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a b s t r a c t

A coupled volume-of-fluid and level set (VOSET) method, which combines the advantages and overcomes
the disadvantages of VOF and LS methods, is presented for computing incompressible two-phase flows. In
this method VOF method is used to capture interfaces, which can conserve the mass and overcome the
disadvantage of nonconservation of mass in LS method. An iterative geometric operation proposed by
author is used to calculate the level set function / near interfaces, which can be applied to compute
the accurate curvature j and smooth the discontinuous physical quantities near interfaces. By using
the level set function / the disadvantages of VOF method, inaccuracy of curvature and bad smoothness
of discontinuous physical quantities near interfaces, can be overcome. Finally the computing results
made with VOSET method are compared with those made with VOF and LS methods.

� 2009 Published by Elsevier Ltd.
1. Introduction

Flows with a spatial variation of fluid properties, such as gas–
liquid interfaces due to density and viscosity differences, can be
found in many natural and industrial processes such as chemical
reactor, power plant, copper refining and internal combustion
engine. The generation of vorticity by the discontinuous fluid prop-
erties produces a complex flow structure, which presents a compu-
tational challenge.

In the past several decades a number of different methods have
been developed to simulate complex two-phase flow problems.
The most important methods include the front tracking method
[1–4], the marker particle method [5,6], the volume of fluid (VOF)
method [7–17] and the level set (LS) method [18–24]. Since the
development of VOF method by Hirt and Nichols [7] in 1981, the
method has become very popular and is widely used in the free-sur-
face modeling. The LS method was developed in 1988 by Osher and
Sethian [18]. It has become popular in many disciplines, such as im-
age processing, computer graphics, computational geometry and
computational physics. Thus, among the four major methods men-
tioned above, the VOF method and LS method are probably the most
widely used methods in the literatures. Needless to say, each method
has its own advantages and drawbacks. In the present work based on
a comprehensive analysis to VOF and LS methods, a coupled volume-
of-fluid and level set method (hereafter VOSET), which combines the
Elsevier Ltd.
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advantages and overcomes the disadvantages of VOF and LS
methods, is presented for computing the incompressible two-phase
flows. In the following a brief review on the VOF and LS methods and
their advantages/disadvantages are presented.

In the VOF method, a volume fraction function C, whose value
lies between 0 and 1, is defined to denote whether a space is occu-
pied by the dispersed phase or continuous phase. When the value
of C is unity, the space is occupied by the dispersed phase; when
the value of C is zero, the space is occupied by the continuous
phase; when the value of C is between 0 and 1, the space contains
both the dispersed and continuous phases, where by the definition
a free surface exists.

For a given flow field, the standard advection equation governs
the evolution of C:

@C
@t
þ~u � rC ¼ 0 ð1Þ

If the flow is incompressible, the C advection equation can be recast
in the conservative form:

@C
@t
þr � ð~uCÞ ¼ 0 ð2Þ

For the C advection equation, the standard finite-difference approx-
imations would lead to a smearing of the C function and the inter-
faces would lose their definition. Therefore, the volume tracking
algorithms are applied to capture the interfaces. Most volume track-
ing algorithms published to date fall into one of these two interface
reconstruction categories: one is the Piecewise Constant Volume
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Tracking Methods, which include Hirt and Nichols’s donor-acceptor
algorithm [7]; the other is the Piecewise Linear Volume Tracking
Methods, which include the PLIC (Piecewise Linear Interface Con-
struction) algorithm due to Youngs [8]. In our study the PLIC algo-
rithm is adopted to solve Eq. (2) and reconstruct the interfaces,
because this algorithm is more accurate than other algorithms.

Usually, in the VOF method the smoothed volume fraction func-
tion eC is used to compute the curvature j. The smoothed volume
fraction function eC can be obtained by

eC i;j ¼
X
m;n

Cm;nKðj~ri;j �~rm;mj; eÞdxdy ð3Þ

where the smoothening function K is given by the cubic B-spline
proposed by Monaghan [25]:

Kðr; eÞ ¼

40
7p 1� 6 r

e

� �2 þ 6 r
e

� �3
� �

if r
e <

1
2

80
7p 1� r

e

� �3 if 1
2 � r

e < 1
0 otherwise

8>><>>: ð4Þ

where e denotes the width of transition region used for smoothen-
ing. In the present paper typically e = 3D is used in the VOF method
where D represents the grid size.

The curvature j can be obtained by the following equation:

j ¼ � r � r
eC

jreC j
 !

ð5Þ

The curvature can also be written as

j ¼ 1

jreC j reC
jreC j � r
 !

jreC j � r � reC� �" #
ð6Þ

The curvature value numerically calculated by Eq. (5) is quite inac-
curate, because the principal contributions to Eq. (5) come from the
edges of the transition region rather than center. However, numer-
ical approximations to Eq. (6), for which the principal contributions
come from the center of the transition region, give better results in
practice [26]. So Eq. (6) is adopted to calculate the curvature in the
VOF method.

The discontinuous physical quantities (density and viscosity)
near interfaces can be smoothed by

qðCÞ ¼ qdC þ qcð1� CÞ ð7Þ
lðCÞ ¼ ldC þ lcð1� CÞ ð8Þ

where the subscripts d and c denote, respectively, the dispersed and
continuous phases.

An advantage of VOF method is the fact that accurate algo-
rithms can be used to advect the volume fraction function so that
the mass is conserved while still maintaining a sharp representa-
tion of the interfaces [27]. However, because the volume fraction
function C is a step function, it is difficult to obtain the accurate
curvature and smooth the discontinuous physical quantities near
the interfaces. Even though the smoothed volume fraction functioneC is used to compute the curvature, the accuracy of the curvature is
still not good. This is the disadvantage of VOF method [27].

In the LS method, a smooth function /, called level set function,
is used to represent the interfaces. Generally, a signed distance
function, on which an extra condition of |5/| = 1 is imposed, is de-
fined as the level set function. The signed distance function can be
expressed as

/ð~r; tÞ ¼
�dð~r;CðtÞÞ < 0 if ~r 2 the dispersed phase;
¼ 0; if ~r 2 the interface;
dð~r;CðtÞÞ > 0 if ~r 2 the continuous phase:

8><>: ð9Þ
where C denotes the interfaces, d is the distance function which is
the shortest distance from some point to the interfaces. In the LS
method, the location is indicated by /: / < 0 in the dispersed- phase
region, / > 0 in the continuous-phase region, and / = 0 on the
interfaces.

Since the interfaces move with fluid flow, the evolution of / is
given by

@/
@t
þ~u � r/ ¼ 0 ð10Þ

In order to keep the solution accurate, the level set function / needs
to be reinitialized after every time step. This is achieved by solving
the following transient problem to the steady state:

/s ¼ Sð/0Þð1� jr � /jÞ
/ð~r; 0Þ ¼ /0ð~rÞ

�
ð11Þ

where /s is the time derivative and S is the sign function. Eq. (11)
has the property that / remains unchanged at the interfaces, there-
fore, /0 and / at the zero level set are the same. In Eq. (11) the level
set function / will converge to |5/|=1 with the evolution of time.
Although this approach improves conservation of mass consider-
ably, it fails to achieve mass conservation exactly.

From the level set function the curvature j can be obtained by
the following equation:

j ¼ r � r/
jr/j

� �
ð12Þ

For smoothing the discontinuous physical quantities near inter-
faces, the smoothed Heaviside function is used which is given by

Heð/Þ ¼
0 if / < �e
1
2 1þ /

e � 1
p sinðp/=eÞ

	 

if j/j � e

1 if / > e

8><>: ð13Þ

Typically e = 1.5D is used where D represents the grid size. Then the
smoothed density and viscosity can be calculated by

qeð/Þ ¼ qdð1� Heð/ÞÞ þ qcHeð/Þ ð14Þ
leð/Þ ¼ ldð1� Heð/ÞÞ þ lcHeð/Þ ð15Þ

The advantages of LS method are the fact that the curvature can be
computed accurately and the smoothness of discontinuous physical
quantities near interfaces is very good by using the level set func-
tion / – a smooth function.

However, the LS method produces more numerical error than
VOF method, especially when the interfaces experience severe
stretching or tearing. A common symptom of such a disadvantage
is the loss/gain of mass. To alleviate the problem of mass being not
conserved, Sussman et al. [20] have developed a constraint that
significantly improves the accuracy of solving Eq. (11). Nourgaliev
et al. [28] have showed that reducing the spatial discretization er-
rors in Eq. (10) can improve mass conservation. The fast marching
method [29] is another technique for calculating distance func-
tions, which can improve mass conservation property. However,
it must be noted that none of the above techniques can exactly
conserve mass. This is the disadvantage of LS method [27].

On the basis of the above analysis to VOF and LS methods, it can
be found that they have the complementary advantages and disad-
vantages, so it is an inevitable trend to develop a method combin-
ing the VOF and LS methods.

In 2000 a CLSVOF method, which combines the VOF and LS
methods, was put forward by Sussman [27]. Although this method
extracts the advantages of VOF and LS methods, it is more compli-
cated than VOF or LS method. Because in this method both the C
and / advection equations need to be solved, and the level set
function needs to be coupled to the volume fraction function by
assigning the level set function to be the exact singed normal dis-
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tance to the reconstructed interfaces. Subsequently, improved
CLSVOF [30], MCLS [31] and ACLSVOF [32] methods were put for-
ward. Just as the original CLSVOF, all of these methods need to
solve both the C and / advection equations.

The present coupled volume-of-fluid and level set (VOSET)
method is simpler than CLSVOF method and the others mentioned
above. This is because in the present method only the C advection
equation needs to be solved and the level set function is calculated
by a simple iterative geometric operation. In the following the VO-
SET method will first be introduced in detail. Then four examples of
the incompressible two-phase flow will be illustrated to compare
the VOF, LS and VOSET methods. For the simplicity of presentation,
all the derivations and computations are conducted on the uniform
grids in two-dimensional Cartesian coordinates.

2. Iterative geometric operation to calculate the level set
function

Before calculating the level set function by iterative geometric
operation, the interface shapes and locations should be firstly con-
firmed by reconstructing the interfaces. In PLIC algorithm the
interface reconstruction is based on the idea that a normal vector
together with the volume fraction function C determines a unique
linear interface cutting the cell. The normal vector to an interface is
estimated by a finite-difference formula of the following equation:

~n ¼ rC jrCj= ð16Þ

There are 16 possible cases for the interface shape in the PLIC algo-
rithm. For nx > 0 and ny > 0 there exist 4 cases as shown in Fig. 1.

After the interface shape is reconstructed based on the PLIC
algorithm, the level set function /, i.e. the signed distance function,
can be calculated by an iterative geometric operation. The detailed
procedure of the operation is presented as follows:

Step 1: Set the initial value for the signed distance function / in
the whole computational domain.

/0
i;j ¼

�M if Ci;j � 0:5
M if Ci;j < 0:5

�
ð17Þ

where M is the max geometrical size of physical model as shown in
Fig. 2. This can guarantee that the accurate signed distance function
near the interfaces is included in the initial value of /, i.e. �M < /
< M.

Step 2: Flag the cells near the interfaces. We flag the cells in the
region of 3-D width on each side of the interfaces where D repre-
sents the grid size, as shown in Fig. 3. Such flagged region is wide
enough to compute the curvature j and smooth the discontinuous
physical quantities near the interfaces. This flagging step can avoid
calculating the signed distance function in the whole computa-
tional domain and thus can save computational time.

Step 3: Calculate the signed distance function / in the flagged
region near the interfaces. Before calculating the signed distance
function /, we should first compute the shortest distance d to
the interfaces for each grid point within the flagged region. The
shortest distance from grid point (i, j) to the interfaces can be ob-
Case2Case1

Fig. 1. The interface shape in compu
tained by comparing all of the minimum distances from grid point
(i, j) to any interface in cells within a 7 � 7 stencil around the cell (i,
j). The reason of selecting 7 � 7 stencil to compute the shortest dis-
tance is that the signed distance function is calculated only in the
region of 3-D width on each side of the interfaces.

Fig. 4 shows the method of calculating the minimum distance to
an interface in a cell. In the figure, the thick line segment BC de-
notes the interface. When h1 > 90�, AB is the minimum distance;
when h2 < 90�, AC is the minimum distance; when h1 < 90� and
h2 < 90�, the line AD vertical to the interface is the minimum
distance.

The shortest distance from grid point (i, j) to interfaces can be
obtained by comparing all of the minimum distances to any inter-
Case4Case3

tational cell for nx > 0 and ny < 0.
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face in cells within the 7 � 7 stencil around the cell (i, j), as shown
in Fig. 5. The signed distance function can be obtained by

/i;j ¼
�d if Ci;j > 0:5
0 if Ci;j ¼ 0:5
d if Ci;j < 0:5

8><>: ð18Þ

Then the normal vector to the interface is calculated again with the
signed distance function by the following equations:

~n ¼ r/=jr/j ð19Þ

Based on the more accurate normal vector determined by Eq.
(19), the interface is reconstructed again. Then return to Step 1. Re-
peat the geometric operation until the iteration times is equal to
the pre-specified times N. By the iteration, we can acquire more
accurate signed distance function. Usually, the iteration times N
is set as 1 for coarse mesh and 3 for fine mesh.

Fig. 6 shows the signed distance function near the interfaces
with different shapes, which is calculated by the iterative geomet-
ric operation. In Fig. 6 the thick lines denote the interfaces and the
thin lines represent the contour lines of the signed distance func-
tion. From Fig. 6 we can find that accurate signed distance func-
tions can be calculated by the proposed iterative geometrical
operation.

It is worth noting that the above-mentioned method for deter-
mining the level-set function is the major novelty of the present
paper. Because the simplicity of the proposed method the present
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coupled VOF and LS method (VOSET) is much simpler than all
existing coupled variants, while still keeps the advantages of the
two original ones.

3. Advection of volume fraction function

The discretization form of Eq. (2) is expressed as

Cnþ1 ¼ Cn � dtr � ðCn~unÞ ð20Þ

For decreasing the errors induced by the mass residual, Eq. (20) can
be modified as

Cnþ1 ¼ Cn � dtr � ðCn~unÞ þ dtCnr � ð~unÞ ð21Þ

In this paper the PLIC algorithm is applied to solve Eq. (21). The
interface reconstruction is the same as that mentioned above. The
signed distance function, acquired by the iterative geometric oper-
ation, is used to calculate the normal vector to the interface. After
the interface shape is reconstructed, the operator splitting is applied
for the time integration.

4. Applications of the level set function

After the level set function, i.e. the signed distance function, is
calculated by the iterative geometrical operation, we can compute
the curvature by Eq. (12) and smooth the density and viscosity by
Eqs. (14) and (15). In addition, the surface pressure caused by the
existence of phase interface can also be determined from the level
set function.

Based on the CSF (Continuum Surface Force) model [26], the
surface pressure is expressed as follows [19,20]:

Fsv ¼ �rjð/Þdeð/Þr/ ð22Þ

The smoothed delta function is

deð/Þ ¼
dHeð/Þ

d/
ð23Þ

where e = 1.5D.

5. Governing equations and their discretizations

For incompressible two-phase flows the Navier–Stokes equa-
tions for the dispersed-phase and continuous-phase fluids can be
combined into a set of equations in an entire domain. The govern-
ing equations for transient, incompressible, Newtonian, two-phase
flows are given by the following expressions:

r �~u ¼ 0 ð24Þ
@~u
@t
þ~ur � ð~uÞ ¼ 1

qeð/Þ
�rpþr � leð/Þ ðr~uÞ þ ðr~uÞT

h in
þqeð/Þ~g � rjrHe

o
ð25Þ

The governing equations are discretized based on the Finite Vol-
ume Method (FVM) [33,34]. We use the high order ENO upwind
differencing [35] for the convection term and the central differenc-
ing for the viscous and curvature terms. The equations are ad-
vanced in time by using the second order TVD Runge–Kutta
method.

6. Solution procedure of VOSET method

In the solution procedure of VOSET method the second order
projection method is adopted, which is based on the second order
TVD Runge–Kutta method. The solution procedure of the VOSET
method is presented as follows.
Step 1: Calculate the temporary Cnþ1;ð0Þ
Temp ; ~unþ1;ð0Þ

Temp and pnþ1;ð0Þ
Temp on

the time (n+1,(0)) level based on the Cn, ~un and pn.

(1) The signed distance function /n near the interfaces is calcu-
lated by the iterative geometric operation and is used to cal-
culate the curvature (Eq. (12)) and smooth the discontinuous
physical quantities near the interfaces (Eqs. (14), (15)).

(2) The PLIC algorithm is applied to calculate the Cnþ1;ð0Þ
Temp on the

time (n+1,(0)) level (Eq. (21)).
(3) An intermediate velocity is evaluated by

dt h in

~u� ¼~un�dt~unr�ð~unÞþ

qeð/
nÞ �rpnþr�leð/

nÞ ðr~unÞþðr~unÞT

þqeð/
nÞ~g�rjð/nÞdeð/nÞr/ng ð26Þ
(4) Following pressure-correction equation is solved

� �

r � 1

qeð/
nÞrp0 ¼ 1

dt
r �~u� ð27Þ

The pressure-correction equation is solved by using a very ro-
bust and efficient Krylov subspace method: Bi-CGSTAB algo-
rithm proposed by Van Der Vorst [36,37].
(5) The temporary velocity and pressure on the time (n+1,(0))
level can be obtained from

dt

~unþ1;ð0Þ

Temp ¼~u� �
qeð/

nÞrp0 ð28Þ

pnþ1;ð0Þ
Temp ¼ pn þ p0 ð29Þ
Step 2: Calculate the temporary Cnþ1;ð1Þ
Temp ; ~unþ1;ð1Þ

Temp and pnþ1;ð1Þ
Temp on

the time (n+1,(1)) level based on the temporary Cnþ1;ð0Þ
Temp ;

~unþ1;ð0Þ
Temp and pnþ1;ð0Þ

Temp . The solution process is the same as that men-
tioned in Step 1.

Step 3: Calculate the Cn+1, ~unþ1 and pn+1 on the time (n + 1) level
by the following equations:

Cnþ1 ¼ ðCnþ1;ð0Þ
Temp þ Cnþ1;ð1Þ

Temp Þ=2 ð30Þ
~unþ1 ¼ ð~unþ1;ð0Þ

Temp þ~unþ1;ð1Þ
Temp Þ=2 ð31Þ

pnþ1 ¼ ðpnþ1;ð0Þ
Temp þ pnþ1;ð1Þ

Temp Þ=2 ð32Þ

After the Cn+1, ~unþ1 and pn+1 are acquired, return to Step 1 and
begin the solution on the next time level.

7. Results of numerical examples and analysis

In this section, we will compare VOSET method with VOF and LS
methods via several examples. In LS method the method for
decreasing loss/gain of mass proposed by Sussman [20] has been
used. In the following the results of four incompressible, immisci-
ble and non-phase-changed two-phase flow problems with large
density and viscosity ratios are presented to compare VOSET meth-
od with VOF and LS methods in two-dimensional Cartesian
coordinates.

7.1. Dam break problem

Firstly, the dam break problem is adopted to validate the VOF,
LS and VOSET methods by comparing the numerical results with
the experimental data [38].

Fig. 7 shows the physical model of dam break problem. The width
of initial liquid column is 0.146 m and the height is 0.292 m. The li-
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quid density ql = 1.0 � 103 kg/m3, viscosity ll = 0.5 Pa s, background
gas density qg = 1.0 kg/m3, viscosity lg = 0.5 � 10�3 Pa s, gravity
g = 9.8 m/s2 and surface tension coefficient r = 0.0755 N/m.

Fig. 8 shows the history of water front marching along the
ground surface. As shown in this figure, the numerical results cal-
culated by VOF, LS and VOSET methods agree very well with the
experimental data from Martin [38]. By this comparison, it can
be proved that the self-developed codes of VOF, LS, and VOSET
methods are correct. In the dam break problem, the numerical re-
sults of VOF, LS and VOSET methods are almost the same as each
other, so it is difficult to compare them. Thereinafter, we will com-
pare these three methods-VOF, LS and VOSET by other three two-
phase flow problems.

7.2. Equilibrium circle bubble problem

A gas bubble with radius R = 0.5 m, density qg = 1 kg/m3, viscos-
ity lg = 1.0 � 10�5 Pa s, background liquid density ql = 1000 kg/m3,
background liquid viscosity ll = 1.0 � 10�2 Pa s, gravity g = 0, and
surface tension coefficient r = 0.01 N/m is located at the center of
a box (1 � 1 m). In the absence of gravitational force, the circle
bubble will be static and keep its circle shape. Here the equilibrium
2g / L

0 1 2 30.5 1.5 2.5 3.5
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Numerica results by LS method
Numerica results by VOSET method

x
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Fig. 8. History of water front marching along the ground surface.
circle bubble problem is adopted to analyze the accuracy of curva-
ture and the smoothness of discontinuous physical quantities near
interfaces in VOF, LS, and VOSET methods.

For two-phase flow problems, it is of critical importance to
model surface tension accurately, especially to the situation that
surface tension is the dominant force affecting the dynamics of
fluid flows. The accuracy of surface tension is determined by the
accuracy of curvature. In addition the inaccuracy in determining
the curvature is one of the important reasons leading to parasitic
currents. In VOF method, the smoothed volume fraction function
is used to calculate the curvature by Eq. (6). The L2 error norms
for the curvature obtained from the VOF method are present in Ta-
ble 1. Here the L2 error norm is defined as

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1ðj� R� jexact � RÞ2

M

s
ð33Þ

It can be seen that L2 grows linearly when increasing the mesh res-
olution in VOF method. The curvatures calculated from the LS meth-
od are significantly better than VOF method. In VOSET method, for
the coarse mesh L2 almost keeps unchanged with the increase of
iteration times N; for the fine mesh L2 decreases with the increase
of N, i.e. the curvature becomes more accurate with the increase
of N. Usually, the iteration times N is set as 1 for coarse mesh and
3 for fine mesh. As shown in Table 1, the curvatures obtained from
VOSET method are worse than LS method, but much better than
VOF method. Thus it can be concluded that VOSET can accurately
determine the surface tension and reduce the possible parasitic
currents.

For two-phase flow problems, especially with large density and
viscosity ratios, the smoothness of density and viscosity is very
important for the stability of calculating process and the accuracy
of computing results. For the simplicity of presentation, we only
compare the smoothed density in the three different methods. In
VOF method, the volume fraction function is used to calculate
the smoothed density by Eq. (7). In LS and VOSET methods the level
set function is applied to calculate the smoothed density by Eq.
(14). Fig. 9 shows the contour lines of smoothed density calculated
by three different methods. From the figure we can find that the
smoothness of density in VOF method is worse than that in LS
and VOSET methods. The comparison results of the smoothness
of viscosity from the three methods are similar and omitted here.

Fig. 10 shows the bubble pressure calculated by the three differ-
ent methods. The bubble pressure computed by LS and VOSET
methods is smoother than that by VOF method, because the accu-
racy of curvature and the smoothness of density and viscosity in LS
and VOSET methods are much better than those in VOF method.

It is the place to discuss the effects of grid refinement. As shown
in Table 1, the L2 error norm grows linearly when increasing the
mesh resolution in VOF method. So the accuracy of VOF method
will become worse with the grid refinement. In LS method, the
mass loss can reduce gradually with the grid refinement, but it
can’t exactly conserve mass. With the grid refinement, the VOSET
Table 1
L2 error norms for curvature estimated along a circular interface using the VOF, LS and
VOSET methods at different mesh resolutions.

Dx VOF LS VOSET

N = 1 N = 2 N = 3
L2 L2 L2 L2 L2

1/20 0.427 2.010 � 10�2 4.504 � 10�2 5.362 � 10�2 5.470 � 10�2

1/40 0.825 4.347 � 10�3 5.721 � 10�2 5.712 � 10�2 5.855 � 10�2

1/80 0.922 1.030 � 10�3 8.351 � 10�2 4.678 � 10�2 4.729 � 10�2

1/160 1.585 2.536 � 10�3 0.165 4.033 � 10�2 3.628 � 10�2

1/320 3.018 6.329 � 10�5 0.320 5.311 � 10�2 3.926 � 10�2

1/640 6.111 1.570 � 10�5 0.481 6.898 � 10�2 3.709 � 10�2



(c) (b) (a) 

Fig. 9. Contour lines of smoothed density calculated by (a) smoothed volume fraction function in VOF method; (b) level set function in LS method; (c) level set function in
VOSET method.

(b)(a)

(c) 

Fig. 10. The bubble pressure calculated by (a) VOF method; (b) LS method; (c) VOSET method.
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method not only can still conserve mass exactly, but also can keep
the accuracy of the curvature. Therefore, it is reasonable to expect
that with the grid refinement the advantage of the present method
will exhibit more obviously.

7.3. Non-equilibrium elliptic bubble problem

An elliptic gas bubble with long axis radius Rl = 0.01 m, short axis
radius Rs = 0.005 m, density qg = 1 kg/m3, viscosity lg = 1.0 �
10�5 Pa s, background liquid density ql = 1000 kg/m3, background
liquid viscosity ll = 1.0 � 10�2 Pa s, gravity g = 0, and surface ten-
sion coefficient r = 0.01 N/m is located at the center of a box
(0.05 � 0.05 m). Because of the unbalanced surface tension, the
elliptic bubble oscillates about its equilibrium shape. In the absence
of gravitational force, the surface tension causes the elliptic bubble
to become a static circle bubble eventually. Here the evolution time
is 5.0 s, which is long enough to let the oscillating bubble keep static.

Fig. 11 shows the oscillating process of an elliptic bubble calcu-
lated by the three different methods. In Figs. 11(a1), (b1), (c1) the
pressure contour floods are presented, from which we can find that
the pressure contour floods calculated by LS and VOSET methods
are smoother than that by VOF method. The reason is the same
as that mentioned in the equilibrium circle bubble problem.

Because of the unsmoothed pressure in VOF method, the veloc-
ity field, especially in the low-viscosity and density phase fluid, is
very unstable. As shown in Fig. 11(a2), the velocity field in the
gas-phase fluid computed by VOF method is very disorderly, which
differs significantly from that calculated by LS and VOSET methods
(Figs. 11(b2) and (c2)). The disorder velocity field leads to the
interface shape deviating from that captured by LS/VOSET method
as shown in Figs. 11(a2), (b2), (c2). If the topological changes of
interfaces are very complicated, the deviation will be much larger.
The difference in the interface shape between LS and VOSET meth-
ods is very little, implying that at t = 0.3 s the loss/gain of mass in
LS method is not serious.

At t = 5.0 s the oscillating elliptic bubble becomes a static circle
bubble. The radius of the exact static circle bubble is 0.00707 m.
As shown in Figs. 11(a3), (b3), (c3), the gray region denotes the exact
static circle bubble and the black line represents the captured inter-
face. From the figure, we can find that the captured interface agrees
very well with the interface of the exact static circle bubble in VOF
and VOSET methods. However, there exists obvious difference be-
tween the captured interface and the exact interface in LS method,
which illustrates that the loss/gain of mass is serious at t = 5.0 s.

Fig. 12 shows the variation curve of the ratio of mass with time
in this process. Here the ratio is defined as the mass of dispersed-
phase fluid on the current time level (n) over that on the initial
time level (0), i.e. Ratio = Mn

d/M0
d. The exact value of the ratio is

equal to 1 in the immiscible, two-phase flows without phase
change. As shown in Fig. 12, in LS method the ratio of mass devi-
ates largely from the exact value 1. In VOF and VOSET methods
the ratio of mass is almost equal to the exact value 1.



(1) t=0.0s                    (2) t=0.3s                    (3) t=5.0s 
 (c) VOSET method 

(1) t=0.0s                    (2) t=0.3s                    (3) t=5.0s 
 (b) LS method 

(1) t=0.0s                    (2) t=0.3s                    (3) t=5.0s 
(a) VOF method 

Fig. 11. Oscillating process of an elliptic bubble calculated by (a) VOF method; (b) LS method; (c) VOSET method.
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Fig. 12. Variation curve of the ratio of mass with time in the non-equilibrium
elliptic bubble problem.
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As can be seen from the above comparison, the inaccuracy of
curvature and the bad smoothness of discontinuous physical quan-
tities in VOF method make the velocity field in disorder, which
leads to the inaccuracy in the interface shape prediction. The non-
conservation of mass in LS method also makes the result inaccurate
and unreasonable. Thus we can find that the proposed VOSET
method can overcome all of these disadvantages, making the re-
sults more accurate and reasonable.

7.4. Single gas bubble rising problem

Grace [39] analyzed a lot of experimental data on the properties
of single gas bubble rising in an infinite quiescent liquid from differ-
ent investigators. It was concluded that the relevant physical quan-
tities for single gas bubble rising are determined by four
independent dimensionless groups, i.e., Morton number (M), Eotvos
number (Eo), viscosity ratio (j), and density ratio (c), which are de-
fined by

M ¼ gl4
l =qlr

3 ð34Þ
Eo ¼ gd2

e ðql � qgÞ=r ð35Þ
j ¼ ll=lg ð36Þ
c ¼ ql=qg ð37Þ



(a) Case 1: Eo=1.0, M=0.001 (b) Case 1: Eo=10.0, M=0.1 (c) Case 1: Eo=100.0, M=1000.0 

Fig. 13. Bubble terminal shapes computed by VOSET method.
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where the subscripts g and l denote, respectively, the dispersed gas
phase and the continuous liquid phase, and de is the initial bubble
diameter.

In this problem a single gas bubble with radius R = 0.005 m is
released from the position (0.025 m, 0.02 m) in a quiescent li-
quid. The domain size is 0.05 � 0.15 m with free slip boundary
condition on the walls. The density and viscosity ratios are all
set as 1000. Here three different cases are chosen for comparing
VOSET method with VOF and LS methods. The first case (case 1)
is Eo = 1.0, M = 0.001, the second case (case 2) is Eo = 10.0,
M = 0.1, and the third case (case 3) is Eo = 100.0, M = 1000.0. Be-
cause of the different surface tension, viscous force and inertial
force, the bubble terminal shapes of these three cases are
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(a) Case 1: Eo=1.0, M=0.001 

(c) Case 3: Eo=1

Fig. 14. Variation curve of the ratio of mass with
different as shown in Fig. 13, which is computed by VOSET
method.

Fig. 14 shows the variation curve of the ratio of mass with time
in the single gas bubble rising problem. As shown in Fig. 14, LS
method can’t conserve the mass, as indicated by the fact that the
ratio deviates largely from the exact value 1 in these three cases.
In VOF and VOSET methods the ratio of mass is almost equal to
the exact value 1, which shows the mass conservation property
of VOF and VOSET methods.

Fig. 15 shows the rising velocity of the single gas bubble with
time computed by VOF, LS and VOSET methods. From this picture
we can find that the rising velocity computed by VOF method fluc-
tuates largely, especially in case 3. This is because the inaccuracy of
0 0.1 0.2 0.3 0.4 0.5
t (s)

0.8

0.9

1

1.1

1.2

R
at

io

VOF method
LS method
VOSET method

0.3 0.4 0.5
t (s)

VOF method
LS method
VOSET method

(b) Case 2: Eo=10.0, M=0.1 

00.0, M=1000.0 

time in the single gas bubble rising problem.
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Fig. 15. Rise velocity of single gas bubble with time computed by three different methods.
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curvature and the bad smoothness of discontinuous physical quan-
tities make the rising velocity unstable. From this picture we can
also find that the rising velocity computed by LS method agrees
very well with that computed by VOSET method at the beginning
stage. With the advance of time, the difference of the rising velocity
becomes larger and larger, which is because the loss/gain of mass is
serious at the ending stage in LS method as shown in Fig. 14. The
curve of the rising velocity with time computed by VOSET method
is very smooth in any case, and only VOSET method can acquire sta-
ble terminal velocity as shown in Fig. 15. Therefore, in this regard
VOSET method is also more accurate than VOF and LS methods.

Finally it should be noted that all the above examples are two-
dimensional to present the major concept of the proposed method.
Extending to three dimensional cases, though straightforward in
principle, takes much more computational time. It is now under-
way in the authors’ group and will be presented elsewhere.

8. Conclusions

A coupled volume-of-fluid and level set (VOSET) method, which
combines the advantages and overcomes the disadvantages of VOF
and LS methods, has been proposed for computing incompressible
two-phase flows without heat transfer. From the comparison of four
examples shown above, we can conclude that this method is more
accurate than VOF and LS methods. To be specific, the advantages
of the proposed VOSET method can be summarized as follows:

(1) The mass can be conserved exactly. In this method VOF
method is used to capture the interfaces, which can exactly
conserve the mass and overcome the disadvantage of non-
conservation of mass in LS method.
(2) The signed distance function, obtained by the iterative
geometric operation, is used to calculate the curvature and
smooth the discontinuity in physical quantities near interfaces.
By using the level set function the disadvantage of VOF method,
inaccuracy of curvature and bad smoothness of discontinuous
physical quantities near interfaces, can be overcome.

In addition, the source code of this method is simple, which can
be compiled on the base of VOF and LS methods. Thus it is expected
that the proposed VOSET method will be promising in the compu-
tations of incompressible two-phase flow and heat transfer prob-
lems. Extensions to three-dimensional coordinates, to the case
with heat transfer are now underway in the authors’ group.
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