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In this paper, a concentration distribution function reconstruction operator is derived to lift macroscopic
parameter concentration to concentration distribution function in lattice Boltzmann method (LBM). Com-
bined with a density–velocity distribution function reconstruction operator previously derived by the
author’s group, the coupled finite volume method and LBM scheme (CFVLBM), previously proposed by
the authors’ group is extended to simulate both fluid flow and mass transport processes. The accuracy
of concentration distribution function reconstruction operator and the feasibility of CFVLBM are validated
by two numerical examples, diffusion–convection–reaction problem and natural convection in a square
cavity induced by concentration gradient. Finally, the CFVLBM is further adopted to simulate fluid flow
and mass transport in the gas channel (GC) and gas diffusion layer (GDL) of a proton exchange membrane
fuel cell (PEMFC). It is found that the CFVLBM can capture the pore-scale information of fluid flow and
species transport in porous GDL and can save the computational resources.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Multiscale phenomena or processes widely exist in material sci-
ence, chemical engineering, mechanical engineering, and energy
and environmental engineering. It is not exaggerate to say that al-
most all problems have multiple scales in nature [1]. From the
engineering computation point of view, multiscale problems in
the thermo-fluid science and engineering as well as in energy
and environmental engineering may be classified into two catego-
ries: multiscale system and multiscale process [2,3]. A multiscale
system refers to a system that is characterized by large variation
in length scales in which the processes at different length scale of-
ten have the same governing equations and are not closely related
[2,3]. Cooling in data centers is a typical multiscale system. The
cooling process from the room to the chip involves an extended
span of length of about 11 orders while all the fluid flow and heat
transfer phenomena in the different length scale can be formulated
by Navier–Stokes (NS) equation and the conventional energy con-
servation equation. In a multiscale process, the overall behavior is
governed by processes that occur at different length and/or time
scales which are inherently and closely coupled with each other,
and the phenomena at different length scales are governed by dif-
ferent equations [2–4]. Proton exchange membrane fuel cell (PEM-
FC) and turbulent flow and heat transfer are two typical examples
ll rights reserved.
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of multiscale process. In a PEMFC, processes of fluid flow, heat and
mass transfer, and electronic and proton conduction in different
components of a PEMFC with different length scales (gas channel
(GC) in the scale of cm, gas diffusion layer (GDL) in the scale of
hundred of micrometers, catalyst layer (CL) in the nanometers,
and membrane in the scale of hundred of micrometers) are closely
related and the processes at different scales are formulated by dif-
ferent equations. The overall cell performance is the combined re-
sults of these strongly interacted processes.

Simulation and modeling of the multiscale systems or processes
has been rapidly expanded in recent years. In the aspect of model-
ing multiscale system, a top-to-down sequential multilevel simula-
tion method with increasing fineness of grids has been proposed to
simulate velocity and temperature distribution in a data center in
Refs. [5,6]. Simulation of a multiscale process is more challenging
and attractive due to the more complicated and coupled processes
involved in the multiscale process [2,3,7]. In this study, emphasis is
placed on the simulation of multiscale processes.

Two types of numerical approaches exist in the literature for the
simulation and modeling of multiscale processes in thermo-fluid
engineering and science [3]. One can be described as ‘‘Using uni-
form governing equation and solving for the entire domain’’, for
which direct numerical simulation (DNS) is a typical example [8].
In the direct numerical simulation of turbulent heat transfer, in or-
der to resolute the smallest eddies both the space and time steps
have to be very fine, making its applications to complicated engi-
neering problems exhibited. The second approach is described as
‘‘Solving problems regionally and coupling at the interfaces’’
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Nomenclature

c lattice speed
cs lattice sound speed
C compression operator
D diffusivity
D2Q9 2-dimension 9-velocity lattice
f density distribution function (DF)
g concentration DF; gravity acceleration
H height
l0 length scale
L length
J specially chosen constant in Eq. (8)cathode transfer cur-

rent density
k reaction rate in Eq. (52)
K specially chosen constant in Eq. (8)
n normal
Nu Nusselt number
p pressure
Pe Peclet number
R gas constant
Ra solutal or thermal Rayleigh number
S source term
Sc Schmidt number
T temperature
t time
t0 time scale
u, v velocities along in x, y directions
x, y cartesian coordinates
Y concentration
Dx space step
Dt time step

a transfer coefficient
b coefficient of solutal expansion
/ variable
g surface over-potential
m kinematic viscosity
q density
s relaxation time
x weight factor
C nominal diffusion coefficient

Superscript
eq equilibrium

Subscripts
c cold side
h hot side
i direction of the discretized velocity
in inlet
L lattice unit
m average
max maximum
min minimum
o oxygen
n nitrogen
p physical unit
w water vapor
ref reference
a, b, c coordinate direction indexes
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(hereafter called coupled modeling strategy). In this approach,
instead of pursuing a single uniform numerical method for the en-
tire domain, a coupled modeling strategy is proposed, in which dif-
ferent numerical methods are used to predict transport process in
different local regimes and information is exchanged at the inter-
faces between neighboring regimes obeying certain principles.

The coupled modeling strategy promotes a better utilization of
different numerical methods. Generally, numerical simulation
methods in thermo-fluid engineering and science can be divided
into three levels, namely numerical methods at macroscopic level
(including the finite-difference method (FDM), the finite-element
method (FEM), and the finite-volume method (FVM)), at meso-
scopic level (including the lattice Boltzmann method (LBM) and
the direct-simulation Monte Carlo method (DSMC)) and at micro-
scopic level (including molecular dynamic simulation (MDS) and
quantum molecular simulation (QMS)). Macroscopic numerical
methods possess the advantages of high computational efficiency,
while suffer the disadvantages of lack of important details in some
special regimes and the necessity of introducing empirical clo-
sures. Mesoscopic or microscopic methods can predict the funda-
mental details of transport processes but require large and even
prohibitive computational resources. The coupled modeling strat-
egy can avoid the disadvantages of the numerical methods at dif-
ferent levels and take the advantages of these numerical
methods to some extent. In the implementation of coupled model-
ing strategy, the computational domain is divided into subdomains
and in each subdomain the appropriate numerical method is ap-
plied. For example, in PEMFC, reactants transport from the macro
GC, through the porous GDL and finally reach the micro CL. When
simulating such transport processes by using coupled modeling
strategy, a PEMFC can be divided into three subdomains, namely,
GC, GDL and CL. Then, FVM is applied to model the GC, LBM for
GDL, LBM or MD for CL. Therefore, advantages of different numer-
ical methods are fully used, leading to both important details of the
transport process in complex porous GDL and CL available and
computational cost acceptable. Currently, this coupled modeling
strategy is experiencing a rapid growth in the modeling of multi-
scale processes [7,9–14].

The critical task and chief difficulty in the coupled modeling
strategy is how to exchange information at the interface of neigh-
boring subdomains, or essentially between different numerical
methods [3,7,15]. For the coupling between LBM and FVM, it is
straightforward to transfer the distribution functions obtained in
the LBM framework to macro variables (velocity, density, temper-
ature, concentration and so on) through statistic methods [16].
However, evaluation of the distribution function in LBM from
macroscopic variables is not straightforward, since the expansion
of small amount of macroscopic variables into a large amount of
particle distribution functions in LBM is not unique and quite dif-
ficult to be implemented [3,15]. Recently the author’s group has
made some efforts to transfer macro velocity and temperature to
particle distribution functions in LBM [7,15,17,18]. In this study,
we go on further in this direction to construct principles for trans-
ferring species concentration to concentration distribution func-
tions in LBM.

The rest of the present study is organized as follows. First, the
fluid flow LB model and diffusion LB model is presented in Sec-
tion 2. Then, the reconstruction operator for density–velocity dis-
tribution function and reconstruction operator for concentration
distribution function are derived in Section 3. The coupling scheme
between FVM and LBM is also introduced in Section 3. The
proposed reconstruction operator and coupling scheme are then
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validated by several Diffusion-convection related problems in Sec-
tion 4. Then, the coupling scheme is applied to simulate the fluid
flow and reactant transport process in the cathode side of a PEMFC
in Section 5. Finally, some conclusions are given in Section 6.
2. Brief introduction to LBM and FVM

2.1. LBM

Due to its excellent numerical stability and constitutive versa-
tility, LBM has developed into an alternative and promising numer-
ical approach for wide applications in recent years [19–22] and is
particularly successful in applications involving interfacial dynam-
ics and complex geometries [16]. LBM simulates pseudo-fluid par-
ticles on a mesoscopic level based on Boltzmann equation using a
small number of velocities adapted to a regular grid in space. The
obvious advantages of LBM are the simplicity of programming,
the parallelism of the algorithm and the capability of incorporating
complex microscopic interactions. For simplicity, only a brief intro-
duction for fluid flow and species transport LB models is given in
the following paragraphs.
2.1.1. LB model for fluid flow
The LB fluid flow model employed is based on the simple and

popular Bhatnagar-Gross–Krook (BGK) method [23]. DnQb lattice
is adopted where n denotes the dimension and b represents num-
ber of discrete velocities [24,25]. The evolution of LB equation is
described by

fi xþ ciDt; t þ Dtð Þ � fiðx; tÞ ¼ �
1
st
ðfiðx; tÞ � f eq

i ðx; tÞÞ ð1Þ

where fi(x, t) is the particle distribution function with velocity ci at
the lattice site x and time t, f ðeqÞ

i is the ith equilibrium distribution
function, Dt is the time increment, and s is the collision time. ci is
the discrete velocities. For D2Q9 model in this study, ci is given by

ci ¼

0 i ¼ 0
cos ði�1Þp

2

h i
; sin ði�1Þp

2

h i� �
i ¼ 1;2;3;4ffiffiffi

2
p

cos ði�5Þp
2 þ p

4

h i
; sin ði�5Þp

2 þ p
4

h i� �
i ¼ 5;6;7;8

8>><
>>: ð2Þ

The equilibrium distribution function is given by

f ðeqÞ
i ¼ xiq 1þ 3

c2 ðci � uÞ þ
9

2c4 ðci � uÞ2 �
3

2c2 u2
� �

ð3Þ

where the weights wi = 4/9, i = 0; wi = 1/9, i = 1, 2, 3, 4; wi = 1/36,
i = 5, 6, 7, 8. cs is the sound speed (cs ¼ c=

ffiffiffi
3
p

where c equals Dx/
Dt). Fluid density q and velocity u can be obtained from the first
and second moments of the particle distribution functions

q ¼
P

i
fi; ð4Þ

qu ¼
P

i
fici ð5Þ

The kinematics viscosity in lattice unit is related to the collision
time by

m ¼ c2
s ðsm � 0:5ÞDt ð6Þ
2.1.2. LB model for species transport
For species transport with reactions, the evolution of LB equa-

tion is described by Dawson et al. [26]

giðxþ ciDt; t þ DtÞ � giðx; tÞ ¼ �
1
sY
ðgiðx; tÞ � geq

i ðx; tÞÞ ð7Þ
where gi is the concentration distribution function. The equilibrium
concentration distribution function geq

i ðx; tÞ is commonly chosen as
[27]

geq
i ¼ Yk½Ji þ Kici � u� ð8Þ

where Ki is constant and equals 1/2 for two-dimensional case. Y is
the concentration.

For mass transport simulation, the D2Q9 square lattice for 2D
simulation can be reduced to D2Q5 square lattice by ignoring
velocities at the diagonals, namely four velocities with subscript i
greater than 4 in Eq. (2). This reduction of discrete velocities
doesn’t create loss of accuracy [27].

Ji in Eq. (8) is given by [27]

Ji ¼
J0; i ¼ 0
ð1� J0Þ=4; i ¼ 1;2;3;4

�
ð9Þ

where the rest fraction J0 can be selected from 0 to 1 depending on
the diffusivity D. Species concentration Y is obtained by

Y ¼
X

gi ð10Þ

The diffusivity in lattice unit is related to the collision time by

D ¼ CQ ð1� J0ÞðsD � 0:5ÞDx2

Dt
ð11Þ

where CQ is a lattice dependent coefficient and equals 1/2 for 2D
simulation [27].

2.2. FVM

FVM is the most widely adopted numerical method at macro-
scopic level for numerical fluid flow and heat transfer due to its
conservation properties of the discretized equation and the clear
physical meaning of the coefficients. The differential governing
equations are as follows

oðq/Þ
ot
þrðqu/Þ ¼ rðC/r/Þ þ S/ ð12Þ

where / is a scalar dependent variable (such as velocity component,
temperature and concentration). C is the nominal diffusion coeffi-
cient, and S/ is the source term.

SIMPLE algorithm proposed by Patankar and Spalding in 1972 is
the most well-known solution procedure based on FVM for solving
NS equations, which are included in Eq. (12). There are two major
assumptions in the SIMPLE algorithm: (1) the initial pressure and
initial velocity are independently assumed, leading to some incon-
sistency between p and u, v; and (2) when the velocity correction
equation is derived, the effects of the neighboring grids’ velocity
corrections are totally neglected. These two assumptions do not
affect the final solution but do affect the convergence rate. The first
assumption was overcome by SIMPLER of Patankar [28]. Many
efforts have been devoted to overcome the second assumption
and several solution procedures have been proposed such as
SIMPLEC [29], PISO [30], the explicit correction-step method [31],
and MSIMPLER [32]. However, none of the above solution proce-
dures could completely overcome the second assumption. In re-
cent years, two solution algorithms called CLEAR [33,34] and
IDEAL [35,36] are developed by the author’s group, in which the
second assumption is completely deleted, making the algorithm
fully implicit. In the CLEAR algorithm, the improved pressure and
velocity are solved directly, rather than by adding a correction
term to the intermediate solution. The IDEAL algorithm further
improves the convergence rate and robustness of the CLEAR by
updating the pressure equations repeatedly in both prediction
and correction steps.
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In this article, the two-dimensional (2D) IDEAL collocated grid
algorithm is adopted [35,36], and the SGSD scheme [37] is used
to discretize the convective term.

3. The coupling principle between FVM and LBM

3.1. Reconstruction operator for density–velocity distribution function

Attention now is turned to design coupled principle between
FVM and LBM. As mentioned above, the critical task and chief dif-
ficulty in the coupling between FVM and LBM is to transfer macro-
scopic variables to distribution functions in LBM. As indicated
above, our groups have made some efforts to transfer macro veloc-
ity and temperature to particle distribution functions in LBM
[7,15,17,18]. For the readers’ convenience and also for further der-
ivation of species transport coupling scheme, the derivation pro-
cess of the density distribution function is briefly presented
below [15].

According to the Chapman–Enskog method, we can introduce
the following time and space scale expanding

ot ¼ eoð1Þt þ e2o
ð2Þ
t ð13aÞ

oxa ¼ eoð1Þxa
ð13bÞ

the small expansion parameter e can be viewed as the Knudsen
number Kn which is the ratio of the mean free path over the char-
acteristic length scale of the flow, and a represents the two coordi-
nate directions.

The distribution function fi is expanded around the distributions
f ð0Þi as follows

fi ¼ f ð0Þi þ ef ð1Þi þ e2f ð2Þi ð14Þ

withP
i

f ð1Þi ¼ 0;
P

i
cif
ð1Þ
i ¼ 0;

P
i

f ð2Þi ¼ 0;
P

i
cif
ð2Þ
i ¼ 0 ð15Þ

Then, fi(x + ciDt, t + Dt) in Eq. (1) is expanded about x and t which
gives

fiðxþ ciDt; t þ DtÞ ¼ fiðx; tÞ þ DtDiafiðx; tÞ þ
Dtð Þ2

2
D2

iafiðx; tÞ

þ O ðDtÞ3
h i

ð16Þ

where Dia ¼ ot þ cioxa for concise expression.
Substituting Eq. (16) into Eq. (1) yields the following equation

DtDiafi þ
ðDtÞ2

2
D2

iafi ¼ �
1
sf

fi � f ðeqÞ
i

� �
þ O ðDtÞ3

h i
ð17Þ

Furthermore, substituting Eqs. (13a), (13b) and (14) into Eq. (17)
obtains

eDð1Þia f ð0Þ þ e2 Dð1Þia f ð1Þi þ o
ð2Þ
t f ð0Þi

h i
þ e2 Dt

2
Dð1Þia

h i2
f ð0Þi

¼ � 1
Dtsf

f ð0Þi þ ef ð1Þi þ e2f ð2Þi � f ðeqÞ
i

� �
þ O ðDtÞ3

h i
ð18Þ

Then by matching the scales of e0, e1 and e2, we have

e0 : f ð0Þi ¼ f ðeqÞ
i ð19Þ

e1 : f ð1Þi ¼�Dtsf D
ð1Þ
ia f ð0Þi þO ðDtÞ2

h i
ð20Þ

e2 : f ð2Þi ¼�Dtsf Dð1Þia f ð1Þi þo
ð2Þ
t f ð0Þi

h i
�sf
ðDtÞ2

2
Dð1Þia

h i2
f ð0Þi þO ðDtÞ3

h i
ð21Þ

Considering Eqs. (4) and (5), we can sum Eq. (20) over the phase
space. Then the first order of the continuity equation and momen-
tum equation can be derived.
e1 : o
ð1Þ
t qþ oð1Þxa

ðquaÞ þ O½ðDtÞ2� ¼ 0 ð22aÞ
o
ð1Þ
t ðquaÞ þ oð1Þxb

ðquaub þ pdabÞ þ O½ðDtÞ2� ¼ 0 ð22bÞ

By the same way, we can obtain the second order of continuity
equation and momentum equation according to Eq. (21)

e2 : o
ð2Þ
t qþ O ðDtÞ3

h i
¼ 0 ð23aÞ

o
ð2Þ
t ðquaÞ � moð1Þxb

q oð1Þxa
ub þ oð1Þxb

ua

h in o
þ O ðDtÞ3

h i
¼ 0 ð23bÞ

The formulas according to the chain rule of derivatives read:

ot f
ðeqÞ
i ¼ oqf ðeqÞ

i otqþ oub f ðeqÞ
i otub ð24aÞ

oxa f ðeqÞ
i ¼ oqf ðeqÞ

i oxaqþ oub f ðeqÞ
i oxa ub ð24bÞ

From Eq. (3), we can get

oub
f ðeqÞ
i ¼ xiq

1
c2

s
ðcib � ubÞ þ

1
c4

s
ciacibua

� �
ð25Þ

oqf ðeqÞ
i ¼ 1

q
f ðeqÞ
i ð26Þ

Furthermore, substituting (25) and (26) into Eq. (20), we can de-
rive the first order expression of distribution function fi

f ð1Þi ¼�sf Dt o
ð1Þ
t f ð0Þi þcio

ð1Þ
xa

f ð0Þi

h i
¼�sf Dt oqf ð0Þi o

ð1Þ
t qþoub

f ð0Þi o
ð1Þ
t ubþci oqf ð0Þi oð1Þxa

qþoub
f ð0Þi oð1Þxa

ub

� �h i
¼�sf Dt Uiaf ð0Þi

1
q

o
ð1Þ
xa

qþUiaxiq
1
c2

s
Uibþ

1
c4

s
cibcicuc

� 	
o
ð1Þ
xa

ub� f ð0Þi o
ð1Þ
xa

ua

�

�xi
1
c2

s
Uiaþ

1
c4

s
ciacicuc

� 	
o
ð1Þ
xa

p
�

ð27Þ

where Uia = cia � ua.
The second-order expression of fi in Eq. (21) is calculated as

follows

f ð2Þi ¼ �Dtsf Dð1Þia f ð1Þi þ o
ð2Þ
t f ð0Þi

h i
� ðDtÞ2sf

2
Dð1Þia

h i2
f ð0Þi

¼ �Dtsf Dð1Þia �sDtDð1Þia f ð0Þi

� �
þ o

ð2Þ
t f ð0Þi

h i

� ðDtÞ2sf

2
Dð1Þia

h i2
f ð0Þi

¼ �Dtsf o
ð2Þ
t f ð0Þi þ ðDtÞ2sf sf �

1
2

� 	
Dð1Þia

h i2
f ð0Þi ð28Þ

We can ignore the second-order derivative of f ð2Þi , then

f ð2Þi ¼ �Dtsf o
ð2Þ
t f ð0Þi ð29Þ

By the chain rule of derivatives, it gives

o
ð2Þ
t f ð0Þi ¼ oqf ð0Þi o

ð2Þ
t qþ oub

f ð0Þi o
ð2Þ
t ub ¼ oub

f ð0Þi o
ð2Þ
t ub ð30Þ

Using Eqs. (23b) and (25), we get

o
ð2Þ
t f ð0Þi ¼ oub

f ð0Þi o
ð2Þ
t ub ¼

1
q

oub
f ð0Þi o

ð2Þ
t ðqubÞ

¼ mxi
1
c2

s
ðcib � ubÞ þ

1
c4

s
ciacibua

� �
oð1Þxa

q oð1Þxa
ub þ oð1Þxb

ua

� �� �

¼ mxiq
1
c2

s
ðcib � ubÞ þ

1
c4

s
ciacibua

� �
1
q

oð1Þxa
q oð1Þxa

ub þ oð1Þxb
ua

� ��

þ oð1Þxa
oð1Þxa

ub þ oð1Þxb
ua

� �i
ð31Þ

So the following expression is obtained

f ð2Þi ¼ �Dtsf mxiq
1
c2

s
Uib þ

1
c4

s
ciacibua

� 	
1
q

oð1Þxa
q oð1Þxa

ub þ oð1Þxb
ua

� ��

þ oð1Þxa
oð1Þxa

ub þ oð1Þxb
ua

� �� �i
ð32Þ
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Here, we introduce an approximation of oub
f ð0Þi by dropping terms of

a higher order than u2 as follows

oub
f ð0Þi ¼ xiq

1
c2

s
Uib þ

1
c4

s
cibcicuc

� 	
� Uib

c2
s

f ð0Þi ð33Þ

Assuming the velocity fields is divergence-free, written as

oxa ua ¼ 0: ð34Þ

According to Eqs. (33) and (34), we can rewrite the expressions
of f ð1Þi and f ð2Þi as

f ð1Þi ¼ �sf Dt Uiaf ð0Þi

1
q

oð1Þxa
qþ UiaUibf ð0Þi

1
c2

s
oð1Þxa

ub � Uiaf ð0Þi

1
qc2

s
oð1Þxa

p
� �

¼ �sf DtUiaUibf ð0Þi c�2
s oð1Þxa

ub

ð35Þ

f ð2Þi ¼ �Dtsf mUibf ð0Þi c�2
s

1
q

oð1Þxa
q oð1Þxa

ub þ oð1Þxb
ua

� �
þ oð1Þxa

� �2
ub

� �

¼ �Dtsf mUibf ð0Þi c�2
s

1
q

Sð1Þab oð1Þxa
qþ oð1Þxa

� �2
ub

� �
ð36Þ

where Sab ¼ oxb
ua þ oxa ub.

Finally, we can derive the expression of fi

fi ¼ f ð0Þi þ ef ð1Þi þ e2f ð2Þi

¼ f ð0Þi � sDtUiaUibf ð0Þi c�2
s oxa ub

� sDtmUibf ð0Þi c�2
s

1
q

Saboxaqþ o2
xa

ub

� �

¼ f ðeqÞ
i 1� sDtUibc�2

s Uiaoxa ub þ mo2
xa

ub þ mq�1Saboxaq

 �� 

ð37Þ

Eq. (37) is an analytic expression for reconstructing the density–
velocity distribution function from the macro variables. Hereafter
we call it as density–velocity distribution function reconstruction
operator.

3.2. Reconstruction operator for concentration distribution function

Now attention is turned to develop the reconstruction operator
for concentration distribution function which is the major concern
of the present study. Following Eqs. (14)–(21), we can obtain gi in
the scales of e0, e1 and e2

e0 : gð0Þi ¼gðeqÞ
i ð38Þ

e1 : gð1Þi ¼�DtsgDð1Þia gð0Þi þO ðDtÞ2
h i

ð39Þ

e2 : gð2Þi ¼�Dtsg Dð1Þia gð1Þi þo
ð2Þ
t gð0Þi

h i
�ðDtÞ2sg

2
Dð1Þia

h i2
gð0Þi þO ðDtÞ3

h i
ð40Þ

Therefore, we can derive the macroscopic equations at the
t1 = et and t2 = e2t time scales

o
ð1Þ
t Y þ oð1Þxa

ðuaYÞ ¼ 0 ð41Þ

o
ð2Þ
t Y � 2Jðs� 0:5ÞDx2

Dt
oð1Þxa

oð1Þxa
ðYÞ ¼ 0 ð42Þ

Introducing the formulas according to the chain rule of
derivatives

otg
ðeqÞ
i ¼ oY gðeqÞ

i otY þ oub
gðeqÞ

i otub ð43Þ
oxa gðeqÞ

i ¼ oY gðeqÞ
i oxa Y þ oub

gðeqÞ
i oxa ub ð44Þ

and from the equilibrium distribution function given by Eq. (8), we
can get the following expression

oub
gðeqÞ

i ¼ oub
½YðJ þ 1=2cicucÞ� ¼ 1=2Ycib ð45Þ

oY gðeqÞ
i ¼ oY ½Yð1þ 1=2cicucÞ� ¼ Y�1gðeqÞ

i ð46Þ
The first order expression of distribution function gi can be de-
rived as

gð1Þi ¼�sgDtDð1Þi gð0Þi ¼�sgDt o
ð1Þ
t gð0Þi þciao

ð1Þ
xa

gð0Þi

� �
¼�sgDt oY gð0Þi o

ð1Þ
t Yþoub

gð0Þi o
ð1Þ
t ubþcia oY gð0Þi oð1Þxa

Yþoub
gð0Þi oð1Þxa

ub

� �h i
¼�sgDt �oY gð0Þi oð1Þxa

ðuaYÞ�uaoub
gð0Þi oð1Þxa ub�

1
q

oub
gð0Þi o

ð1Þ
xb p

�

þcia oY gð0Þi oð1Þxa
Yþoub

gð0Þi oð1Þxa
ub

� �i
¼�sgDt UiaY�1gðeqÞ

i oð1Þxa
Yþ0:5UiaYcibo

ð1Þ
xa

ub�0:5q�1Ycibo
ð1Þ
xb p

h i
ð47Þ

The second order expression of distribution function gi can be
derived as

gð2Þi ¼ �sgDt o
ð2Þ
t gð0Þi þ 1� 1

2sg

� 	
Dð1Þi gð1Þi

� �

¼ �sgDt o
ð2Þ
t gð0Þi � sg �

1
2

� 	
DtDð1Þi Dð1Þi gð0Þi

h i� �

¼ �sgDt o
ð2Þ
t gð0Þi � sg �

1
2

� 	
Dt Dð1Þi

� �2
gð0Þi

� �
ð48Þ

The second-order derivative of gð0Þi can be ignored in the above
equation, then

gð2Þi ¼�sgDtoð2Þt gð0Þi ¼�sgDt oY gð0Þi o
ð2Þ
t Yþoub

gð0Þi o
ð2Þ
t ub

h i
¼�sgDt DY�1gðeqÞ

i o
ð1Þ
xa

o
ð1Þ
xa

Yþ0:5Ycibq�1ot2 ðqubÞ
h i

¼�sgDt DY�1gðeqÞ
i o

ð1Þ
xa

o
ð1Þ
xa

Yþ0:5Ycibq�1m qo
ð1Þ
xa

o
ð1Þ
xa

ubþo
ð1Þ
xb

ua

� �� �hh
þ oð1Þxa

ubþoð1Þxb
ua

� �
oð1Þxa

q
ii

¼�sgDt DY�1gðeqÞ
i o

ð1Þ
xa

o
ð1Þ
xa

Yþ0:5Ycibq�1m qo
ð1Þ
xa

o
ð1Þ
xa

ubþSð1Þab o
ð1Þ
xa

q
h ih i

ð49Þ

At last, the expression of gi is derived as

gi ¼ gð0Þi þ egð1Þi þ e2gð2Þi þ�� �

¼ gðeqÞ
i �sgDt UiaY�1gðeqÞ

i oð1Þxa
Yþ0:5UiaYcibo

ð1Þ
xa

ub�0:5q�1Ycibo
ð1Þ
xb p

h i
�sgDt DY�1gðeqÞ

i oxaoxa Yþ0:5Ycibq�1m½qoxaoxa ubþSaboxaq�
h i

¼ gðeqÞ
i �sgDt UiaY�1gðeqÞ

i oð1Þxa
Yþ0:5UiaYcibo

ð1Þ
xa

ub�0:5q�1Ycibo
ð1Þ
xb p

h i
�sgDt DY�1gðeqÞ

i oxaoxa Yþ0:5Ycibq�1m qoxaoxa ubþSaboxaq
� h i

¼ gðeqÞ
i 1�sgDtY�1ðUiao

ð1Þ
xa

Y�Doxaoxa YÞ
h i

�0:5sgDtYcibðUiao
ð1Þ
xa

ubþmoxaoxa ubþq�1mSaboxaqÞ
þ0:5sgDtq�1Ycibc�2

s o
ð1Þ
xb q ð50Þ

Eq. (50) is an analytic expression for the reconstruction of the
concentration distribution function gi from the macro concentra-
tion. It will be called concentration distribution function recon-
struction operator.

Eq. (37) combined with Eq. (50) can be applied to the fluid flow
and species transport. The reconstruction operations are essential
to establish an effective information exchange scheme from
macro-solver to the micro-solver and to construct a reasonable ini-
tial field for accelerating the microscopic computation.

3.3. Computational procedure

In this section, the basic idea of the computational procedure by
coupling FVM and LBM is illustrated. Fig. 1 schematically shows a
computational domain decomposed into two regions. FVM and
LBM are used to simulate fluid flow and mass transport in the left
region and right region respectively. Line MN is the FVM region
boundary located in the LBM sub-region, and AB is the LBM region



Fig. 3. Comparison between simulation results from the CFVLBM (dot) and
analytical solutions (line) for the diffusion–convection–reaction problem. (a)
Different Pe number with reaction rate of zero, (b) Different reaction rates with
Pe = 2.8.

Fig. 2. Schematic computational domain of the diffusion–convection–reaction
problem.

Fig. 1. Computational domain decomposed into two sub-regions.

Fig. 4. Computational domain of the natural convection induced by concentration
gradient.
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boundary located in the FVM sub-region. Hence, the sub-region be-
tween lines AB and MN is the overlapping region in which both
LBM and FVM methods are adopted. This arrangement of the inter-
face is convenient for the information exchange between the two
neighboring regions [2]. In the simulations of this study, the grid
size in one sub-region is equal to that in the other sub-region.
Obviously, different grid sizes can be adopted in different sub-re-
gions. Under this circumstance, space interpolation at the interface
is required to transfer the information at the interface [17], and one
can refer to [17] for more information.

Now the computational procedures using coupled FVM and
LBM are summarized as follows (hereafter called CFVLBM).

Step 1 . With some assumed initial boundary conditions at the
line MN, the FVM simulation in the FVM zone is
performed.

Step 2 . After a temporary solution is obtained, the information at
the line AB is transformed into the density–velocity distri-
bution function by Eq. (37) and the concentration distribu-
tion function by Eq. (50).

Step 3 . The LBM simulation is carried out in the LBM zone.
Step 4 . The temporary solution of LBM at the line MN is trans-

ported into the macro variables and the FVM simulation
is repeated.

Step 5 . Such computation is repeated until the results at the two
lines are remained the same within an allowed tolerance.

4. Validation

In this section, two examples are simulated to validate the
CFVLBM coupling modeling strategy. One is diffusion–convec-
tion–reaction problem and the other is natural convection in a
square called by concentration gradient.



Fig. 5. Contour lines for natural convection in square cavity for Sc = 0.71 (Pr = 0.71) and solutal Ra = 103 (thermal Ra = 103).
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In the LBM model, the simulation variables are in the lattice
units instead of physical units. To connect the lattice space to phys-
ical space, length scale l0, time scale t0 and density scale q0 are cho-
sen in this study. Accordingly, the physical variables such as
velocity up, pressure pp, viscosity tp and diffusivity Dp can be calcu-
lated from the quantities in lattice system (subscripted by L) as
follows

uP ¼ uL
l0

t0
; pP ¼ pLq0

l0

t0

� 	2

; DP ¼ DL
l20
t0
; mP ¼ tL

l2
0

t0
ð51Þ

In this study, the scale parameters are chosen as
l0 = 1.0 � 10�6 m, t0 = 1.33 � 10�8 s and q0 = 1.0 kg m�3.
4.1. Diffusion–convection–reaction problem

A diffusion–convection–reaction problem is adopted to validate
CFVLBM developed in the present work, as shown in Fig. 2. Species
transports from the left inlet to the right outlet. At the inlet, species
concentration is Y = 1, and at the outlet Y = 0. A uniform constant
horizontal flow with velocity u is injected into the domain from
the inlet and is removed from the outlet. Reactions take place in
the whole computational domain. Obviously, the above problem
described is essentially one-dimensional. The macroscopic govern-
ing equation for species concentration of the above problem is

u
dY
dx
¼ D

d2Y
dx2 � kY ð52Þ

where k is the reaction rate. The analytical solution of Eq. (52) is

Y ¼ A1 expðB1xÞ þ A2 expðB2xÞ ð53aÞ

where

B1 ¼
u
D
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u
D

� �2
þ 4k

D

r ! ,
2; B2 ¼

u
D
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u
D

� �2
þ 4k

D

r ! ,
2;

A1 ¼
Yout � Y in expðB2LÞ
expðB1Þ � expðB2LÞ ; A2 ¼ Y in � A1 ð53bÞ

In the simulation, D = 2.845 � 10�5 m2 s�1. The length and
height of the computational domain is L = 6 � 10�4 m and
H = 1 � 10�4 m respectively. J0 in Eq. (10) is 0.2. Uniform grid sizes
are adopted for both the FVM and LBM zones with grid size as
1 � 10�6 m. Thus, the grid number of the FVM zone is 311 � 101
and that of the LBM zone is 301 � 101. Ten more grids along the
x direction for FVM zone are due to the overlapping zone. The
boundary conditions for the species transport are non-flux on the
bottom and top boundaries.



Fig. 6. Contour lines for natural convection in square cavity for Sc = 0.71 (Pr = 0.71) and solutal Ra = 104 (thermal Ra = 104).
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Fig. 3(a) compares the simulation results of species concen-
tration along x axis with the analytical solutions for different
Peclet number Pe, which is defined as u/D. In Fig. 3(a), the reac-
tion rate k is zero, leading to the above problem reduced to a
diffusion-convection problem. It can be seen in Fig. 3(a) that
the simulation results adopting CFVLBM agree well with the ana-
lytical solutions for all the cases, with the maximum deviation
less than 0.02 %.

Fig. 3(b) compares the simulation results with the analytical
solutions for different reaction rate. In Fig. 3(b) Pe is fixed as 2.8
and the reaction rate is changed from 0 to 5000 s�1. Again the sim-
ulation results show good agreement with the analytical solutions,
which further validates the accuracy and feasibility of concentra-
tion distribution function reconstruction operator and the CFVLBM
computational procedure proposed in this study.

4.2. Natural convection in a square cavity caused by concentration
gradient

Similar to temperature gradient, concentration gradient in a
square cavity also can cause buoyancy flows [38–40]. In fact, dou-
ble-diffusive problem, namely buoyancy flow induced by com-
bined temperature and concentration gradients has been widely
studied [41–43]. In this section, natural convection in a square cav-
ity caused by concentration gradient only is simulated using the
CFVLBM.

The physical model for the problem under consideration is
shown in Fig. 4. The cavity has an aspect ratio of unity and is filled
with an incompressible perfect mixture of a binary fluid that oper-
ates in the laminar regime under steady state condition. The
Schmidt number Sc (Sc = m/D) is fixed as 0.71. The concentration
Yh and Yc are uniformly imposed along the left wall and right wall
respectively. The top and bottom surfaces are assumed to be
impermeable. Fluid properties are defined as density
q = 1.0 kg m�3, kinetic viscosity m = 1.3 � 10�5 m2s�1. The compu-
tations are conducted for three solutal Rayleigh numbers Ra
(Ra = gbDYH3/Dm = 103, 104 and 105) with grid number 601 � 601.
The results of CFVLBM simulation are compared carefully with
the results using commercial software FLUENT.

The well known Boussinesq approximation [44] is used in the
simulation. In Boussinesq approximation, it is assumed that all
fluid properties (density, viscosity, thermal diffusivity) can be



Fig. 7. Contour lines for natural convection in square cavity for Sc = 0.71 (Pr = 0.71) and solutal Ra = 105 (thermal Ra = 105).
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considered as constant except the density q in the body force term,
where it is assumed to be a linear function of the concentration

q ¼ q0½1þ bðY � YcÞ� ð54Þ

where q0 are the reference fluid density, b is the coefficient of sol-
utal expansion. With the Boussinesq approximation, the gravity is
rewritten as

G ¼ q0g þ q0gbðY � YcÞ ð55Þ

where g is the acceleration of vector of gravity.
The natural convection adopted Boussinesq approximation can

be simulated by adding an external force term Fi to the right-
hand-side of the evolution Eq. (1) [45]. Fi is defined as

Fi ¼ xiq 1� 1
2s

� 	
3
c2 ci � Fð Þ þ 9

c4 ci � Fð Þ2 � 3
c2 F2

� �
ð56Þ

where F = gb(Y � Yc).
Fig. 5(a) shows the contour lines of u velocity, v velocity,

streamline and isoconcentration for Ra as 103using CFVLBM, while
Fig. 5(b) is the corresponding results using FLUENT. It can be seen
that the simulations results of CFVLBM and FLUENT are in good
agreement with each other. It is worth mentioning that the con-
centration gradient induces natural convection in the opposite
direction compared with that from temperature gradient. That is,
the buoyancy flow induced by concentration gradient is anti-clock-
wise (high concentration and low concentration are at the left and
right walls, respectively), while that induced by temperature gradi-
ent is clockwise (i.e., high temperature and low temperature are at
the left and right walls, respectively). In fact, if Prandtl number Pr
and thermal Rayleigh numbers Ra equal to Sc and solutal Rayleigh
numbers Ra respectively, the contour lines of temperature caused
natural convection and those of concentration gradient caused
one are antisymmetric about the center line of the vertical direc-
tion. Fig. 5(c) shows the contour lines of u velocity, v velocity,
streamline and isotherms for temperature caused natural convec-
tion with Pr of 0.71 and thermal Rayleigh numbers Ra of 103. The
antisymmetric characteristics can be clearly observed.

Figs. 6(a) and (b) and Figs. 7(a) and (b) shows the contour lines
of u velocity, v velocity, streamline and isoconcentration for Ra as
104 and 105 respectively. Again the simulation results of CFVLBM



Fig. 8. Comparison between velocities from CFVLBM and FLUENT.

Fig. 9. Comparisons of concentration profiles along the horizontal central line.
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and FLUENT agree well with each other. Fig. 6(c) Fig. 7(c) shows the
corresponding contour lines for temperature caused natural con-
vection, and the antisymmetric characteristics are perfect.
Table 1
CFVLBM solutions for different solutal Ra (The corresponding valu
[46]).

Parameters Sh for
concentration, Nu for
temperature

Ra = 103 Ra = 1

Concentration Temperature Conc

Shm or Num 1.098 1.114 2.190
Shmax or Numax 1.498 1.581 3.364
(y/H)max 0.910 0.099 0.86
Shminor Numin 0.659 0.670 0.574
(y/H)min 0.005 0.994 0.005
To further validate the accuracy of CFVLBM, v-velocity along the
horizontal center line and u -velocity along the vertical center line
are compared with results from FLUENT in Fig. 8, where velocity u
is normalized by maximum velocity umax on the vertical center line
and v is normalized by the maximum velocity vmax on the
horizontal center line. It can be observed in Fig. 8 that the pre-
dicted results from CFVLBM are consistent with that from FLUENT.

The variation of non-dimensional concentration along the
horizontal centerline is shown in Fig. 9. It can be clearly seen that
the results of CFVLBM and FLUENT agree well with each other. At
Ra = 103, the concentration drops linearly due to the dominant
diffusion mechanism. As Ra increases, the concentration gradients
near the two vertical walls increase and the center part becomes
flat.

Finally, local and average Sherwood number Sh (dimensionless
mass flux) is calculated for the left wall

Sh ¼ � H
DY

oY
ox

� 	
w

ð57Þ

Shm ¼
Z H

0
Sh dy ð58Þ
es for different thermal Ra are also presented for comparison

04 Ra = 105

entration Temperature Concentration Temperature

2.245 4.511 4.510
3.539 7.629 7.637
0.143 0.915 0.915
0.583 0.768 0.773
0.994 0.0025 0.999



Fig. 10. Computational domain including a GC and a porous GDL in a PEMFC.

Table 2
Physical parameters.

Quantity Value

Dimensions of the computational domain
Length of GC, L 1040 lm
Height of the GC, HGC 200 lm
Height of the GDL, HGDL 120 lm
Porosity of GDL, e 0.72

Operating conditions
Pressure of the operation condition, P 1.0 � 101325 Pa
Temperature of the operation condition, T 343 K
Universal gas constant, R 8.314 J mol�1 K�1

Faraday’s constant, F 96487�C mol�1

Air inlet velocity, u 1.5 m s�1

Inlet mole fraction rate of oxygen, XO,in 0.21
Inlet mole fraction rate of nitrogen, XN,in 0.79
Inlet mole fraction rate of water vapor, Xw,in 0.0
Diffusivity of oxygen in air, DO 2.84 � 10�5 m2 s�1

Diffusivity of water vapor in air, DH 3.55 � 10�5 m2 s�1

Cathode transfer coefficient, a 1.0
ORR reduction order, cc 1
Cathode volumetric reference exchange current
density/reference oxygen concentration,

Avjref/ (CO,ref)rc
120 A mol�1 (assumed)

Fig. 11. Velocity distribution. (a) In the GC and GDL, (b) In the local porous GDL
marked in the blue rectangles in Fig. 11(a), (c) Velocity profiles along the flow
direction (x direction). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Table 1 lists the maximum Shmax and location of Shmax,
minimum Shmax and location of Shmin, and Shm. The corresponding
values on the hot wall in the natural convection induced by
temperature gradient also are presented for comparison [46]. It is
expected that Nusselt number Nu (maximum, minimum and
average values) equals to Sh (maximum, minimum and average
values) if Pr = Sc and thermal Rayleigh numbers Ra equals to solutal
Rayleigh numbers Ra, and this is the case as can be seen in Table 1.
In addition, the locations of Shmax and Shmin reverse along the y axis
compared with those of Numax and Numin, leading to the sum of the
locations of Nu (maximum or minimum) and Sh (maximum or
minimum) always equals 1, as shown in Table 1. For example,
the location (y/H)max of Shmax for solutal Ra = 103 is 0.910 and that
of Numax for thermal Ra = 103 is 0.099, the sum of which is approx-
imately equal to 1.

Simulation results in Section 4 show that the concentration dis-
tribution function reconstruction operator and the computational
procedure CFVLBM are reliable and accurate to predict the proper
phenomenon of fluid flow and mass transport. Thus, we go on fur-
ther to apply the CFVLBM to simulate multiscale fluid flow and
mass transport processes in a PEMFC.

5. Application

In PEMFC, reactants transport from the macro GC through the
porous GDL and finally reach the reactive sites. At the reactive
sites, electrochemical reaction occurs which consumes oxygen
and generates water vapor. The generated water vapor then
diffuses through the porous GDL and is finally removed out of
the GC. In this section, the CFVLBM is used to simulate the above
fluid flow and species transport process. Fig. 10 shows the
computational domain consisted of a GC and a porous GDL



Fig. 12. Oxygen mole fraction distribution for different over-potentials. (a) 0.4 V, (b) 0.5 V, (c) 0.7 V.
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(separated by the dashed line). In the porous GDL, irregular rect-
angles are distributed to simply describe the complex porous
structures of GDL.

FVM and LBM are used to simulate fluid flow and mass trans-
port in GC and GDL respectively, as shown in Fig. 10. Three distri-
bution functions in LBM are solved including the density
distribution function fi for flow, gi,o for oxygen transport and gi,w

for water vapor transport.
The boundary conditions are as follows. At the GC inlet (BC1),

air velocity and species concentration fraction are given:

u ¼ uin; v ¼ 0; Yo ¼ 0:23; Yn ¼ 0:77; Yw ¼ 0 ð59Þ

where the subscripts o, n and w represent oxygen, nitrogen and
water vapor respectively. In the simulation, only the concentrations
of oxygen and water vapor are simulated. Concentration of the
nitrogen can be obtained by subtracting total concentration to
oxygen concentration and water vapor concentration.

At the GC outlet (BC2), GC is extended 40 lm and fully-devel-
oped boundary condition is adopted:

ou
ox
¼ 0;

ov
ox
¼ 0;

oYo

ox
¼ 0;

oYn

ox
¼ 0;

oYw

ox
¼ 0 ð60Þ
On all the solid walls in the computational domain (BC3, BC4
and solid surfaces of the carbon fibers)

u ¼ 0; v ¼ 0;
oYo

ox
¼ 0;

oYn

ox
¼ 0;

oYw

ox
¼ 0 ð61Þ

On the top surface (the reactive surface, BC5)

u ¼ 0; v ¼ 0;
oYn

on
¼ 0; Do

oYo

on
¼ � J

4F
; Dw

oYw

on
¼ J

2F
ð62Þ

where F is the Faraday constant. J is the cathode transfer current
density and is calculated by [47]

J ¼ Jref
Yo

Yo;ref

� 	
exp � aF

RT
g

� 	
ð63Þ

where Jref is the reference exchange current density, a is the transfer
coefficient and R is the gas constant. g is the local surface over-po-
tential. Different g specified leads to different mass flux on the reac-
tive surface (BC5). Table 2 lists the physical parameters used in the
simulations. It is worth mentioning that flow and mass transport
empirical relations in the GDL including empirical relations for
permeability and effective diffusivity, which are widely used in



Fig. 13. Water vapor mole fraction distribution for different over-potentials. (a) 0.4 V, (b) 0.5 V, (c) 0.7 V.
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macroscopic simulations based on continuum models of PEMFC
[47–50], are completely discarded in the present simulation.

Fig. 11(a) shows the velocity vectors obtained from the simula-
tion using CFVLBM. Due to the blockage of the solid rectangles in
the GDL, air mainly flows in the GC and magnitude of velocity in
the GC is significantly greater than that in the GDL. Fig. 11(b) dis-
plays the local detailed velocity vectors in the blue rectangle in
Fig. 11(a). It can be seen that fluid flow in the GDL is very compli-
cated due to the complex porous structures of the GDL. Fig. 11(c)
further shows the velocity distribution along the flow direction
(x direction). It can be seen that velocity profile shows a parabolic
shape in the GC and velocity in GDL is extremely low.

Fig. 12 shows the oxygen fraction distribution for over-potential
in Eq. (63) as 0.4, 0.5 and 0.7 V, respectively. In each image, the
oxygen concentration gradually decreases along flow direction as
oxygen is consumed on the reactive surface. High over-potential
creates high reaction rate at the reactive site. Thus, as over-poten-
tial increases, more oxygen is consumed and oxygen concentration
decreases in the computational domain, as shown in Fig. 12. In
Fig. 12(c), oxygen concentration near the reactive surface ap-
proaches zero, implying that oxygen starvation occurs under the
high over-potential which leads to concentration polarization.
Fig. 13 shows the water vapor fraction distribution for over-po-
tential in Eq. (63) as 0.4, 0.5 and 0.7 V, respectively. In each image,
the water vapor concentration gradually increases along the flow
direction as water vapor is generated on the reactive surface. As
the over-potential increases, more water vapor is generated and
water vapor concentration in the GC and GDL goes up.

Recently, an increasing number of numerical studies tend to
investigate the microscopic and mesoscopic fluid flow and mass
transport in PEMFC using LBM [51–56]. LBM is indeed a useful tool
for revealing pore-scale flow dynamics because it can simulate
based on the real microstructures of porous components in PEMFC
including GDL and CL. Unfortunately, LBM surfers the disadvantage
of requiring extremely high computational resources as can be
found in [51–56]. On the contrary, macroscopic simulations of fluid
flow and mass transport in PEMFC based on continuum models
[47–50], while with the advantage of numerical efficiency, suffer
the disadvantage of neglecting the influence of actual structures
and related heterogeneous characteristics of GDL. Due to this ne-
glect, macroscopic continuum models have to employ many flow
empirical relations. The accuracy of some of these empirical rela-
tions applied to porous components in PEMFC is questionable
and needs further validation, as they sometimes predicted
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unreasonable distributions in GDL [57]. Fortunately, the coupling
modeling strategy can avoid disadvantages of the microscopic,
mesoscopic simulation and macroscopic simulation, and can take
the advantages of each side [3]. Simulation results in the present
study show that CFVLBM can efficiently capture the pore-scale
information of fluid flow and mass transport in GDL without using
empirical relations and excessive computational resources.

6. Conclusion

In this study, a concentration distribution function reconstruc-
tion operator is derived to lift macro concentration to concentra-
tion distribution function in LBM. Combined with the density–
velocity reconstruction operator developed previously by the
authors’ group [15], a coupling FVM and LBM modeling computa-
tional scheme (CFVLBM) previously proposed in [7] is extended
to solve fluid flow and mass transport phenomenon. Diffusion–
convection–reaction problem and natural convection in a square
cavity induced by concentration gradient are simulated by the
CFVLBM. The simulation results validate the feasibility and reliabil-
ity of the developed concentration reconstruction operator and the
CFVLBM scheme.

The CFVLBM is applied to simulate fluid flow and mass trans-
port in the cathode side of a PEMFC. It is found that the CFVLBM
can capture the pore-scale information of fluid flow and species
transport in the GDL without using the flow empirical relations.
In addition, the CFVLBM can save the computational resources
compared with that with pure LBM.

The 3D extension of CFVLBM is underway by the authors’ group
and will be further applied to simulate fluid flow and mass trans-
port in PEMFC and pollutant transport in cities.
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