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In this paper, analytic relations between the macroscopic variables and the mesoscopic variables are
derived for lattice Boltzmann methods (LBMs). The analytic relations are achieved by two different meth-
ods for the exchange from velocity fields of finite-type methods to the single particle distribution func-
tions of LBM. The numerical errors of reconstructing the single particle distribution functions and the
non-equilibrium distribution function by macroscopic fields are investigated. Results show that their
accuracy is better than the existing ones. The proposed reconstruction operator has been used to imple-
ment the coupling computations of LBM and macro-numerical methods of FVM. The lid-driven cavity
flow is chosen to carry out the coupling computations based on the numerical strategies of domain
decomposition methods (DDMs). The numerical results show that the proposed lifting relations are accu-
rate and robust.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, LBM has been widely used to simulate fluid
flow problems [1,2], including complex turbulent fluid flows [3,4]
and multiscale modeling [5,6]. This method is based on the
Boltzmann kinetic equation which is used to describe a number
of interacting populations of particles. As described in [7], ‘‘The
LBE could potentially play a twofold function-as a telescope for
the atomistic scale and a microscope for the macroscopic scale’’.
In [8] dense fluids flow past and through a carbon nano tube
(CNT) was studied by a hybrid model coupling LBM and MDS.
The authors pointed out that replacing the finite volume solver
by a LBM aims to take advantage of the mesoscopic modeling
inherent in LB simulations. Thus LBM is a mesoscopic method in
nature is a widely-accepted understanding in the literature. The
macroscopic parameters such as fluid density, velocity and pres-
sure can be obtained via some averages of the mesoscopic variable
which conform the basic conservation laws of mass and momen-
tum [2]. In practical applications of LBM to simulate a macroscopic
problem, a crucial problem is confronted, that is, a reasonable
initial meso-field must be specified to start the evolution process.
The first initializing method was proposed in [9] in 1993. Recently,
ll rights reserved.
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several methods have been proposed to improve the accuracy of
numerical results and reduce the initial layers (oscillation layers)
[10,11]. Such oscillations have a numerical origin and are due to
the artificial compressibility of LBM. Here, ‘‘initial layer’’ refers to
such a computational stage within which the macroscopic param-
eters are oscillating. When the initial data is not well-prepared,
there is an initial layer during which the solution adapts itself to
match the profile dictated by the environment. For the LBM, the
existence of the initial layers is a common phenomenon [10]. In
this paper, we will derive the lifting relations between the macro-
scopic variables and the mesoscopic variables in LBM by two ways.
According to the authors’ knowledge, the proposed lifting relations
in this paper are different from those in the existing literature
[9–15]. The proposed relations will offer us some new views about
the reconstruction of nonequilibrium distribution functions in
LBM.

Challenging multiscale phenomena or processes are widely
existed in material science, chemical engineering process, energy
and power engineering, and other engineering fields. Generally
speaking, for a multiscale problem, we often must use different
methods to numerically model the processes at different geometric
sub-regions and exchange solution information at interface
[16–19]. Such coupling computations are widely adopted in the
present-day multiscale simulation. As indicated above LBM is a
kind of mesoscopic method, which is a candidate to implement
the meso–macro or micro–meso coupling computations in
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engineering applications [7]. So, the proposed method not only can
be used to obtain a better initial field for LBM, but also can be
adopted in the multi-scale computation. For example in [7] the
possibility of coupling LBM with molecular dynamics simulation
(MDS) was investigated and found that with proper time and
geometric scales the two numerical methods can be coupled. And
in [8] such coupling simulation was conducted. In the existing lit-
eratures the coupling of finite difference method (FDM, which is a
macrosopic method) with LBM was adopted in [19–21], but the
proposed coupling method is similar to a multigrid method and a
simple regularization formula is used in their computations. The
regularization formula in [19] only considers the first-order
approximation of the single particle distribution function and the
coupling formula in [20] is only used to deal with the one-dimen-
sional reaction–diffusion system. In [8] the coupling between LBM
and MDS was implemented by exchange of velocity and velocity
gradient at the interface region. In this paper, the proposed
meso–macro (or micro–meso) coupling is expected to be used for
domain decomposition methods, in which LBM and macro-type
numerical method (or micro-type numerical method and LBM)
are adopted in different sub-domain and information is exchanged
at the interface. We believe that our proposed relation is more use-
ful method for engineering multiscale computations. In addition,
the proposed coupling method can also be used to carry out the
multigrid computations and equation-free multiscale (EFM) com-
putations [22]. It is well-known that LBM is very powerfull for
the parallel computing on a low cost [23,24]. So, the proposed rela-
tion can be used in the parallel simulations for multiscale simula-
tions of complex fluid flows based on the refinement strategies.

To the authors’ understanding the glossary ‘‘lifting relation’’
means that macroscopic variables in a lower degree-of-freedom
(DoF) system are upscaled to meso/microscopic variables in a high-
er DoF system. Generally, it is difficult to establish the one-to-one
map from a lower DoF system to a higher DoF system, although the
lower DoF system can be seemed to be an approximate or
approaching form of a higher DoF system in some referred scales.
This situation happens when numerical results of different scales
are coupled at the same location. For example when MDS and con-
tinuum method are coupled, reference [25] indicated that it is
straightforward to obtain the continuum quantities (such as veloc-
ity, pressure) from the particle description by averaging over the
local region and over time, but the reverse problem, generating
meso/microscopic particle configuration from known macroscopic
quantities is non-trivial and must necessarily be non-unique. The
glossary ‘‘lifting relation’’ in the title of this paper is proposed
based on the concept of the DoF of the governing equations.

In this paper, we will give two methods to establish the rela-
tions between variables of the Navier–Stokes equations and vari-
ables of LBM. Numerical tests demonstrate that the proposed
methods of computing non-equilibrium distribution functions are
effective and accurate.

The rest of the paper is organized as follows. In Section 2, the
details of multi-scale derivation of non-equilibrium distribution
functions is given. In Section 3, the non-equilibrium distribution
functions are obtained by Boltzmann–BGK equations. In Section
4, the performances of the proposed relations to reconstruct non-
equilibrium distribution functions are demonstrated by numerical
tests. Finally, some conclusions are given.
2. Lattice Boltzmann hydrodynamics and multiscale approach

In this section, we will review LBM and the corresponding mac-
roscopic equation. Based on this review, we will derive a relation
for lifting macroscopic variables to microscopic variables by multi-
scale approach.
2.1. Lattice Boltzmann hydrodynamics

We now introduce the lattice Boltzmann–BGK model as a solver
for the weakly-compressible Navier–Stokes equations. LBM is built
up from the lattice gas cellular automata models [2]. The numerical
scheme of LBM is established based on a finite discrete-velocity
model of the Boltzmann–BGK equation and can be expressed as
follows

fiðxþ dtci; t þ dtÞ � f ðx; tÞ ¼ Xi; ð1Þ

where fi represents the single-particle distribution function along
the direction ci (i = 0, . . . , n), ci is the element of the discrete velocity
set V ¼ fc0; . . . ; cng. Xi denotes the collision operator which is non-
dimensional. The macroscopic variables, the density q and the
velocity u, are defined locally by the distribution functions as
follows

qðx; tÞ ¼
Xn

i¼0

fiðx; tÞ ¼
Xn

i¼0

f eq
i ðx; tÞ; ð2Þ

uðx; tÞ ¼ 1
q
X
ci2V

cifiðx; tÞ ¼
1
q
X
ci2V

cif
ðeqÞ
i ðx; tÞ: ð3Þ

For the standard LBM, the collision operator is defined by the so-
called BGK collision

XBGK
i ¼ � 1

slbm
½fiðx; tÞ � f ðeqÞ

i ðx; tÞ�: ð4Þ

For the convenience of comparison, from here, we use the similar
notations in [26]. The local equilibrium distribution f ðeqÞ

i is defined
by

f ðeqÞ
i ðx; tÞ ¼ f LðeqÞ

i ðx; tÞ þ f QðeqÞ
i ðx; tÞ; ð5Þ

where f LðeqÞ
i ðx; tÞ and f QðeqÞ

i ðx; tÞ denote the linear part and the qua-
dratic part of the equilibrium distribution, respectively. The linear
part is given by

f LðeqÞ
i ðx; tÞ ¼ xiq 1þ 1

c2
s

ci � uðx; tÞ
� �

; ð6Þ

and the quadratic part is expressed by

f QðeqÞ
i ðx; tÞ ¼ xi

1
2c4

s
qðuðx; tÞuðx; tÞÞ : Ri; ð7Þ

where cs is the lattice sound speed of the model, xi denotes the
weight and Ri is a second-order tensor defined by

Riab ¼ ciacib � c2
s dab: ð8Þ

The tensor product definition between two first order tensors a and
b is given as follows

ðabÞab ¼ aabb; ð9Þ

and the corresponding second-order tensor :-product between A
and B is given by

A : B ¼
Xd

a;b¼1

AabBab; ð10Þ

where d denotes the spatial dimension.
In this paper, we mainly focus on the standard LBM. By the Chap-

man–Enskog expansion, under the small Ma number restriction
(Ma 6 0.2), we can recover the Navier–Stokes equations as follows

@tqþ @aðquaÞ þ Oðdt2Þ ¼ 0; ð11Þ

@tðquaÞ þ @bðquaubÞ ¼ �@apþ m@bðqð@aub þ @buaÞÞ þ Oðdt2Þ
þ Oðdtu3Þ; ð12Þ
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where p is defined by

p ¼ c2
s q:

It is clear that the recovered Navier–Stokes equations are weakly
compressible [2,27,28]. So, the density is coupled with the pressure
field in LBM. In Eq. (12), the second term of R.H.S can be rewritten as

m@bðqð@aub þ @buaÞÞ ¼ mqð@b@buaÞ þ mð@bqÞð@aub þ @buaÞ
þ mq@a@bub: ð13Þ

And the corresponding third-order term O(dt u3) is given by

Oðdtu3Þ ¼ �r@b@cðquaubucÞ: ð14Þ

The fluid viscosity m is defined by

m ¼ c2
s slbm �

1
2

� �
dt; ð15Þ

and r is given by

r ¼ m
c2

s
: ð16Þ

In Eq. (13), the third term of R.H.S will vanish for a divergence-free
field. But the second term will not vanish, if the density q is nonho-
mogeneous in the spatial domain. The Navier–Stokes equations are
recovered by LBM under the low Mach condition. Physically, LBM is
a weakly compressible model for solving Navier–Stokes equations.

At this point, we describe two situations where the lifting rela-
tion is useful. The first situation is using the lifting relation to get a
good initial field of the density distribution function from specified
velocity and pressure fields. As indicated above the recovered
Navier–Stokes equations are weakly compressible, hence pressure
field is coupled with the density field by the equation of state
p ¼ c2

s q
� �

. In engineering computations, the weakly-compressible
flow is often used as an approximation of the incompressible flow.
For the lifting function, the consideration should be made from the
weakly compressible side. The non-homogeneous character of
the initial density is very significant for an initial routine of LBM
in the proposed lift relation. This significance can be observed from
the follow-up derivations. For the initial processes, if the initial
pressure field is given, the lifting relation can be used to obtain
the initial distribution functions consistent with the recovered
Navier–Stokes equations. In another development when we couple
LBM with other macroscopic solver of Navier–Stokes equations, we
need to pass the macroscopic variables (pressure and velocity
fields) to an approximate single particle distribution functions or
the non-equilibrium distribution functions. At this time, a macro-
scopic equation relating to the given velocity and pressure to the
particle distribution function of LBM become very useful. The
major goal of the present paper is to derive such a lift relation, or
a reconstruction operator as depicted in [9].

For the convenience of deriving such a relation, some changes
are made for the form of Eq. (12). We first rewrite Eq. (12) as

@tðquaÞ þ @bðquaubÞ ¼ qð@tua þ ub@buaÞ þ uað@tqþ @bðqubÞÞ:
ð17Þ

If the initial velocity field is divergence-free, we have

@tðquaÞ þ @bðquaubÞ ¼ qð@tua þ @bðuaubÞÞ þ uað@tqþ @bðqubÞÞ:
ð18Þ

The neglecting of the term qua@bub is a widely accepted approxima-
tion. According to Eq. (11), we have

@tðquaÞ þ @bðquaubÞ ¼ qð@tua þ @bðuaubÞÞ: ð19Þ

Now, combining Eqs. (12), (13) and (17), we gain
@tua þ ub@bua ¼ �
@ap
q
þ mð@b@bua þ @a@bubÞ þ m

@bq
q
ð@aub þ @buaÞ:

ð20Þ
2.2. Derivation of non-equilibrium distribution function by multi-scale
approach

The coupled macro–micro/mesoscale simulation is a rapidly
developing area of research that deals with processes covering sev-
eral order of geometries. For such numerical approach, one needs
to construct an initial condition u(x,0) for the meso/microscopic
simulator, which is corresponding to the initial macroscopic
variable U(x,0). Here, u(x,0) represents the meso/microscopic state
variables and U(x,0) stands for macroscopic state variables. As indi-
cated above this procedure is called lifting [22] or reconstruction
[29] step. The lifting (reconstruction) operator l is defined by

uðx;0Þ ¼ lðUðx;0ÞÞ: ð21Þ

The lifting procedure leads to a one-to-many mapping. After the ini-
tialization of the meso/microscopic variables by the reconstruction
operator l, they will be evolved by the meso/microscopic simulator.
In this paper, LBM is adopted as the mesoscopic simulator. As indi-
cated in [18,20] the macroscopic state variables are easy to be
achieved. To transfer the micro/meso-scale parameters into macro
parameters we need some restriction [22] or compression [29] oper-
ators. Conceptually, this operator M is defined by

Uðx; tÞ ¼ Mðuðx; tÞÞ: ð22Þ

For LBM, the operator M is implemented by Eqs. (2) and (3). Our
attention will put on the development of the reconstruction opera-
tor l by the multi-scale analysis. As discussed above the reconstruc-
tion operator in multiscale computation is corresponding to the
lifting relation in an initial problem. In the following we will derive
the operator from the initial problem aspect.

To obtain an appropriate initial field, we turn to a simple mul-
tiscale perturbation expansion. We separate the time scale into
two different time scales, t1 = �t (diffusive time-scale) and t2 = �2t
(convective time-scale). The time derivative @t is expanded using
a small parameter �, which normally is proportional to the small
Knudsen number (Kn < 0.1) [27],

@t ¼ �@t1 þ �2@t2 þ Oð�3Þ: ð23Þ

Similarly, introducing space scale x1 = �x, the corresponding spatial
derivative is not expanded beyond the first-order term [27]

@a ¼ �@1a þ Oð�2Þ: ð24Þ

The single-particle distribution function is expanded as follows [27]

fiðx; tÞ ¼ f ð0Þi ðx; tÞ þ �f
ð1Þ
i ðx; tÞ þ �

2f ð2Þi ðx; tÞ þ � � � ð25Þ

By the Taylor expansion, from Eq. (1), we get

dtð@t þ cia@aÞfiðx; tÞ þ dt2ð@t þ cia@aÞ2fiðx; tÞ þ Oðdt3Þ ¼ Xi: ð26Þ

Combining Eqs. (23)–(25) with Eq. (26), we obtain

f ð0Þi ðx; tÞ ¼ f ðeqÞ
i ðx; tÞ ð27Þ

and

�f ð1Þi ðx; tÞ þ �
2f ð2Þi ðx; tÞ

¼ �slbm ð�@t1 þ �2@t2 þ �cia@1aÞdt þ 1
2
�2@2

t1
cia@1a þ �2@t1 cia@1a

��

þ1
2
�2ciacib@1a@1b

�
dt2
�
� f ð0Þi ðx; tÞ þ �f

ð1Þ
i ðx; tÞ

� 	
þ Oðdt3Þ: ð28Þ
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For first order of �, we get

f ð1Þi ðx; tÞ ¼ �slbmdtð@t1 þ cia@1aðx; tÞÞf ðeqÞ
i þ Oðdt3Þ: ð29Þ

According to Eqs. (2) and (3), we have following equations in the
first-order scale of � [30]

@t1qþ @1aðquaÞ þ Oðdt2Þ ¼ 0; ð30Þ
@t1 ðquaÞ þ @1bðquaub þ c2

s qdabÞ þ Oðdt2Þ ¼ 0; ð31Þ

Then, Eq. (31) can be rewritten as

q@t1 ðuaÞ þ qub@1bðqua þ c2
s qdabÞ þ Oðdt2Þ ¼ 0: ð32Þ

By matching small scales, from Eq. (28), we can get up to the second
order equations of the small parameter �:

f ð2Þi ¼ �slbmdt@t2 f ð0Þi � dt2 slbm �
1
2

� �
ð@t1 þ cib@1bÞ2f ð0Þi þ Oðdt3Þ:

ð33Þ
Then, we can get [30]

@t2qþ Oðdt2Þ ¼ 0; ð34Þ
@t2 ðquaÞ ¼ m@1bðqð@1aub þ @1buaÞÞ þ Oðdt2 þ dtu3Þ ð35Þ
Furthermore, from Eq. (29), we have

f ð1Þi ðx; tÞ ¼ �slbmdtð@t1 þ cia@1aÞðf LðeqÞ
i ðx; tÞ þ f QðeqÞ

i ðx; tÞÞ
þ Oðdt3Þ: ð36Þ

In the derivation of Eq. (36), we introduce the following formulas
according to the chain rule of derivatives [31]

@t1 f ðeqÞ
i ðx; tÞ ¼ @qf ðeqÞ

i ðx; tÞ@t1qþ @ub f ðeqÞ
i ðx; tÞ@t1 ub; ð37Þ

@1af ðeqÞ
i ðx; tÞ ¼ @qf ðeqÞ

i ðx; tÞ@1aqþ @ub f ðeqÞ
i ðx; tÞ@1aub: ð38Þ

Now, the equilibrium function can be differentiated by the macro-
scopic variables as follows [31]

@qf ðeqÞ
i ðx; tÞ ¼ 1

q
f ðeqÞ
i ðx; tÞ; ð39Þ

@ub f ðeqÞ
i ðx; tÞ ¼ @ub f LðeqÞ

i ðx; tÞ þ @ub f QðeqÞ
i ðx; tÞ: ð40Þ

According to Eqs. (6) and (7), we have

@ub
f LðeqÞ
i ¼ xiq

1
c2

s
cib; ð41Þ

@ub f QðeqÞ
i ¼ xiq

1
2c4

s
2ciacibua � 2c2

s ub

� �
¼ xiq

1
c4

s
ciacibua �

1
c2

s
ub

� �
: ð42Þ

So, we have

@ub
f ðeqÞ
i ¼ xiq

1
c2

s
ðcib � ubÞ þ

1
c4

s
ciacibua

� �
: ð43Þ

Come here we can have following corollaries.

Corollary 1. From Eq. (36), for the first-order approximation of �,
there exists a lifting relation from the macroscopic variables to the
microscopic variable f ð1Þi

f ð1Þi ¼ �slbmdt ðcia � uaÞ@1aq@qf eq
i þ ðcia � uaÞ@1aub@ub

f ðeqÞ
i

n
�q@qf ðeqÞ

i @aua �
1
q
@1ap@ua f ðeqÞ

i




¼ �slbmdt ðcia � uaÞ
1
q
@1aqf ðeqÞ

i þ ðcia � uaÞ@1aubxiq
�

1
c2

s
ðcib � ubÞ þ

1
c4

s
cibcicuc

� �
� f ðeqÞ

i @1aua

� 1
q
@1bpxiq

1
c2

s
ðcib � ubÞ þ

1
c4

s
cibcicuc

� �

: ð44Þ
Corollary 2. From Eq. (33), for the second-order scale of �, we have
the following approximation

f ð2Þi � �slbmdt@t2 f ðeqÞ
i ; ð45Þ

where the second-order derivative of f ð0Þi is ignored.

Hence, we can easily establish an approximation for f ð2Þi by the
method analogous to the approximation of f ð1Þi as follows

@t2 f ðeqÞ
i ðx; tÞ ¼ @qf ðeqÞ

i ðx; tÞ@t2qþ @ub
f ðeqÞ
i ðx; tÞ@t2 ub: ð46Þ

By Eq. (34), we have

@t2 f ðeqÞ
i ðx; tÞ ¼ @ub f ðeqÞ

i ðx; tÞ@t2 ub ¼
1
q
@ub f ðeqÞ

i ðx; tÞ@t2 ðqubÞ: ð47Þ

From Eqs. (35) and (43), it is easy to obtain

@t2 f ðeqÞ
i ¼ mxi

1
c2

s
ðcib � ubÞ þ

1
c4

s
cibcicuc

� �
@1aðqð@1bua þ @1aubÞÞ:

ð48Þ

So, we have

�2f ð2Þi � �sdtmxi
1
c2

s
ðcib � ubÞ þ

1
c4

s
cibcicuc

� �
@aðqð@bua þ @aubÞÞ:

ð49Þ

By a simple derivation, we have

@aðqð@bua þ @aubÞÞ ¼ @aqð@bua þ @aubÞ þ qð@b@aua þ @2
aubÞ: ð50Þ

From Eqs. (49) and (50), we have

�2f ð2Þi � �slbmdtmxi
1
c2

s
ðcib � ubÞ þ

1
c4

s
cibcicuc

� �

� @aqð@bua þ @aubÞ þ qð@b@aua þ @2
aubÞ

� �
ð51Þ

Therefore, we get the following approximation of the non-equilib-
rium distribution function from Eq. (25)

f ðneqÞ
i � �f ð1Þi þ �2f ð2Þi ; ð52Þ

that is,

f ðneqÞ
i ðx; tÞ � �slbmdt uT;ia

1
q
@aqf ðeqÞ

i þ uT;ia@aubxiq
�

� 1
c2

s
uT;ib þ

1
c4

s
cibcicuc

� �
� f ðeqÞ

i @aua �
1
q
@bp xiq

� 1
c2

s
uT;ib þ

1
c4

s
cibcicuc

� �
þxiq

1
c2

s
uT;ib þ

1
c4

s
cibcicuc

� �

� m
1
q
@aqð@bua þ @aubÞ þ mð@b@aua þ @2

aubÞ
� �


; ð53Þ

where uT,ia = cia � ua (uT = ci � u, peculiar velocity). Since the veloc-
ity field is divergence-free, we have

f ðneq dfvÞ
i � �slbmdt uT;ia

1
q
@aqf ðeqÞ

i þ uT;ia@aubxiq
�

� 1
c2

s
uT;ib þ

1
c4

s
cibcicuc

� �
� 1

q
@1bp xiq

� 1
c2

s
uT;ib þ

1
c4

s
cibcicuc

� �
þxiq

1
c2

s
uT;ib þ

1
c4

s
cibcicuc

� �

� m
1
q
@ alphaqð@bua þ @aubÞ þ m@2

aub

� �

: ð54Þ

Here, we also introduce an approximation of @ub
f ðeqÞ
i by ignoring the

higher-order terms of u2 as adopted in [31]
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@ub
f ðeqÞ
i ¼ xiq

1
c2

s
uT;ib þ

1
c4

s
cibcicuc

� �
� uT;ib

c2
s

f ðeqÞ
i : ð55Þ

Now, we have

f ðneq dfvÞ
i � �slbmdt

� 1
c2

s
f ðeqÞ
i uT;ib uT;ia@aub þ m

1
q
@aqð@bua þ @aubÞ þ m@2

aub

� �
:

ð56Þ

Rewriting the above formula, we obtain

f ðneq dfvÞ
i � �slbmdtf ðeqÞ

i

� 1
c2

s
uT;ib uT;ia@aub þ m@2

aub þ m
1
q
@aqSab

� �
; ð57Þ

where Sab = @bua + @aub.
In all, we can get an approximation of the single-particle distri-

bution function for divergence-free velocity fields as follows

fi � f ðeqÞ
i 1� 1

c2
s
slbmdtuT;ib uT;ia@aub þ m@2

aub þ m
1
q
@aqSab

� �� 

;

ð58Þ

By a similar deviation, we can get an approximation of the single-
particle distribution function for weak-compressible velocity fields
as follows:

fi � f ðeqÞ
i 1� 1

c2
s
slbmdt uT;ibðuT;ia@aub þ mð@2

aub þ @b@auaÞ
��

þm
1
q
@aqSabÞ � c2

s @aua

�

; ð59Þ

Now we compare our results with that published in literatures.

1. Imamura et al. [31] obtained the following formula
fi � f ðeqÞ
i þ �f ð1Þi

¼ f ðeqÞ
i 1� slbmdt

3uT;iauT;ib

c2 � dab

� �
@bua

� �
ð60Þ
They only used f ð1Þi to approximate the single-partial distribution
functions. It is well-known that in order to recover the correct Na-
vier–Stokes equations, f ð2Þi is needed. From this point of view, the
approaching form (59) of the distribution functions are more accu-
rate than (60). If the divergence-free velocity field is considered, Eq.
(58) is also superior to Eq. (60) because Eq. (58) contains the infor-
mation of f ð2Þi which is related with molecule viscosity and density
gradient. As for the lifting relation it is certainly essential to involve
molecule viscosity and density gradient [19,20].
2. Skodors [9] gave the following formula (ignoring the term of

O(Ma2))
f ðneqÞ;S
i ¼ �slbmdtxi

1
c2

s
cici : rðquÞ � r � ðquÞ

� �
: ð61Þ
Guo and Zhao [32] further simplified Eq. (61) and obtained the
following relation

f ðneqÞ;G
i ¼ �slbmdtxi

q0

c2
s

cici : ru: ð62Þ

It is very clear that Eqs. (58) and (59) are totally different from Eqs.
(61) and (62), respectively. The co-existence of Eqs. (58), (59) and
(61), (62) as the lift correlation for the same situation may be re-
garded as the witness that the transformation from one-to-many
must necessarily be not unique [25]. Some comparisons will be per-
formed in Section 4 between Eqs. (58), (59) and (61), (62) for
schemes of D2Q9 and D2Q17. It turns out that the accuracy of
Eqs. (58) and (59) derived in this paper is better than that of Eqs.
(61) and (62). The derivation procedures of Eqs. (58) and (59) kept
the information of the f ð2Þ2 and other more details which are impor-
tant to reduce the reconstruction relative errors.

3. Derivation of non-equilibrium distributions via Boltzmann–
BGK equations

The Boltzmann equation [33] describes the statistical distribu-
tion of particles in a fluid. It is one of the most important equations
of non-equilibrium statistical mechanics, which deals with
systems far from thermodynamic equilibrium [34]. The Boltzmann
equation is described by

@f ðx; v; tÞ
@t

þ v � rxf ðx; v; tÞ þ 1
m

FðxÞrv f ðx; v; tÞ ¼ Xðf ðx; v; tÞÞ: ð63Þ

The Boltzmann Eq. (63) is an equation for the time t evolution of the
distribution (properly a density) function f(x,v, t) in one-particle
phase space, where x = (x1,x2, . . . , xd) 2 Rd and v = (v1, v2, . . . , vd) 2
Rd (d denotes the spatial dimension) are position and velocity,
respectively. The equilibrium distribution function f (eq)(x,v, t) can
be determined by

f ðeqÞðx; v; tÞ ¼ nðx; tÞ m
2pjTðx; tÞ

� �d=2

� exp � m
2jTðx; tÞ ðv� uðx; tÞÞ2

� �
ð64Þ

Here, the quantities T(x, t), n(x, t) and u(x, t) represent the local tem-
perature, the local particle-number distribution density and the local
velocity [2,34], respectively. uT = v � u (x, t) is the so called thermal
velocity. m denotes the single-particle mass which is set to be unity
for convenience. In order to simplify the complex collisional term,
the following conserved relaxation time approximation is used to de-
scribe the collision term through only one characteristic frequency
[34]

@f ðx; v; tÞ
@t

þ v � rf ðx; v; tÞ ¼ �1
s
ðf ðx; v; tÞ � f ðeqÞðx; v; tÞÞ; ð65Þ

where the external force term is not considered andr denotesrx. s
represents the relaxation time.

In order to solve Eq. (65), the velocity space is discretized [2]
and we gain

@fiðx; tÞ
@t

þ ci � rfiðx; tÞ ¼ �
1
s
ðfiðx; tÞ � f ðeqÞ

i ðx; tÞÞ; ð66Þ

where wi denotes the integral weight factor, fi(x, t) = wif(x,ci, t) and
f ðeqÞ
i ðx; tÞ ¼ wif ðeqÞðx; ci; tÞ. Furthermore, along the characteristic line,

the time-discretization form of Eq. (66) can be expressed as [2,36]

fiðxþ cidt; t þ dtÞ¼ fiðx; tÞ�
1

slbm
ðfiðx; tÞ� f ðeqÞ

i ðx; tÞÞ; i ¼ 0;1; . . . ;N:

ð67Þ

where fi is the probability distribution function (PDF) along the ith
direction, f ðeqÞ

i is its corresponding equilibrium PDF, dt is the time
step, ci is the particle velocity in the ith direction, and N is the num-
ber of the discrete particle velocities. Note: slbm = s/dt which is a
dimensionless relaxation time. The local macro quantities are de-
fined by Eqs. (2) and (3).

At the low fluid flow velocity (or low Mach number), an approx-
imate form of the equilibrium distribution function f ðeqÞ

i is de-
scribed by the discrete equilibrium distribution, Eqs. (5)–(7).

Now, we consider the conserved relaxation time approximation of
the Boltzmann Eq. (65). The right hand side of Eq. (65) represents
the difference between the distribution function and a local Max-
well distribution. This difference is termed non-equilibrium distri-
bution defined by



Fig. 1. Linear regression (D2Q9, u0 = 0.1, t = 1000dt, i = 2): (a) fit the line
f̂ iðx; tÞ ¼ afiðx; tÞ þ b, where a = 0.99758 and b = 0.00135; (b) fit the line
f̂ ðneqÞ

i ðx; tÞ ¼ af ðneqÞ
i ðx; tÞ þ b, where a = 0.83265 and b = �2.95012 � 10�6. Standard

deviation: (a) r = 0.00308; (b) r = 9.21597 � 10�4.

Fig. 2. Linear regression (D2Q17, u0 = 0.1 t = 1000dt, i = 2): (a) fit the line
f̂ iðx; tÞ ¼ afiðx; tÞ þ b, where a = 0.99806 and b = 0.00227; (b) fit the line
f̂ ðneqÞ

i ðx; tÞ ¼ af ðneqÞ
i ðx; tÞ þ b, where a = 0.84218 and b = �4.84408 � 10�6. Standard

deviation: (a) r = 0.00288; (b) r = 8.39673 � 10�4.
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f ðneqÞðx; v; tÞ ¼ f ðx; v; tÞ � f ðeqÞðx; v; tÞ: ð68Þ

Then, Eq. (65) can be rewritten as follows

@

@t
þ v � r

� �
f ðneqÞðx; v; tÞþ @

@t
þv � r

� �
f ðeqÞðx; v; tÞ¼�1

s
f ðneqÞðx; v; tÞ:

ð69Þ

In the hydrodynamic region [33], the first term on the left-hand side
of Eq. (69) can be neglected compared with the right-hand side [34].
Then, we obtain

@

@t
þ v � r

� �
f ðeqÞðx; v; tÞ ¼ �1

s
f ðneqÞðx; v; tÞ: ð70Þ

In terms of the Maxwell equilibrium distribution and assuming a
uniform temperature of the system, we can obtain

f ðeqÞðx; v; tÞ
nðx; tÞ

@

@t
þ v � r

� �
nðx; tÞ � f ðeqÞðx; v; tÞ @

@t
þ v � r

� �
u2

T

2jT

¼ �1
s

f ðneqÞðx; v; tÞ; ð71Þ

where T = T(x, t) = constant. In Eq. (71), the left-hand term can be
rewritten as follows
f ðeqÞðx;v; tÞ
nðx; tÞ

@

@t
þ v � r

� �
nðx; tÞ ¼ f ðeqÞðx;v; tÞ

nðx; tÞ
@

@t
þ uðx; tÞ � r

� �
nðx; tÞ

þ f ðeqÞðx;v; tÞ
nðx; tÞ uT � rnðx; tÞ ð72Þ

In order to satisfy the mass conservation condition of the fluid flow
system, the first term of the right-hand side in Eq. (72) should be
equal to zero. Hence, we have the following equation

f ðeqÞðx; v; tÞ @

@t
þ v � r

� �
u2

T

2c2
s
� f ðeqÞðx; v; tÞ

nðx; tÞ ðuT � rnðx; tÞ

� nðx; tÞr � uðx; tÞÞ ¼ 1
s

f ðneqÞðx; v; tÞ; ð73Þ

where cs ¼
ffiffiffiffiffiffiffi
jT
p

. The term u2
T is the thermal fluctuation energy, thus

the non-equilibrium is determined by the material derivative of this
thermal fluctuation energy. The quantity @

@t þ v � r
� �

u2
T can be deter-

mined by the dynamical equation corresponding to the micro
dynamical system. Here, we rewrite 1

2
@
@t þ v � r
� �

u2
T as follows

1
2

@

@t
þ v � r

� �
u2

T¼�uT �
@

@t
þuðx; tÞ � r

� �
uðx; tÞ�uT � ðuT � rÞuðx; tÞ:

ð74Þ



Fig. 3. Linear regression (D2Q9, u0 = 0.01, t = 10000dt, i = 2): (a) fit the line
f̂ iðx; tÞ ¼ afiðx; tÞ þ b, where a = 0.99925 and b = 4.41542 � 10�4; (b) fit the line
f̂ ðneqÞ

i ðx; tÞ ¼ af ðneqÞ
i ðx; tÞ þ b, where a = 0.83655 and b = �1.51056 � 10�8. Standard

deviation: (a) r = 3.52548 � 10�4; (b) r = 1.01264 � 10�4.

Fig. 4. Linear regression (D2Q17, u0 = 0.01, t = 10000dt, i = 2): (a) fit the line
f̂ iðx; tÞ ¼ afiðx; tÞ þ b, where a = 0.99963 and b = 2.17 � 10�4; (b) fit the line
f̂ ðneqÞ

i ðx; tÞ ¼ af ðneqÞ
i ðx; tÞ þ b, where a = 0.84764 and b = �2.17758 � 10�8. Standard

deviation: (a) r = 3.37821 � 10�4; (b) r = 9.47431 � 10�5.

Fig. 5. Linear regression (D2Q9, u0 = 0.1, t = 1000dt, i = 2): fit the line
f̂ iðx; tÞ ¼ afiðx; tÞ þ b, where a = 0.48088 and b = �0.248003 � 10�6.
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Generally, the governing equation of the macroscopic physical
quantity is represented by

D
Dt

uðx; tÞ ¼ @

@t
þ uðx; tÞ � r

� �
uðx; tÞ ¼ Fðx;uðx; tÞ; tÞ: ð75Þ

Normally, the macroscopic physical quantity u(x, t) in the governing
equation is known. So, F(x,u(x, t), t) can be determined easily. For
fluid flow problems, taking u(x, t) as fluid velocity, then F(x,u(x, t), t)
can be estimated by fluid acceleration. The term uT � ðuT � rÞu in Eq.
(74) can be determined by u(x, t) and the spatial derivatives of u
(x, t).

The lattice Boltzmann model is a special discrete form of the
BGK lattice Bolzmann equation with respect to temporal and spa-
tial variables. For LBM the equilibrium distribution, Eq. (5), is a
polynomial-truncated approximation of the Maxwell distribution
up to O(juj3), so Eq. (73) can be applied to LBM directly as follows

f ðeqÞ
i ðx; tÞ @

@t
þ ci � r

� � u2
i;T

2c2
s
� f ðeqÞ

i ðx; v; tÞ
nðx; tÞ ðui;T � rnðx; tÞ

� nðx; tÞr � uðx; tÞÞ ¼ 1
s

f ðneqÞ
i ðx; tÞ; ð76Þ

where ui, T = ci � u(x, t). Now, the non-equilibrium distribution func-
tion can be denoted by
f ðneqÞ
i ðx; tÞ ¼ � sf ðeqÞ

i ðx; tÞ
c2

s

�
ui;T �

�
Fðx;uðx; tÞ; tÞ þ ðui;T � rÞu

þ c2
s

nðx; tÞrnðx; tÞ
�
� c2

sr � uðx; tÞ
�
: ð77Þ



Fig. 6. Vorticity contour plots (D2Q9, u0 = 0.1, t = 1000d t): (a) vorticity contour plot
by the real fi(x,t); (b) vorticity contour plot by the reconstructed f̂ iðx; tÞ.

Fig. 7. Vorticity contour plots (D2Q9, u0 = 0.01, t = 10000dt): (a) vorticity contour
plot by the real fi(x,t); (b) vorticity contour plot by the reconstructed f̂ iðx; tÞ.

H. Xu et al. / Computers & Fluids 54 (2012) 92–104 99
The derivation of Eq. (77) is completed based on the rigorous inher-
ent physical consistency in the hydrodynamic region and the
derivation is independent on the spatial dimension. Meanwhile,
the Maxwell equilibrium distribution is regarded as the tool to
implement the analysis.

It is worth pointing out that for DnQb LBM, F(x,u(x, t), t) can eas-
ily be determined from the recovered Navier–Stokes equations, so
the obtained non-equilibrium distribution function formulas (77)
and (59) are identical. Thus, by using different derivation method
we come to the same conclusion.

In addition, according to Eqs. (58), (59) and (77), it can be seen
that the non-equilibrium distribution functions have the following
form

f ðneqÞ
i ¼ f ðeqÞ

i kiðq;uÞ; ð78Þ

where ki(q,u) is a perturbative parameter with respect to q and u.
The parameter ki(q,u) in Eq. (78) needs to satisfy the following
constraintsX

i

f ðeqÞ
i kiðq;uÞ ¼ 0;

X
ci2V

cif
ðeqÞ
i kiðq;uÞ ¼ 0 ð79Þ
4. Numerical tests

In this section, the non-equilibrium distribution function will be
validated by numerical tests. The numerical tests focus on validat-
ing the precision of the reconstruction operator and the correct-
ness of the coupling computations. It’s worth noting that the
word ‘‘multiscale simulation’’ used in this paper is referred to the
coupling between numerical methods of microscale (molecular
dynamics simulation), mesoscale (LBM) and macroscale (say,
FVM) adopted in neighboring computational regions. And for such
coupling the major concern is the transformation of solutions from
macro (or meso) scales to meso (or micro) scales at the interface.
The focus of the following presentation is to validate the correct-
ness of the proposed operators. Because of space limitation the
effect of the grid fineness on the numerical solution will not be
conducted. Ref. [35] can be referred. The effect of the mesh size
on the accuracy of the reconstruction operator will be presented
in Section 4.2.

4.1. Examination of the precision of the reconstruction operator

In order to validate Formula (77), the D2Q9 [36] and D2Q17 [37]
LBM are adopted to simulate 2D fluid flows. At low Mach number
(Ma = u(x, t)/cs� 1), the R.H.S of Eq. (75) is equal to the R.H.S of Eq.
(20)

Faðx;uðx; tÞ; tÞ ¼ �
@ap
q
þ mð@b@bua þ @a@bubÞ þ m

@bq
q
ð@aub þ @buaÞ

ð80Þ

where

m ¼ c2
s slbm �

1
2

� �
dt: ð81Þ
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Fig. 8. Convergence rates of the reconstruction operator for D2Q9 and D2Q17.

Fig. 9. Geometric structure and mesh partition: (a) Interface structure between two
regions of FVM and LBM; (b) Grid layout for a 2D lid-driven cavity (200 � 200)
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The details of the macroscopic dynamic equation corresponding to
D2Q17 LBM are omitted (see [37]). Now, the non-equilibrium distri-
bution in Eq. (77) can be determined directly by the right-hand side
of Eq. (20). For any given initial velocity and density fields, each
term in the right-hand side of Eq. (20) can be calculated. In order
to validate the precision of the proposed method, the following
two basic quantities are defined

f̂ iðx; tÞ ¼ f ðeqÞ
i ðx; tÞ þ f̂ ðneqÞ

i ðx; tÞ; ð82Þ
f ðneqÞ
i ðx; tÞ ¼ fiðx; tÞ � f ðeqÞ

i ðx; tÞ; ð83Þ

where f̂ ðneqÞ
i ðx; tÞ is called reconstructed non-equilibrium distribu-

tion function and is calculated by Eq. (77) and f̂ iðx; tÞ is the recon-
structed single-particle distribution function. f ðneqÞ

i ðx; tÞ and fi(x, t)
denote the real non-equilibrium distribution function and the real
single-particle distribution function, respectively. Here, we give
two kinds of relative error definitions: single particle distribution
function reconstruction error, single particle non-equilibrium dis-
tribution function reconstruction error

Eðfi; f̂ iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Num� ðnþ 1Þ
X

x

X
i

jf̂ iðx; tÞ � fiðx; tÞj2

fiðx; tÞ2

vuut ; ð84Þ

E f ðneqÞ
i ; f̂ ðneqÞ

i

� 	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Num� ðnþ 1Þ
X

x

X
i

jf̂ ðneqÞ
i ðx; tÞ � f ðneqÞ

i ðx; tÞj2

f ðneqÞ
i ðx; tÞ2

vuut
ð85Þ
where Num denotes the number of lattice nodes.
In order to demonstrate the proposed method, a freely-decaying

2D turbulence problem will be simulated by the proposed method.
This turbulence problem often makes the local discrete single-par-
ticle distribution functions to be far from the local discrete equilib-
rium distribution functions, which yields a rich velocity structure.
The freely-decaying 2D turbulence is implemented in a periodic
box X = [0,2p] � [0,2p]. A 2D random velocity field will be speci-
fied as the initial condition. The initial fields are initialized by
random phase in Fourier spectral space and the initial spectrum
is given by [38]

Eðk;0Þ ¼ asu2
0k�1

p
k
kp

� �ð2sþ1Þ

exp � sþ 1
2

� �
k
kp

� �2
" #

ð86Þ

where s = 0, 1, 2, . . . , and the normalization constant as is given by

as ¼ ð2sþ 1Þsþ1
=2ss!:

All the results presented below correspond to s = 3, kp = 16,
u0 = {0.1,0.01} and q = 2.7. The lattice size is 512 � 512. The integral



Fig. 10. Contour plots of streamline for different Reynolds numbers.

Fig. 11. Comparisons between Ghia’s benchmark solutions and coupling solutions.
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length scale L is equal to 0.12953. The Reynolds number (ReL = Lu0/
m) is equal to 111.4.

In Figs. 1–4, the reconstructed single-particle distribution func-
tions and non-equilibrium distribution functions are compared
with the real single-particle distribution functions and non-equi-
librium distribution functions by linear regression analysis. When
u0 = 0.1 and t = 1000dt, it is clear that the reconstructed single-par-
ticle distribution functions and the non-equilibrium distribution
functions coincide with the real single-particle distribution func-
tions and non-equilibrium distribution functions very well for
D2Q9 and D2Q17 in Figs. 1,2. The corresponding relative errors

Eðfi; f̂ iÞ are about 0.242% and 0.194%, respectively. The relative er-

rors E f ðneqÞ
i ; f̂ ðneqÞ

i

� 	
are about 16.735% and 15.782% for the single-

particle non-equilibrium distribution functions of D2Q9 and
D2Q17, respectively. If Eq. (60) by Imamura et al. [31] is used to
calculate the single-particle non-equilibrium distribution func-

tions, the relative errors E f ðneqÞ
i ; f̂ ðneqÞ

i

� 	
are up to about 21.65%

and 18.13% for D2Q9 and D2Q17, respectively. We also adopted
Eqs. (61) in [9] and (62)in [32] to do the same calculations. The rel-

ative errors E f ðneqÞ
i ; f̂ ðneqÞ

i

� 	
of the single-particle non-equilibrium

distribution functions can be up to about 80% at many lattice

nodes. In Fig. 5, the numerical relation between f ðneqÞ
i and f̂ ðneqÞ

i

for the method in [32]. The mean relative error E f ðneqÞ
i ; f̂ ðneqÞ

i

� 	
is

larger than 43.74% for D2Q9. In the statistical procedure, we ignore

the points with very small f ðneqÞ
i and f̂ ðneqÞ

i f ðneqÞ
i ; f̂ ðneqÞ

i < 10�3
� 	

for

the method in [32]. Here, we must point out that when f ðneqÞ
i and

f̂ ðneqÞ
i are very small, the relative errors E f ðneqÞ

i ; f̂ ðneqÞ
i

� 	
of the meth-

ods in [9,32] are very large. In such a circumstance, the relative er-
ror of the non-equilibrium distribution functions by Eq. (77) is also
a bit larger, but it still less than that computed by Eq. (60) [31] and
much less than that computed by Eqs. (61) and (62) of [9,32],
respectively. Similar results can be observed for the case of
u0 = 0.01 at t = 10000dt for D2Q9 and D2Q17. For the simplicity
of presentation, they are not provided here.

In addition we also found that when the single-particle distri-
bution functions and non-equilibrium distribution functions are
reconstructed, the results from D2Q17 model show a better accu-
racy than that of D2Q9 model. Meanwhile, from the both models,
more accurate results can be gained when the Mach number is
reduced. Such results are very reasonable, and can be understood
as follows. First, D2Q17 model is more accurate to approach Max-
well distribution function in discrete velocity spaces than D2Q9
model. Second, low Mach number will lead to a reduction of the
truncated errors for approaching Maxwell distributions and
better recovered Navier–Stokes equations. It is proved [37] that
D2Q17 model can eliminate the third-order term of statistical
velocity in recovered Navier–Stokes equations.

Finally, attention is turned to the comparison of vorticity by the
real fi(x, t) and the reconstructed f̂ iðx; tÞ in Figs. 6 and 7, where the
vorticity contour figures are given for u0 = 0.1 and u0 = 0.01,



Fig. 12. Enlarge vector plots in overlap regions.

Fig. 13. Contour plots of horizontal velocity for different Reynolds numbers.
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respectively. In order to show the quantitative sense of the vortic-
ity reconstruction error, we choose 100 and 1000 time-series sam-
ples for u0 = 0.1 and u0 = 0.001, respectively. The L2-relative
departures of the reconstructed vorticity are 0.02% ± 0.0014%
(D2Q9, u0 = 0.1), 0.005% ± 0.0003% (D2Q17, u0 = 0.1),
0.01% ± 0.0026% (D2Q9, u0 = 0.01) and 0.003% ± 0.0005% (D2Q17,
u0 = 0.01). The agreement is very good.

In all, the proposed two operators can reconstruct the single-
particle distribution functions and non-equilibrium distribution
functions accurately and effectively. It can be shown that the two
reconstruction operators are very flexible to apply to other discrete
velocity models of lattice Boltzmann equation.

4.2. The rates of convergence

In order to validate the approach behaviors versus different grid
sizes, we give the convergence properties of the D2Q9 and D2Q17
models by different mesh scales. The 2D Taylor–Green vortex prob-
lem is chosen as the initial fields

u ¼ �A cosðk1xÞ sinðk2yÞFðtÞ
v ¼ A k1

k2
sinðk1xÞ cosðk2yÞFðtÞ

p ¼ p0 � A2

4 cosð2k1xÞ þ k2
1

k2
2

cosð2k2yÞ
h i

F2ðtÞ

8>>><
>>>:

ð87Þ

where FðtÞ ¼ exp �mðk2
1 þ k2

2Þt
h i

;A ¼ 0:1; k1 ¼ k2 ¼ 4 and p0 ¼ q0c2
s .

The computational domain X = [0,2p]2 and Re = 10,000. The peri-
odic boundary conditions are applied in both directions. The initial
distribution functions are initialized by the reconstruction operator.
The reconstruction L1 and L2 relative errors of the distribution func-
tions are calculated at the time steps n = {2000,4000,6000,
8000,10,000} corresponding to the mesh resolutions h = {1/32,1/
64,1/96,1/128,1/160} respectively. In Fig. 8, the relative errors are
given in the log–log coordinates. From the results, it is clear that
for the D2Q9 model and the D2Q17 model, they nearly have the
same convergence rates which are approximately equal to 2.6.
However, the relative errors of the D2Q17 model are smaller than
that of the D2Q9 model. That means the reconstruction precision
can be improved when the number of the discrete velocity in-
creases. This conclusion is consistent with the result in Section 4.1.
4.3. Coupling computations of FVM and LBM for lid-driven cavity flows

In order to illustrate the feasibility of the recommended recon-
struction operator, the lid-driven cavity flow is simulated by the
coupled LBM–FVM method. The computational domain is decom-
posed in two regions in which the LBM and FVM methods are used
respectively (see Fig. 9a). The coarseness and fineness of the grids
can adjusted according to the zone spatial scale in each region. If
the grid systems at the interface of overlap subregions are not
identical, space interpolation at the interface is required when
transferring the information at the interface. In this paper, the
identical mesh structures are used for FVM and LBM for conve-
nience to avoid the spatial interpolation (see Fig. 9b). In order to
implement the coupling computations, the overlap Schwartz alter-
native procedure is used to handle the computations.

Numerical simulations were carried out for cavity flow of
Re = 100, 400 and 1000 on a grid 200 � 200. The characteristic
length of square cavity is L = 1. The boundaries of the cavity are
stationary walls, except the top-boundary with a uniform tangen-
tial velocity (ut,Re = 100 = 3.33 � 10�3, ut,Re = 400 = 1.33 � 10�3,
ut,Re = 1000 = 3.33 � 10�2). Fig. 10 shows plots of the stream function
for the Reynolds number considered. These plots give a clear pic-
ture of the overall flow pattern and the effect of Reynolds number
on the structure of the recirculating eddies in the cavity. The
smoothness of the stream function distribution, especially around



Fig. 14. Contour plots of vertical velocity for different Reynolds numbers.

Fig. 15. Contour plots of vorticity for different Reynolds numbers.
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the overlap region confirms the correctness of the information
transfer at the interface. To further quantify these results, the
velocity profiles along the vertical and horizontal centerlines of
the cavity are shown in Fig. 11. The results are in close agreement
with the benchmark solution [39]. The smoothness and consis-
tency of velocity distribution in the overlap region is presented
in Fig. 12 where a local, enlarged view of the vector plot in the
overlap region is shown. Clearly, the vectors in the overlap region
are quite consistent between the LBM results and the FVM results.
Figs. 13 and 14 show the contours of horizontal and vertical veloc-
ity. It is seen that these physical quantities are all smooth across
the interface. According to the authors’ numerical experience, the
smoothness of vorticity contour is the most difficult to obtain for
such coupled computation, because vorticity is from the deriva-
tives of velocity. The contours of vorticity distribution are shown
in Fig. 15. Over all, the smoothness on the overlap region are quite
good, with a minor bumpiness of the left-hand vortex contours for
the case of Re = 100.

In all, by the proposed lifting relation, we can couple the meso-
scopic LBM with FVM to implement the domain decomposition
coupling-computations. This paves the way for implementing mul-
tiscale computations based on LBM and macro-numerical methods
of finite-family.

It should be noted that we also tried the coupling computations
based on the distribution function fi(x, t) reconstructed by Eq. (61)
of [9] and (62) of [32]. Unfortunately, all of our tries were unsuc-
cessful and converged solutions could not be obtained.
5. Conclusion

In this paper, we derive the relation to lift the macroscopic
variables to the microscopic variables for LBM. Two methods of
derivation are conducted and they lead to the same result. Numer-
ical tests demonstrate that the derived lifting relation possesses
good precision. The proposed lifting relation offers a way to imple-
ment the multiscale-computations involving LBM more efficiently
and robustly.
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