For different discretization schemes, the
factor anb is always the function of Peclect number PD(PD¼F=D) at the interface. So
the variables F and D at the interfaces of control volume needed to be calculated
first in order to obtain the value of factor. Taking the solid-fluid interface shown
in Figure 1 as an example, the numerical details for the determination of F and D
and other related issues are presented as follows.

2.2.1. Calculation of flow rate through a solid-fluid interface which
coincides with a control volume interface. As shown in Figure 1, W is the west
node adjacent to the main node P; w represents both the fluid-solid coupling inter-
face and interface of control volume P. The region from west node W to interface w
is fluid area, and from w to the main node P is a solid one. At the interface w, both
the values of the normal velocity and the flow rate F should always be zero. This is
guaranteed in the simulation by always taking the interface velocity to be equal to 0.

2.2.2. Calculation of diffusion conductance through a solid-fluid
interface which coincides with a control volume interface. The diffusion flux
through the interface w can be expressed by tensor form as follows.

Jw ¼ ðCr/ � dAÞw ð8Þ

By tensor notation, the diffusion flux can be written [46] as follows.

Figure 1. Schematic diagram of fluid-solid coupling calculation.
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Jw ¼ Cegfng
nnJdgdf

q/
qn

� �
w

¼ ðgnnJdgdfÞw C
q/
qn

� �
w

ð9Þ

The discretization expression of the diffusion flux is

Jw ¼ ðCgnnJDgDfÞw
/W � /P

ðDnÞw
¼ Dw

/W � /P

ðDnÞw
ð10Þ

where

Dw ¼ CgnnJDgDf
Dn

� �
w

ð11Þ

2.2.2.1. For the diffusion resistance at the interface when solving
the momentum equations and energy equation of the decoupled problem.
Considering that the region from the interface w to node P is a solid area, where
the values of variable / are the same for velocity and for temperature when the solid
region is isothermal, the diffusion process actually only existed in the fluid area, i.e.,
only in the region from west node W to face w; then,

C
q/
qn

� �
w

¼ Cw
/w � /W

ðDnÞWw

ð12Þ

Since in the transformed computational domain the grid is always uniform,
(Dn)Ww¼ 0.5(Dn)w. In addition, /w¼/P¼ 0 for momentum equations and /w¼
/P¼Tw for the energy equation of the decoupled problem; thus we yield,

C
q/
qn

� �
w

¼ Cw
/w � /W

ðDnÞWw

¼ Cw
/w � /P

0:5ðDnÞw
ð13Þ

So for the fluid-solid decoupled problem, the diffusion flux through the interface w is
as follows.

Jw ¼ Cw
gnnJDgDf
0:5Dn

� �
w

ð/w � /PÞ ð14Þ

Thus, for the fluid-solid decoupled problem, the expression of diffusion conductance
Dw is as follows.

Dw ¼ CW

gnnJDgDf
0:5Dn

� �
w

ð15Þ

Moreover, the large coefficient method [17] is adopted to obtain the temperature of
the solid area for the energy equation in the decoupled heat transfer problem.
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2.2.2.2. For the energy equation of the coupled heat transfer problem.
The temperature variables in staggered and collocated grid systems are both located
at the main nodes. So, the treatment techniques for the energy equation in staggered
grid systems can also be used in the collocated grid system. In reference [17], it is
pointed out that when the harmonic-mean method is used to determine the effective
diffusion coefficient for the interface to ensure the continuity of heat flux density
through the interface at fluid and solid sides, in the nominal diffusion coefficient
in Eq. (1), k=cp, the fluid specific heat should be used both for fluid and solid regions.
In reference [14] this practice was adopted to solve the conjugated heat transfer
problem between fin surface and fluid.

2.2.3. Treatment of pressure and pressure correction equation at the
fluid-solid interface. Linear interpolation from the fluid side is adopted to calcu-
late the pressure at the soild-fluid interface. In the pressure correction equation for
the grid located in the fluid side near the interface, the coefficient of the
pressure-correction equation related to the solid-fluid interface should be set to a
very small value, say 10�25.

3. PHYSICAL AND MATHEMATICAL MODELS FOR SIMULATION
OF A DIMPLED FIN-AND-TUBE SURFACE

3.1. Physical Models and Mathematical Formulation

The structures of the dimpled fin-and-tube surface and plain plate fin-and-tube
surface are generally the same, except for the fin shape. To manufacture the dimpled
fin, the reference plain plate fins are stamped in given locations, and then indenta-
tions and protrusions like the shape of the dimple are formed on two sides of the
fin surface. A pictorial view of a plain plate fin-and-tube surface is shown in
Figure 2 [47]. As can be seen there from the periodicity of the geometry, fluid flow
and heat transfer can be regarded as periodic in both y- and z-directions. Hence,
the region between the centerlines of two adjacent fins (A in Figure 2) or the region

Figure 2. Pictorial view of plain fin-and-tube heat exchanger.
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within which a fin surface is situated in its center (B in Figure 2) can be taken as the
computational domain. Such a choice can be applied to both plain plate fin and
other types of fin surfaces. Figure 3 shows the schematic diagram of the structure
and geometrical parameter of a dimpled fin with two-row staggered tubes. In this
fin surface, three-row staggered dimples are stamped, and the stamping directions
of all dimples are the same. RQA and RQB represent the radius of the major and
minor axes of the ellipse on the stamped surface, respectively, HQD represents dim-
ple height, and RA, RB, and RC are the axes of the corresponding ellipsoid.

In the following investigation, practice B is adopted and the computational
domain is extended in both the upstream and downstream parts with 1 time and 5
times of the computational fin length, respectively. The calculation parameters are
shown in Table 1, and the fin collar outside diameter do¼D0þ 2d. The tube material
is copper and the fin material is aluminum.

The general governing equation is expressed by Eq. (4). The mass, momentum,
and energy equations can be written individually as follows.

Continuity equation

q
qðnÞ ðqUÞ þ q

qg
ðqVÞ þ q

qf
ðqWÞ ¼ 0 ð16Þ

Momentum equations

qð ffiffiffi
g

p
q/ViÞ
qni

¼ q

qni
C/g

ii q/

qni
ffiffiffi
g

p
� �

� Ai
k

qp

qni
þ q

qni
C/g

ji q/

qnj
ffiffiffi
g

p
� �

ð/ ¼ u; v;wÞ ð17Þ

Energy equations:

qð ffiffiffi
g

p
q/ViÞ
qni

¼ q

qni
C/g

ii q/

qni
ffiffiffi
g

p
� �

þ q

qni
C/g

ji q/

qnj
ffiffiffi
g

p
� �

ð/ ¼ TÞ ð18Þ

Figure 3. Schematic diagram of the structure and geometrical parameters of a dimpled fin.
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Because the governing equations are elliptic, boundary conditions are required for
all boundaries of the computation domain. As indicated above, the fin surfaces are con-
sidered as part of the solution domain and no conditions are required at fin surfaces.

The boundary conditions in the physical domain are as follows.
At the inlet and outlet (x coordinate).
At the inlet:

u ¼ const; Tin ¼ const; v ¼ w ¼ 0 ð19Þ

At the outlet

qu
qx

¼ qv
qx

¼ qw
qx

¼ qT
qx

¼ 0 ð20Þ

At the front and back sides (y coordinate in Figure 3).
Fluid region

qu
qy

¼ qw
qy

¼ 0; v ¼ 0;
qT
qy

¼ 0 ð21Þ

Fin surface region

u ¼ v ¼ w ¼ 0 ð22Þ

Tube region

u ¼ v ¼ w ¼ 0; Tw ¼ const ð23Þ

Temperature condition for both fin and fluid regions

qT
qy

¼ 0 ð24Þ

Boundary conditions at the upper and lower boundaries (z coordinate). In the
upstream extended region: symmetry condition, and in the fin coil region and the
downstream extended region: periodic condition For the overall heat transfer pro-
cess from the air side to fluid in the tube, the thermal resistance of the inner fluid side
is much less than that of the air side. Additionally, the tube wall is made of copper,

Table 1. Geometric parameters of plain plate and dimple fins

Fin type Plain plate fin Dimpled fin

Transverse tube spacing, S1 25.0mm 50.0mm

Longitudinal tube spacing, S2 21.65mm 22mm

Fin pitch, FP 2.0mm 2.2mm

Fin thickness, d 0.1mm 0.12mm

Tube diameter, Do 9.83mm 9.52mm

Fin length, l 43.3mm 44.0mm
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which has very high thermal conductivity. Thus, the assumption of constant tube
wall temperature is adopted here.

3.2. Grid Generation and Numerical Methods

A schematic diagram of the dimpled fin-and-tube surface is presented in
Figure 3. The generation of the grid system for this complicated geometric structure
is as follows. First, the grids in a projection surface of the dimpled structure are gen-
erated (as shown in Figure 4a), and then the projection plane are transformed into a
curve surface based on the topological transformation relation. For the grid gener-
ation method of projection surface, the physical domain is divided into several sub-
regions, and in different sub-region various grid generation methods can be chosen
according to needs. In this article the initial grids were generated by one of the
algebraic methods (two boundary method) [17], and the local grids were smoothed
by the elliptic differential equation method. Figure 4b presents the three-dimensional
grid of the fin part of the computational domain.

Figure 4. Grid systems of a dimpled fin (a) Grids of dimpled fin surface in projection surface (local); and

(b) local three-dimensional grid of the fin part of the computational domain (not in scale).
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The governing equations were discretized by the finite volume method. The
power law is used to discretize both convective and diffusive terms in the momentum
and energy equations; the SIMPLE algorithm for collocated-grids in body-fitted
coordinate system is adopted. The elliptic equations are solved by the full-field com-
putational method. As indicated above, the fin surfaces are considered as a part of
the solution domain because of the conjugated nature of the problem. An array
was introduced to distinguish the fluid and fin zones in the computational domain.
In the iterative solution process for the algebraic equations of the 3-D problem, the
ADI approach is adopted. In order to speed up the iteration convergence, variables
in the coordinate with periodic boundary condition at its two ends, i.e., the
y- and z-coordinates, are solved by the CTDMA method [48], and the TDMA
method is adopted in the x-direction where the inlet and the outlet boundary con-
ditions are non-periodic. The convergence criterion for the velocity is that the
maximum mass residual of the cells is less than 2� 10�5.

A grid independence study is conducted, and the results are shown in Figure 5.
From the variation trend it can be assumed that the grid system of 340� 68� 24 can
give a nearly grid-independent solutions. So, this grid system is adopted in numerical
simulation.

3.3. Data Reduction Formula

From the numerical fields of velocity and temperature the relevant parameters
are defined as follows.

The average heat transfer coefficient of the fin surface,

ho ¼ U=ðAo � DTmÞ ð25Þ

Figure 5. Variation of the predicted Nusselt number with grid numbers.
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where Ao includes the area of calculated tube outside surface (i.e., fin collar out-
side surface) between two adjacent fins and the area of the fin surface. For the fin
part, the projection area is taken as the heat transfer area without considering the
detail fin structures. It should be noted that taking the heat transfer area as the heat
transfer coefficient defined in Eq. (25) actually includes the effect of the fin efficiency,
which is quite convenient for the engineering application; DTm is the logarithmic
mean temperature difference between the hot and cold fluids and is defined as

DTm ¼ DTmax � DTmin

ln DTmax

DTmin

ð26Þ

where

DTmax ¼ maxðTin � Tw;Tout � TwÞ;DTmin ¼ minðTin � Tw;Tout � TwÞ ð27Þ

Reynolds and Nusselt numbers

Re ¼ um � do
na

; Nu ¼ hodo
ka

ð28Þ

Darcy’s friction coefficient

f ¼ DP
l

� do=ð0:5 � q � u2mÞ ð29Þ

Mean synergy angle between velocity and temperature gradient

hm ¼ arccos

P
V
!
�rTdVP

V
!��� ��� � rTj jdV

ð30Þ

Figure 6. Comparison of Nu and f between numerical results and experimental data. (a) Nusselt number

comparison, and (b) friction factor comparison.
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3.4. Code Validation

In order to check the reliability of the developed code, a numerical simulation is
first conducted for the airside of the plain plate fin-and-tube heat transfer surface with
two-row staggered tubes, and the results are compared with that of the experimental
results. The structure parameter shown in Table 1 are adopted from reference [49].

Numerical treatments for the extension of the domain, the boundary con-
ditions and the conjugated solution scheme are very similar to the dimpled surface
presented above; hence, it will not be restated here. A grid system of 320� 58� 20
grids is adopted in numerical simulation. The convergence criterion for the velocity
is that the maximum mass residual of the cells is less than 2� 10�5. The heat transfer
rate in the airside can be obtained by two calculation methods: the first is through
mean enthalpy difference between inlet and outlet: Uh¼ qmcp(Tout�Tin). The second

is through Fourier’s law at the fin surface: Uc ¼
P

�krT � DA
!
The convergence

criterion for the temperature is that the relative difference of the two heat transfer
rates should be less than a specified small value; 1% is adopted in this study.

The numerical results are compared with the experimental data in reference
[49]. The temperatures of the fin are considered in two ways: in one way the tempera-
ture of the fin sheet is the same as that of the tube wall; in the other, the temperature
of the fin sheet is solved simultaneously. For the simplicity of presentation, the two
ways are called decoupled and coupled methods, respectively. The results show that
the Nusslet number of the decoupled method is higher than the latter, as can be seen
in Figure 6. The Nusselt number by the conjugated computation is closer to the
experimental data compared with the decoupled results with the maximum deviation
of the Nusselt number being 17.2% and 6.04%, respectively. Figure 7 shows the com-
parison of the friction coefficient f between the two numerical results and experi-
mental data. Since constant thermophysical properties are assumed, the friction
factor predicted by the coupled and decoupled methods are the same as can be seen

Figure 7. Comparison of Nu and f between reference plain plate fin and dimpled fin.
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from the figure, with the maximum deviation being 9.95% between numerical results
and the experimental data.

In order to reveal the effects of the decoupled and coupled methods on heat
transfer characteristics of the fin surface at different inlet velocities, the fin efficiency
g was introduced. The parameter g presents the ratio of the actual heat transfer rate
obtained by the coupled method to the heat transfer rate assuming the temperature
of fin surface is equal to the tube wall temperature Tw, which can be obtained by the
decoupled method. Figure 8 presents the fin efficiency under different Reynolds
number. It can be seen that the efficiency of the plain plate fin ranges from about
0.8 at higher inlet velocity (around 5m=s) to 0.92 at lower inlet velocity (around
1.0m=s). The results show that the influence of fin efficiency is needed to be con-
sidered. Thus, the coupled method is used in the following numerical simulations.

4. RESULTS AND DISCUSSION

4.1. Comparison of Flow and Heat Transfer Characteristics between
Plain Plate Fin and Basic Dimpled Fins

In this case, dimple imprint major and minor axes of basic fins have the same
length and are equal to the dimple imprint radius, i.e., RQA¼RQB¼RQb.
Nondimensionalize structure parameters of dimple by the dimple imprint radius
RQb are shown in Table 2 (basic fins). The inlet velocity of air is 1.0m=s–5.0m=s.

Figure 7 presents the comparison of the average Nusselt number and friction
factor between a reference plain plate fin and basic dimpled fin with the same con-
ditions. It can be seen from the figure that the dimpled fin surface presents a higher
Nusselt number and friction factor than those of the reference plain plate fin. The
thermal performance of the two types of fin surfaces are evaluated on the log-log-
based performance comparison figure proposed in reference [50]. Figure 9 presents
the comparison figure. In region 1, heat transfer is actually deteriorated based on
identical pumping power. In region 2, heat transfer is enhanced based on identical
pumping power but deteriorated based on identical pressure drop. In region 3, heat
transfer is enhanced based on identical pressure drop but the increase in friction fac-
tor is larger than the enhancement of heat transfer at identical flow rate. In region 4,
heat transfer enhancement ratio is larger than friction factor increase ratio based on
identical flow rate. It can be found that this enhancing technique is in the third
region, a favorite region for heat transfer enhancement, where the heat transfer is

Table 2. Nondimensional dimple parameters by basic imprint radius of dimple

Nondimensional parameters

Name RQA RQB HQD RA RB RC

Basic fin 1 1 0.66 1.143 1.143 1.314

Fin VH1 1 1 0.286–0.743 1.606–1.110 1.606–1.110 1.314

Fin VH2 0.718–1.038 0.718–1.038 0.286–0.743 1.153 1.153 1

Fin VRA 0.5–1.464 1.14 0.66 0.576–1.688 1.314 1.314

Fin VRB 1.14 0.714–1.464 0.66 1.314 0.824–1.688 1.314
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enhanced under identical pressure drop and identical pumping power. Moreover, in
the figure, nine working points are presented whose corresponding velocity of plain
plate fin is 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0m=s, from left to right, respec-
tively. According to reference [50], the heat transfer enhancement ratio Qd=Q0 is
determined as follows.

Qd

Q0
¼ Nud

Nu0

� �
=

fd
f0

� � m2
aþm1

ð31Þ

Figure 8. Fin efficiency under different Reynolds numbers.

Figure 9. Performance comparisons between the reference and dimpled fin-and-tube surfaces.
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where m1 and m2 are the exponent in fd¼C1Rem1, Nud¼C2Rem2of the reference,
structure, a¼ 2 for identical pressure constraint, and a¼ 3 for the identical pumping
power constraint. For the details of derivation, reference [50, 51] may be consulted.
The specific values of m1 and m3 for the plain plate fin adopted are m1¼�0.509 and
m2¼ 0.219, respectively, which are obtained from data reduction of the numerical
results.

Within the inlet velocity range studied, the obtained heat transfer enhancement
ratio of the dimpled fin over the reference plain plate fin are 11.0%–25.3% and 9.2%–
22.0% for the identical pumping power constraint and identical pressure drop
constraint, respectively (see Table 3).

The relative higher heat transfer enhancement of the dimpled fin surface can be
attributed to the following two facts. First, longitudinal vortices are generated by the
dimpled indentations, which enhances the local heat transfer downstream with not
too much pressure drop. Second, when fluid flow through the protrusions or turbu-
lators, some horseshoe vortices are formed in the first half of the protrusions; thus,
the local heat transfer increases as the horseshoe vortices develops, and some trans-
verse vortices can be formed in the tail of protrusion, which increases the friction
drag slightly.

Figure 10 shows the comparison of the mean synergy angle between the refer-
ence plain plate fin and dimpled fin at different Reynolds numbers. The synergy
angle of the dimpled fin surface is lower than that of the reference fin surface at
the same Reynolds number. This implies that the vortices introduced by the existence
of dimples improve the synergy between velocity and the temperature gradient.

4.3. Influence of Dimple Height on Flow and Heat Transfer
Performance

As indicated at the beginning of this section, a dimple has six geometric para-
meters: RA, RB, RC, RQA, RQB, and HQD. The collection of the specific values
adopted in the above prediction will be called the basic case. The effect of the dimple
height is first studied. Dimple height can be changed by different ways: by either
changing some lengths of the ellipsoid axes RA and RB, or changing the lengths
of the axes of the ellipse in stamped surface. In order to compare the performance

Table 3. The Performance comparison between dimpled fin and plain plate fin surfaces

Identical pumping power (Pd¼P0) Identical pressure drop (Dpd¼Dp0)

Velocity of plate fin m=s (Qd�Q0)=Q0 % Velocity of plate fin m=s (Qd�Q0)=Q0 %

1.0 11.0 1.0 9.2

1.5 14.9 1.5 12.7

2.0 17.8 2.0 15.2

2.5 19.8 2.5 17.0

3.0 21.4 3.0 18.4

3.5 23.1 3.5 19.9

4.0 24.1 4.0 20.8

4.5 24.6 4.5 21.4

5.0 25.3 5.0 22.0
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of dimpled fins with different dimple height, the following two cases are studied at
inlet velocity of 2m=s: one maintains RQA, RQB, and RC the same as the basic case
and the dimpled high HQD vary with the values of RA and RB (Fin VH1); the other
maintains RA, RB, and RC the same as the basic case and the values of RQA and
RQB are changed (Fin VH2). The dimple geometric parameters of fins VH1 and
VH2 are shown in Table 2.

Figure 11 shows the comparison of the Nusselt number and friction factor of
dimpled fin surfaces with different dimple heights. It can be found from the figure

Figure 10. Comparison of synergy angle between reference plate and dimpled fins.

Figure 11. Nu and f of dimple fin surfaces with different dimpled heights.
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that results of the two cases are very close. This indicates that the way of changing
the dimple height does not have an appreciable effect. The increase of the Nusselt
number and friction factor with the dimple height are resulted from the enhancement
of the fluid disturbance augmented by the increased dimple height.

4.4. Influences of Ellipse Major and Minor Axes on the Performance
of Dimpled Fin Surface

In order to investigate the influence of the major and minor axes of ellipse in
stamped surface on the flow and heat transfer of a dimpled fin surface, the follow-
ing two cases are studied at 2m=s inlet velocity: one maintains RC, RB the same as
the reference case, and the value of RA changes as the change of the major axes of
ellipse on a stamped surface RQA (Fin VRA); the latter maintains RC, RA the
same as the reference case, and the value of RB change as the change of the minor
axes of ellipse RQB (Fin VRB). The corresponding parameters of dimple are
shown in Table 2.

Figure 12 shows the Nusselt number and friction factor of dimpled fin surfaces
with different major and minor axes of ellipse in stamped surface. It can be seen from
Figure 12 that the Nusselt number and friction factor reduce as the increase of the
major axes RQA of ellipse and increases as the minor axes RQB increases. It is also
found that the mean synergy angle increases with the increase of the major axes of
ellipse. That is because the protrusion shape is aligned along the major axes in the
streamline direction, and the increase of the major axes leads to the decrease of fluid
disturbance generated by the protrusion; hence, both the Nusselt number and fric-
tion factor reduces and the synergy between velocity and temperature becomes
worse. At the same time, the results are just the opposite when the minor axes of
ellipse on the stamped surface increases.

Figure 12. Nu and f of dimple fin surfaces with different lengths of dimpled print major or minor axes.
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Finally, it is interesting to note the flow regimes: laminar or turbulent. The Re
numbers based on the tube diameter (Eq. (28)) range from 800 to 4200 and 600 to
3600 for the plain plate and dimpled fins, respectively. The laminar model is used
in our simulation. Following are our basic considerations.

First, we take the flow in the fin-and-tube configuration as the flow across a tube
bank. Then according to the well-known correlation from Zhukauskas [52] when the
Reynolds number based on the tube diameter is less than 2� 105, the exponent in the
Reynolds number is 0.6, while for Re¼ 2� 105 the exponent is 0.8. From the authors’
understanding, Re¼ 2� 105 may be regarded as the criterion of fully turbulent flow of
tube banks. Second, if we consider such a flow as the flow in a rectangular duct, then
the Reynolds number based on the equivalent diameter equals 2300 may be regarded
as the upper limit of laminar flow. In our study, the Reynolds number based on the
tube diameter is far less than 2� 105, and its maximum value based on the equivalent
diameter is 1814, which is less than 2300. Thus, we take the flow as laminar.

5. CONCLUSION

In this article, in order to numerically simulate the fluid flow and heat transfer
performance of the dimpled fin-and-tube structure a code based on the nonorthogo-
nal curvilinear coordinates is developed with a collocated grid system generated by
the two-boundary method. The code is first validated by the simulation of a plain
plate fin-and-tube structure for which reliable test data are available. The heat
transfer between fin and fluid simulated by coupled and decoupled methods are com-
pared. After the validation, performance predictions for the dimpled and reference
plain plate fin-and-tube surfaces are conducted in a wide variation range of the inlet
velocity (from 1.0m=s to 5.0m=s). The major conclusions are as follows.

. For the plate fin-and-tube type complicated structures, the heat transfer of the fin
surface should be simulated by the coupled method, i.e, both the fin and the fluid
temperature should be solved simultaneously.

. Compared with the reference plain plate fin-and-tube structure, heat transfer rates
of the basic dimpled fin surface increase by 13.8%–30.3%, and friction factors
increase by 31.6%–56.5% for the identical flow rate constraint; And for the identical
pumping power constraint and identical pressure drop constraint the heat transfer
rates of dimpled fin are increased by 11.0%–25.3% and 9.2%–22.0%, respectively.

. For the dimpled fin-and-tube structure the Nusselt number and friction factor
increase with the increase in the dimple height or the minor axes of ellipse in
stamped surface; and both of them decrease with the increase of major axes of
ellipse in stamped surface.

. The existence of dimples in the fin surface improves the synergy between fluid
velocity and temperature gradient.
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