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NUMERICAL ILLUSTRATIONS OF THE COUPLING
BETWEEN THE LATTICE BOLTZMANN METHOD AND
FINITE-TYPE MACRO-NUMERICAL METHODS

H. B. Luan1, H. Xu1, L. Chen1, D. L. Sun2, and W. Q. Tao1
1State Key Laboratory of Multiphase Flow in Power Engineering, School of
Energy & Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi,
People’s Republic of China
2Beijing Key Laboratory of New and Renewable Energy, North China
Electric Power University, Beijing, People’s Republic of China

An analytic expression called a reconstruction operator is proposed for the exchange from

velocity of finite-type methods to the single-particle distribution function of the lattice

Boltzmann method (LBM). The combined finite-volume method and lattice Boltzmann

method (called the CFVLBM) is adopted to solve three flow cases, backward-facing flow,

flow around a circular cylinder, and lid-driven cavity flow. The results predicted by the

CFVLBM agree with the available numerical solutions very well. It is shown that the

vorticity contour distribution is a more appropriate parameter to ensure good smoothness

and consistency at the coupling interface. At the same time, CPU time used by the

CFVLBM(II), with more than one outer iteration before interface information exchange,

is much less than that of the CFVLBM(I), where interface information exchanges are

executed after each outer iteration.

1. INTRODUCTION

Challenging multiscale phenomena or processes exist widely in, for example,
material science, fluid flows, and electrical and mechanical engineering [1–3]. Things
are made up of atoms and electrons at the atomic scale, but they are usually several
orders of magnitude larger when they are characterized by their own geometric
dimensions. The study of multiscale problems has become one of the highlights of
numerical simulation techniques, and several international journals have been
created in the past 10 years. Examples of multiscale problems include turbulent fluid
flow and heat transfer, transport phenomena in the proton exchange membranes of
fuel cells, cooling processes in data centers, and so on. Multiscale problems can be
divided into two categories: multiscale systems and multiscale processes. By multi-
scale system we refer to a system that is characterized by large variations in length
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scales. The processes at different scales are not very closely related and can be studied
separately with certain connections. Cooling in data centers is a typical multiscale
system problem. The length scale of the cooling stream in the center as a whole is of
the order of meters, while the cooling process of a chip is of the order of millimeters.
By a multiscale process we mean that the overall behavior is governed by processes that
occur at different length and=or time scales, and they are inherently connected by the
process itself. Processes in PEMFC, launching a space rocket from the earth surface
to outer space, and turbulent heat transfer are examples of multiscale process. From
the viewpoint of simulation, study of the multiscale processes is more challenging and
attractive. The focus of the present article is therefore on the multiscale processes.

It is usually accepted that different scale problems have different numerical
methods which are most applicable to the corresponding scales. Broadly speaking,
there are three levels of simulation methods for fluid flow and heat transfer: macro-
scale, mesoscale, and microscale. The macroscale numerical methods include the
finite-difference method (FDM), the finite-volume method (FVM), the finite-element
method (FEM), and the finite analytic method (FAM) [4]. The basic feature of the
four methods is that the smallest unit for computation is a cell with finite dimensions.
Thus they can be called finite-type methods. The mesoscale numerical methods
include the lattice Boltzmann method (LBM) and the direct-simulation Monte Carlo
method (DSMC). These two methods adopt a concept of computational particles
which are much larger than actual molecules but act as molecules (simulation mole-
cules). The micro numerical methods include molecular dynamic simulation (MDS)
and quantum molecular simulation (QMS). In MDS, every molecule is simulated
according to Newton’s law of motion. A quantum molecular dynamics simulation
solves the coupled time-dependent Schrödinger equations for all particles in the
system. This method is largely limited by present computer resources; hence, various
approximations have to be used.

NOMENCLATURE

c lattice speed

cs lattice sound speed

C compression operator

CD drag coefficient

D2Q9 2-dimension, 9-velocity lattice

f lattice distribution function

H height

I identity operator

Kn Knudsen number

L reattachment length

Ma Mach number

p pressure

r cylinder radius

R reconstruction operator

Re Reynolds number

S stress tension, step height

t time

u, v velocities along the x, y directions

ulid lid-driven velocity

u1 far-field velocity

u0 inlet velocity

x, y Cartesian coordinates

Dx space step

Dt time step

e expanding parameter

h separation angle

k relaxation time

n kinematic viscosity

q density

s nondimensional relaxation time

x weight factor

Subscripts

i direction of the discretized velocity

a, b, c coordinate direction indices

Superscript

eq equilibrium
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As indicated above, many engineering processes are multiscale in nature.
However, mainly because of the limitation of computer resources; before the
emergence of the new simulation field of ‘‘multiscale simulation,’’ the inherently
multiscale processes were usually simulated by single-scale numerical methods.
One exception is direct numerical simulation (DNS) for turbulent flow. The
numerical methods used in DNS, such as finite difference or finite volume, are
of macroscale type. However, since a very tiny time scale and a very fine space
scale have to be used in DNS, the time and space resolutions in DNS are fine
enough to resolve eddies and fluctuations at different scales. Hence the numerical
results obtained by DNS include enormous instant and local information and are
essentially in multiscale. Averaged parameters, such as time-averaged velocity, can
be obtained from the simulation results. Since DNS is not suitable for other
multiscale processes, the terminology of ‘‘multiscale simulation’’ is usually not
used in reference to this method.

The other traditional numerical approaches for inherently multiscale problems
focus on the scale of interest and eliminate the effects of other scales. As indicated in
[1], such approaches have limitations. If we adopt a macroscale method to simulate a
multiscale process, three limitations may occur: accuracy, lack of detail for some
special process, and the necessity of introducing empirical closures. On the other
hand, if we use micro method—say, MDS—to simulate a multiscale process for
the entire geometric domain, the required computer resource is not realistic.

This is where multiscale modeling technique comes in. Here, multiscale
modeling implies a coupling technique in which some macro=meso=micro simula-
tion methods are used in different local regimes for numerical simulations of the
same engineering problem. The macro numerical methods usually are finite-type
methods (FDM, FVM, FEM, or FAM). By mesoscale and microscale methods
we usually mean the LBM, DSMC, MDS, and QMS, respectively. In such a mul-
tiscale simulation, the key issue is how to transfer information between two
neighboring regimes in order to guarantee numerical stability, accuracy, and
efficiency of computations.

A very typical multiscale simulation was provided recently by Abraham [5],
who applied three levels of simulation schemes, FEM-MDS-QMS, to study crack
dynamics. Nie et al. [6] adopted the MDS and FVM for the lid-driven cavity flow
in which the two vertexes are single point in math. Dupuis et al. [7] proposed an
LB-MD model for simulations of flows of liquid argon past and through a carbon
nanotube. Wu et al. [8] proposed a scheme of coupled DSMC-NS using an unstruc-
tured mesh. The numerical approaches adopted in [5–8] have one thing in common:
For the same problem, different regions are solved by different numerical methods
and the results are coupled at their interfaces. In this article, this approach is adopted
and the focus is on how to transfer information at the interface between the results of
the LBM and those of the finite-type methods.

In the following, we first present a brief overview of the lattice Boltzmann
model and the finite-volume model (Section 2). Then, we describe the basics and
implement procedures of the couple strategy (Section 3). After that, we employ
this couple strategy to solve the backward-facing step flow, flow around a circular
cylinder, and lid-driven cavity flow (Section 4). Finally, some conclusions are
given.
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2. LATTICE BOLTZMANN MODEL AND FINITE-VOLUME MODEL

2.1. Lattice Boltzmann Model

The lattice Boltzmann method can be easily coupled to the finite-type methods
for continuum partial differential equations, partly because of its small time steps
and geometric flexibility [2]. The LBM combines the power of continuum methods
with the geometric flexibility of the atomistic method, which is a bridge between
macroscale and microscale numerical methods. To play this bridge role the LBM
should be coupled downward with micro- and upward with macroscopic methods.
Taking the upward coupling into consideration, the transfer of LBM results to
macro results is very easy. However, the transfer of macro results to the particle
distribution function of the LBM is not straightforward. This article offers the
details of coupling the macroscale results with the LBM results.

A popular kinetic model of the LBM adopted in the literature is the
single-relaxation-time (SRT) approximation, the so-called Bhatnagar-Gross-Krook
(BGK) model [9],

qf
qt

þ c � rf ¼ � 1

k
f � f ðeqÞ

� �
ð1Þ

where f is the single-particle distribution function, rf is the gradient of the function
f, c is the particle velocity vector, f (eq) is the equilibrium distribution function (the
Maxwell-Boltzmann distribution function), and k is the relaxation time.

To solve for f numerically, Eq. (1) is first discretized in the velocity space
using a finite set of velocities {ci} without affecting the conservation laws [10,
11], giving

qfi
qt

þ ci � rfi ¼ � 1

k
fi � f

ðeqÞ
i

� �
ð2Þ

In the above equation, fi(x, t)� f(x, ci, t) is the distribution function associated with
the ith discrete velocity ci, and f

ðeqÞ
i is the ith equilibrium distribution function. The

nine-velocity square lattice model D2Q9 [12] (Figure 1) has been used successfully
for simulating 2-D flow. The nine velocities, denoted by ci, are given by

c0 ¼ 0

ci ¼ c cos i � 1ð Þp=4½ �; sin i � 1ð Þp=4½ �f g for i ¼ 1; 2; 3; 4

ci ¼
ffiffiffi
2

p
c cos i � 1ð Þp=4½ �; sin i � 1ð Þp=4½ �f g for i ¼ 5; 6; 7; 8

ð3Þ

where c¼Dx=Dt, Dx is the lattice spacing step size, and Dt is the time-step size. The
equilibrium distribution function is given by

f
ðeqÞ
i ¼ xiq 1þ 3

c2
ci � uð Þ þ 9

2c4
ci � uð Þ2� 3

2c2
u2

� �
ð4Þ

with the weights x0¼ 4=9, x1¼x2¼x3¼x4¼ 1=9, x5¼x6¼x7¼x8¼ 1=36.
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The macroscopic density q and velocity vector u can be evaluated as

q ¼
X8
i¼0

fi ð5aÞ

qu ¼
X8
i¼0

cifi ð5bÞ

The pressure of an ideal gas can be calculated from p ¼ qc2s , with the speed of sound
being cs ¼ c=

ffiffiffi
3

p
. In the LBM, Eq. (2) is discretized in both time and space, and the

completely discretized equation (also the evolution equation) is

fi xþ ciDt; tþ Dtð Þ ¼ fi x; tð Þ � 1

s
fi x; tð Þ � f

eqð Þ
i x; tð Þ

h i
ð6Þ

where s¼ k=Dt.
Equation (6) can be divided into two substeps: (1) collision, which occurs when

particles at a node interact with each other and then change velocity directions
according to scattering rules; and (2) streaming, in which each particle moves to
the nearest node in the velocity direction.
Collision step:

~ffi x; tð Þ ¼ fi x; tð Þ � 1

s
fi x; tð Þ � f

ðeqÞ
i x; tð Þ

h i
ð7aÞ

Streaming step:

fi xþ ciDt; tþ Dtð Þ ¼ ~ff i x; tð Þ ð7bÞ

where ~ffi represents the postcollision state.

Figure 1. A 2-D, 9-velocity (D2Q9) lattice model.
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2.2. Finite-Volume Method

For multiscale simulation, a fast-converging algorithm of the continuum
method is highly required. Among the finite-type methods, the FVM is the most
widely adopted one in numerical heat transfer for its conservation properties of
the discretized equation and the clear physical meaning of the coefficients. Generally
speaking, the macroscale methods (called continuum methods hereafter) obey the
fundamental laws of conservation of mass, momentum, and energy.

The corresponding differential equation of the conservation law is

q
qt

q/ð Þ þ div qU/ð Þ ¼ div C/ grad/
� �

þ S/ ð8Þ

where / is the dependent variable (such as velocity, or temperature), U is the velocity
vector, q is the fluid density, C is the nominal diffusion coefficient, and S/ is the
source term.

In 1972, Patankar and Spalding proposed a solution procedure called
SIMPLE, which is the most widely adopted algorithm for dealing with the coupling
between velocity and pressure. There are two major assumptions in the simple
algorithm: (1) the initial pressure and initial velocity are independently assumed,
leading to some inconsistency between p and u, v; and (2) when the velocity correc-
tion equation is derived, the effects of the neighboring grids’ velocity corrections are
totally neglected. These two assumptions do not affect the final solution but do affect
the convergence rate. The first assumption was overcome by SIMPLER of Patankar
(1980) [13]. Researchers have made many efforts to overcome the second assump-
tion, such as SIMPLEC by van Doormaal and Raithby (1984) [14], PISO by Issa
(1986) [15], the explicit correction-step method by Yen and Liu (1993) [16], and
MSIMPLER by Yu et al. (2001) [17]. None of the above revised versions could suc-
cessfully overcome the second assumption. In recent years, our group developed
CLEAR [18, 19], and IDEAL [20, 21]. They completely delete the second assump-
tion, making the algorithm fully implicit. In both the CLEAR and IDEAL
algorithms, the improved pressure and velocity are solved directly, rather than by
adding a correction term to the intermediate solution. A further improvement of
the solution procedure is developed in the IDEAL algorithm, making its convergence
rate and robustness better than that of CLEAR.

In this article, the 2-D IDEAL collocated grid algorithm is adopted [20, 21],
and the SGSD scheme is used for the discretization of the convective term [22].

3. PRINCIPLE AND PROCEDURE OF THE CFVLBM

3.1. Coupling Principle

First we present a general framework for designing a numerical method that
couples marco methods and meso=micro methods. Assume that a macroscale pro-
cess is described by a state variable U and a microscopic process is described by a
state variable u. The two processes and state variables are related to each other at
the interface of the macro and micro models by compression and reconstruction
operations, denoted by C (compression operator) and R (reconstruction operator),
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respectively, as follows [23]:

Uðx; tÞ ¼ C u x; tð Þ½ � ð9Þ

uðx; tÞ ¼ R U x; tð Þ½ � ð10Þ

The two operators have the property CR¼ I, whereI is the identity operator.
Generally speaking, the reconstruction operator is not unique. In fact, the

reconstruction procedure leads to a one-to-many mapping, because the microscopic
simulator contains more information than that of the macroscopic simulator. On the
contrary, the compression operation is usually a local=ensemble average through
which a unique parameter can be obtained from lots of micro=meso-scale
information. Thus, for the coupling between the results from macroscopic and
mesoscopic methods, the major difficulty is how to transform the macroscopic
results, such as velocity, into the dependent variables adopted in the micro=
meso-scale methods, for example, from velocity of a finite-type method to the
single-particle distribution function of the LBM.

An analytic expression has been derived to solve the above problem [24]. For
the readers’ convenience, the derivation process is presented below. In the following
derivation the fluid is assumed to be incompressible, hence the fluctuation of the
density is neglected.

According to the Chapman-Enskog method [25], we can introduce the
following time and space scale expansion:

qt ¼ eqð1Þt þ e2qð2Þt ð11aÞ

qxa ¼ eqð1Þxa
ð11bÞ

The small expansion parameter e can be viewed as the Knudsen number, Kn, which
is the ratio between the mean free path and the characteristic length scale of the flow,
and a represents the two coordinate directions.

The distribution fi is expanded around the distributions f
ð0Þ
i as follows:

fi ¼ f
ð0Þ
i þ ef ð1Þi þ e2f ð2Þi ð12Þ

with

X
i

f
ð1Þ
i ¼ 0

X
i

cif
ð1Þ
i ¼ 0

X
i

f
ð2Þ
i ¼ 0

X
i

ci f
ð2Þ
i ¼ 0 ð13a�dÞ

Then, the fi(xþ ciDt, tþDt) in Eq. (6) is expanded about x and t, which gives

fiðxþ ciDt; tþ DtÞ ¼ fiðx; tÞ þ DtDiafiðx; tÞ þ
ðDtÞ2

2
D2

iafiðx; tÞ þO½ðDtÞ3� ð14Þ

where Dia ¼ qt þ ciqxa for concise expression.
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The expansion of Eq. (14) is substituted into Eq. (6), which gives

DtDia fi þ
ðDtÞ2

2
D2

ia fi ¼ � 1

s
ðfi � f

ðeqÞ
i Þ þO½ðDtÞ3� ð15Þ

After substituting Eqs. (11a), (11b), and (12) into Eq. (15), the following equa-
tion can be obtained:

eDð1Þ
ia f ð0Þ þ e2 D

ð1Þ
ia f

ð1Þ
i þ qð2Þt f

ð0Þ
i

� �
þ e2

Dt
2

D
ð1Þ
ia

� �2

f
ð0Þ
i

¼ � 1

Dts
f
ð0Þ
i þ ef ð1Þi þ e2f ð2Þi � f

ðeqÞ
i

� �
þO½ðDtÞ3� ð16Þ

Then, by matching the scales of e0, e1, and e2, we have

e0: f
ð0Þ
i ¼ f

ðeqÞ
i ð17Þ

e1: f
ð1Þ
i ¼ �DtsDð1Þ

ia
f
ð0Þ
i þO½ðDtÞ2� ð18Þ

e2: f
ð2Þ
i ¼ �Dts D

ð1Þ
ia f

ð1Þ
i þ qð2Þt f

ð0Þ
i

h i
� s

ðDtÞ2

2
D

ð1Þ
ia

� �2

f
ð0Þ
i þO½ðDtÞ3� ð19Þ

Considering Eqs. (5a) and (5b), we can sum Eq. (18) over the phase space.
Then the first order of the continuity equation and momentum equation can be
derived [26] as

e1: qð1Þt qþ qð1Þxa
quað Þ þO½ðDtÞ2� ¼ 0 ð20aÞ

qð1Þt quað Þ þ qð1Þxb
quaub þ pdab
� �

þO½ðDtÞ2� ¼ 0 ð20bÞ

In the same way, we can obtain the second order of the continuity equation and
momentum equation according to Eq. (19):

e2: qð2Þt qþO½ðDtÞ3� ¼ 0 ð21aÞ

qð2Þt quað Þ � nqð1Þxb
q qð1Þxa

ub þ qð1Þxb
ua

� �h i
þO½ðDtÞ3� ¼ 0 ð21bÞ

In the following, we introduce formulas according to the chain rule of
derivatives:

qt f
ðeqÞ
i ¼ qq f

ðeqÞ
i qtqþ qubf

ðeqÞ
i qtub ð22aÞ

qxaf
ðeqÞ
i ¼ qq f

ðeqÞ
i qxaqþ qubf

ðeqÞ
i qxaub ð22bÞ

154 H. B. LUAN ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
a
o
,
 
W
.
 
Q
.
]
[
X
i
'
a
n
 
J
i
a
o
t
o
n
g
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
1
:
0
2
 
9
 
M
a
r
c
h
 
2
0
1
0



From Eq. (4), we can get that

qu
b
f
ðeqÞ
i ¼ xiq

1

c2s
ðcib � ubÞ þ

1

c4s
ciacibua

� �
ð23Þ

qqf
eqð Þ

i ¼ 1

q
f

eqð Þ
i ð24Þ

Furthermore, substituting Eqs. (20)–(24) into Eq. (18) gives the first-order
expression of the distribution function f:

f
ð1Þ
i ¼ �sDt qð1Þt f

ð0Þ
i þ ciq

ð1Þ
xa
f
ð0Þ
i

� �

¼ �sDt qqf
ð0Þ
i qð1Þ

t
qþ qubf

ð0Þ
i qð1Þt ub þ ci qqf

ð0Þ
i qð1Þxa

qþ qubf
ð0Þ
i qð1Þxa

ub

� �h i

¼ �sDt �qqf
ð0Þ
i qð1Þxa

quað Þ � 1

q
qub f

ð0Þ
i qð1Þxa

quaub þ pdab
� ��

þ ci qqf
ð0Þ
i qð1Þxa

qþ qub f
ð0Þ
i qð1Þxa

ub

� �i

¼ �sDt Uiaq
ð1Þ
xa
qqq f

ð0Þ
i þUiaq

ð1Þ
xa
ubqub f

ð0Þ
i � qqqf

ð0Þ
i qð1Þxa

ua �
1

q
qð1Þxa

pqua f
ð0Þ
i

� 	

¼ �sDt Uia f
ð0Þ
i

1

q
qð1Þxa

qþUiaxiq
1

c2s
Uib þ

1

c4s
cibcicuc

� 	
qð1Þxa

ub � f
ð0Þ
i qð1Þxa

ua

�

�xi
1

c2s
Uia þ

1

c4s
ciacicuc

� 	
qð1Þxa

p

�
ð25Þ

where Uia¼ cia� ua.
The second-order expression of f in Eq. (19) is calculated as follows:

f
ð2Þ
i ¼ �Dts D

ð1Þ
ia f

ð1Þ
i þ qð2Þt f

ð0Þ
i

� �
� ðDtÞ2

2
s D

ð1Þ
ia

� �2

f
ð0Þ
i

¼ �Dts D
ð1Þ
ia �sDtDð1Þ

ia f 0i

� �
þ qð2Þt f

ð0Þ
i

h i
� ðDtÞ2

2
s D

ð1Þ
ia

� �2

f
ð0Þ
i

¼ �Dtsqð2Þt f
ð0Þ
i þ ðDtÞ2s s� 1

2

� 	
D

ð1Þ
ia

� �2

f
ð0Þ
i ð26Þ

We can ignore the second-order derivative of f 0i ; then

f
ð2Þ
i ¼ �Dtsqð2Þt f

ð0Þ
i ð27Þ

By the chain rule of derivatives,

qð2Þt f
ð0Þ
i ¼ qqf

ð0Þ
i qt2qþ qubf

ð0Þ
i qt2ub

¼ qubf
ð0Þ
i qt2ub ð28Þ
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Using Eqs. (21b) and (23), we get

qð2Þt f
ð0Þ
i ¼ qub f

ð0Þ
i qt2ub

¼ 1

q
qub f

ð0Þ
i qt2ðqubÞ

¼ nxi
1

c2s
ðcib � ubÞ þ

1

c4s
ciacibua

� �
qð1Þxa

q qð1Þxa
ub þ qð1Þxb

ua

� �h i

¼ nxiq
1

c2s
ðcib � ubÞ þ

1

c4s
ciacibua

� �

� 1

q
qð1Þxa

qðqð1Þxa
ub þ qð1Þxb

uaÞ þ qð1Þxa
ðqð1Þxa

ub þ qð1Þxb
uaÞ

� �
ð29Þ

So we can obtain

f
ð2Þ
i ¼ �Dtsnxiq

1

c2s
Uib þ

1

c4s
ciacibua

� 	

� 1

q
qð1Þxa

q qð1Þxa
ub þ qð1Þxb

ua

� �
þ qð1Þxa

qð1Þxa
ub þ qð1Þxb

ua

� �h i
 �
ð30Þ

Here, we introduce an approximation of qubf
ð0Þ
i by dropping terms of a higher

order than u2 as follows:

qubf
ð0Þ
i ¼ xiq

1

C2
s

Uib þ
1

C4
s

cibcicuc

� 	
� Uib

C2
s

f
ð0Þ
i ð31Þ

Assume the velocity fields is divergence-free, written as

qxaua ¼ 0 ð32Þ

According to Eqs. (31) and (32), we can rewrite the expressions of f
ð1Þ
i and f

ð2Þ
i , as

f
ð1Þ
i ¼ �sDt Uiaf

ð0Þ
i

1

q
qð1Þxa

qþUiaUibf
ð0Þ
i

1

c2s
qð1Þxa

ub �Uiaf
ð0Þ
i

1

qc2s
qð1Þxa

p

� 	

¼ �sDtUiaUibf
ð0Þ
i c�2

s qð1Þxa
ub ð33Þ

f
ð2Þ
i ¼ �DtsnUibf

ð0Þ
i c�2

s

1

q
qð1Þxa

q qð1Þxa
ub þ qð1Þxb

ua

� �
þ qð1Þxa

� �2

ub

� �

¼ �DtsnUibf
ð0Þ
i c�2

s

1

q
S
ð1Þ
ab q

ð1Þ
xa
qþ qð1Þxa

� �2
ub

� �
ð34Þ

where Sab ¼ qxbua þ qxaub.
At last, we can obtain the expression of fi:

fi ¼ f
ð0Þ
i þ ef ð1Þi þ e2f ð2Þi

¼ f
ð0Þ
i � sDtUiaUib f

ð0Þ
i c�2

s qxaub � sDtnUib f
ð0Þ
i c�2

s

1

q
Sabqxaqþ q2xaub

� 	

¼ f
ðeqÞ
i 1� sDtUibc

�2
s Uiaqxaub þ nq2xaub þ nq�1Sabqxaq
� �h i

ð35Þ
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Equation (35) is an analytic expression for reconstructing the micro variables from
the macro variables. The reconstruction operation is essential to establish the
information exchange from the macro solver to the micro solver and is very useful
to construct a reasonable initial field for accelerating the microscopic computation.

3.2. Computational Procedure

To illustrate the basic idea of the CFVLBM, the computational domain is
decomposed into two regions in which the LBM and FVM are used separately. In
Figure 2, the decomposition of the computational domain for the lid-driven cavity
flow is shown schematically. We can easily control the coarseness and fineness of
grids according to the zone spatial scale in each region. When the grid systems at
the interface of the subregions are not identical, space interpolation at the interface
is required when transferring the information at the interface. In this article, for con-
venience we choose the FVM grid size equal to the lattice size, to avoid the spatial
interpolation. Line MN is the FVM region boundary located in the LBM subregion,
while line AB is the LBM region boundary located in the FVM subregion. Hence the
subdomain between the two lines is the overlapped region (often called the
hand-shaking region) where both the LBM and FVM methods are adopted. This
arrangement of the interface is convenient for the information exchange between
the two neighboring regions [27].

The CFVLBM computation procedures are conducted as follows.

Step 1. With some arbitrary assumed velocity at the line MN, the FVM simulation is
performed in the lower region.

Step 2. After a temporary solution is obtained, the information at the line AB is
transformed into the single-particle distribution function.

Step 3. The LBM simulation is carried out in the upper region.

Figure 2. Interface structure between two regions of FVM and LBM.
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Step 4. The temporary solution of the LBM at the line MN is transported into the
macro velocity and the FVM simulation is repeated.

Step 5. Computation is repeated until the results at the two lines remain the same
within an allowed tolerance.

4. RESULTS AND DISCUSSION

In this section, numerical results for three examples are presented, which are
solved by the CFVLBM with the reconstruction operator shown in Eq. (35).

4.1. Backward-Facing Step

The problem of a viscous flow over an isothermal, two-dimensional,
backward-facing step is a standard test problem, in which the dependence of the
reattachment length xr on the Reynolds number is usually taken as the criterion
for comparison. The geometry and boundary conditions for this flow are shown in
Figure 3, where a 2-D Cartesian coordinate system is also presented. The down-
stream channel is defined to have unit height H¼ 1 with a step height S equally to
H=2. The downstream outflow boundary is located at x¼ 15H for Re¼ 50, and at
x¼ 20H for Re¼ 100. No-slip condition is specified for all solid surfaces. The outlet
flow is assumed to be fully developed. At the inflow boundary, located at the step, a
parabolic profile is prescribed by u0(y)¼ 1.2(y�H=2)(H� y) for H=2� y�H. This
produces a maximum inflow velocity of umax¼ 0.075 and an average inflow velocity
of uavg ¼ 0:05. In this case the maximum Mach number is 0.129. The computational
domain is divided into two zones, the LBM zone and the FVM zone, which are
partly overlapped (see Figure 3). Uniform grids are adopted with grid size
Dx¼Dy¼ 0.01H.

For Re¼ 50 and 100, the predicted reattachment lengths are xr=S¼ 1.76 and
3.0, respectively, and the corresponding results reported by Armaly et al. [28] are
xr=S¼ 1.8 and 3.1, respectively. The agreement is reasonably good because the flow
predicted in the LBM zone is not completely incompressible.

Figure 3. Backward-facing step flow.
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For Re¼ 50 and 100, Figures 4a and 5a illustrate the main features of the sepa-
rated flow by streamline contour. The contours of the streamwise velocity u are
shown in Figures 4b and 5b. The corresponding voticity contours (x¼ qv=qx� qu=
qy) are shown in Figures 4c and 5c. The reasonably good agreement with the refer-
ence and the smoothness of contours in the hand-shaking region illustrate the
feasibility of the reconstruction operator presented by Eq. (35).

Figure 4. Contour lines for Re¼ 50: (a) streamline; (b) u velocity; and (c) vorticity.

Figure 5. Contour lines for Re¼ 100: (a) streamline; (b) u velocity; and (c) vorticity.
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4.2. Flow Around a Circular Cylinder

The second numerical simulation is two-dimensional flow around a circular
cylinder for low Reynolds numbers [29–32]. The geometry and boundary conditions
for this flow are shown in Figure 6. A uniform velocity u0 ¼ ðu1; 0Þ is specified along
the domain perimeter as physical boundary, and zero velocities are imposed at the
cylinder surface. The parameters are defined as height H¼ 1.8, cylinder radius
r¼ 0.005, density q¼ 1.0, velocity u1¼ 0.01, and grid length Dx¼Dy¼ 2� 10�4.
The Reynolds number is defined by Re¼ 2u1r=n.

Here three small Reynolds numbers 10, 20, and 40 are chosen to validate
the proposed method. Figure 7 shows the streamlines when flow reaches its final
steady state. A pair of vortices is observed behind the circular cylinder. For flow
around a circular cylinder there are three characteristic parameters: the length of
the recirculation region L, the separation angle h, and the drag coefficient CD. CD

is defined as

CD ¼ 1

qu21r

Z
S � n dl ð36Þ

where n is the normal direction of the cylinder wall and S is the stress tensor,

S ¼ �pI þ qtðruþ urÞ ð37Þ

The drag coefficient CD and the geometry parameters L and h are listed in Table 1.
All of the parameters predicted by the CFVLBM agree well with the results of
previous studies for each Re.

Figure 6. Flow around a circular cylinder.
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4.3. Lid-Driven Cavity Flow

In this section, a detailed analysis of the capabilities of the reconstruction oper-
ator is presented by using the CFVLBM on another popular numerical example,

Figure 7. Streamlines: (a) Re¼ 10; (b) Re¼ 20; and (c) Re¼ 40.

Table 1. Comparison of previous studies of drag coefficients and geometric parameters for cylinder flow at

low Reynolds number

Re Authors Method CD L=r h (deg)

10 Dennis and Chang (1970) [29] N.S. 2.846 0.53 29.6

He and Doolen (1997) [30] ISLBM 3.170 0.474 26.89

Guo and Zhao (2003) [31] FDLBM 3.049 0.486 28.13

Imamura et al. (2005) [32] GILBM 2.848 0.478 26.0

Present work CFVLBM 2.810 0.51 29.2

20 Dennis and Chang (1970) N.S. 2.045 1.88 43.7

He and Doolen (1997) ISLBM 2.152 1.842 42.96

Guo and Zhao (2003) FDLBM 2.048 1.824 43.59

Imamura et al. (2005) GILBM 2.051 1.852 43.3

Present work CFVLBM 2.010 1.85 43.2

40 Dennis and Chang (1970) N.S. 1.522 4.69 53.8

He and Doolen (1997) ISLBM 1.499 4.49 52.84

Guo and Zhao (2003) FDLBM 1.475 4.168 53.44

Imamura et al. (2005) GILBM 1.538 4.454 52.4

Present work CFVLBM 1.511 4.44 53.5
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lid-driven cavity flow. The geometry and boundary conditions are shown in Figure 8.
Three numerical simulations were carried out for Re¼ 100, 400, and 1000 on a grid
of 400� 400. The characteristic length in Reynolds numbers is the height of the
squared cavity, H¼ 1. The boundaries of the cavity are still walls, except the upper
boundary, for which a uniform tangential velocity is prescribed as uRe¼100¼
3.33� 10�3, uRe¼400¼ 1.33� 10�3, uRe¼1000¼ 3.33� 10�2 for the three Reynolds
numbers, respectively. Corresponding to each case, the Mach numbers are MaRe¼100¼
5.77� 10�3, MaRe¼400¼ 2.31� 10�2, and MaRe¼1000¼ 5.77� 10�2.

Figure 9 shows the streamlines plots for the Reynolds number considered.
These plots give a clear picture of the overall flow pattern and the effect of Reynolds
number on the structure of the recirculating eddies in the cavity. The smoothness of
the streamline, especially around the hand-shaking region, further confirms the cor-
rectness of the information transfer at the interface. In addition to the primary center
vortex, a pair of counterrotating eddies of much smaller strength are developed in
the lower corners of the cavity. To quantify these results, the center locations of
the primary vortices, bottom left vortices, and bottom right vortices are listed in
Table 2. The results are in close agreement with the benchmark solution [33]. As
Re increases, the primary vortex center moves toward the right and increasingly
becomes circular.

Figures 10 and 11 show the contours of u velocity and v velocity. It is seen that
these physical quantities are all smooth across the interface. The velocity profiles
along the vertical and horizontal centerlines of the cavity are shown in Figures 12
and 13. It is seen that the maximum errors occur at the peak points. This is because
the absolute values of velocity are larger at those points. Errors grow as Re increases.
This may be partially caused by the weak compressibility of the LBM results. In the
LBM zone, the density is not a constant inherently related to the LBM. However, the
FVM model adopted here is incompressible. To illustrate this argument more

Figure 8. Lid-driven cavity flow.
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clearly, Figure 14 shows the density contour lines of the predicted results. We can
see that the density is changing in the LBM zones. When the LBM and incompress-
ible FVM are coupled, flow velocity should not be large, to decrease the com-
pressibility influence by the LBM. All things considered, we conclude that the
results obtained by the CFVLBM are in good agreement with the benchmark work
by Ghia et al. [33].

When the Navier-Stokes equations are used to solve the incompressible flow, it
is crucial to maintain the mass conservation of the entire flow domain. This issue is
especially importance when the coupled method is used. The hand-shaking region is

Figure 9. Streamlines: (a) Re¼ 100; (b) Re¼ 400; and (c) Re¼ 1,000.

Table 2. Comparison of vortices location between present results and [33]

Re=vortices

Primary vortices

location (x, y)

Bottom left vortices

location (x, y)

Bottom right vortices

location (x, y)

Re¼ 100 Present (0.615, 0.738) (0.0325, 0.038) (0.936, 0.062)

Ref. (33) (0.6172, 0.7344) (0.0313, 0.0391) (0.9453, 0.0625)

Re¼ 400 Present (0.565, 0.609) (0.051, 0.046) (0.888, 0.124)

Ref. (33) (0.5547, 0.6055) (0.0508, 0.0469) (0.8906, 0.1250)

Re¼ 1,000 Present (0.537, 0.568) (0.083, 0.076) (0.861, 0.111)

Ref. (33) (0.5313, 0.5625) (0.0859, 0.0781) (0.8594, 0.1094)
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best to examine the conservation of the mass flow rate. For this purpose, Figures 15
and 16 are provide, where the mass fluxes at the interface (i.e., line A–B in Figure 8)
at Re¼ 1,000 are shown. We can see that the mass fluxes from the LBM and FVM
match very well.

The contours of vorticity distribution are now examined, and the results are
presented in Figure 17. The plots of vorticity with viscous effects are confined to thin
shear layers near the wall. It can be observed that the vorticity contours predicted
from the FVM and LBM are in agreement. However, there is some nonsmoothness
at the interface. We have tried several numerical methods (refining the grids, improv-
ing convergence criteria), but this nonsmoothness could not be fully removed. Thus
it is expected to be caused by the weak compressibility and unsteady nature of the
LBM. This observation gives us a hint: to confirm good smoothness and consistency
when coupling of numerical solutions at the interface is investigated, the quality of
the vorticity contour plot is more sensitive to that of velocity. This is because
vorticity is the first derivative of velocity; its smoothness requirement is more strict
than that of velocity. The stream function is an integral of the velocity; hence its
smoothness is the easiest to obtain.

Finally, CPU time to obtain a steady-state solution of the lid-driven cavity flow
is discussed. For the FVM, the steady-state solution can be obtained from a steady
governing equation with an assumed initial field. This iterative process is in some

Figure 10. The u-velocity contour lines: (a) Re¼ 100; (b) Re¼ 400; and (c) Re¼ 1,000.
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Figure 11. The v-velocity contour lines: (a) Re¼ 100; (b) Re¼ 400; and (c) Re¼ 1,000.

Figure 12. Comparison of u velocity along vertical line through geometric center.
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Figure 14. Density contour lines: (a) Re¼ 100; (b) Re¼ 400; and (c) Re¼ 1,000.

Figure 13. Comparison of v velocity along horizontal line through geometric center.
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sense similar to an unsteady solution process, with one outer iteration being equiva-
lent to marching one time step forward. The LBM is an essentially unsteady
approach in which the solution gradually evolves into steady state. In this article
the iteration convergence criterion for reaching the steady state is defined by
Eq. (38) with err¼ 10�6.

Residual ¼
PP

juði; j; tþ DtÞ � uði; j; tÞj þ
PP

jvði; j; tþ DtÞ � vði; j; tÞjPP
ðjuði; j; tÞj þ jvði; j; tÞjÞ � err

ð38Þ

Figure 15. The y component of the mass flux qv=(q0ulid) on the interface AB defined in Figure 8.

Figure 16. The x component of the mass flux qu=(q0ulid) on the interface AB.
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The case of Re¼ 1,000 is selected to compare the residual history for four
methods. The first method and the second method are the single FVM method
and the single LBM in the whole computation domain, respectively. The third
method is denoted by CFVLBM(I), in which the interface information exchange
is executed after one outer iteration in the FVM region and one time step forward
in the LBM region. In the fourth method, denoted by CFVLBM(II), the interface
information exchange is not executed until the interface mass residual defined by
Eq. (38) is almost equal to or even less than the mass residual of the entire subre-
gion. Here, by one outer iteration in the FVM we mean that the coefficients of the
discretization equation are updated once. The inner iteration means the solution
process of the algebraic equation for the given set of coefficients in the discretiza-
tion equations. For both the CFVLBM(I) and CFVLBM(II), the inner iteration is
the same.

When the flow reaches steady state, the flow fields obtained from the four
methods are almost identical. However, the residual histories are quite different.
Figure 18 shows the residual history of the four methods. It can be seen that the
FVM method has the fastest convergence rate, the LBM shows the worst conver-
gence speed, and the CFVLBM(I) and CFVLBM(II) are in between, with the
CFVLBM(II) being much better than the CFVLBM(I).

Figure 17. Vorticity contour lines: (a) Re¼ 100; (b) Re¼ 400; and (c) Re¼ 1,000.
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5. CONCLUSIONS

In this article, a coupling approach is used to combine the LBM and FVM for
simulating fluid flow problems. A reconstruction operator is adopted to lift the
macroscopic velocity fields of the FVM to mesoscopic distribution functions of
the LBM. Three numerical examples have validated the feasibility and reliability
of the proposed reconstruction operator.

The stream function contours are the easiest to smooth. To confirm good
smoothness and consistency of solutions coupling at the interface, the vorticity con-
tours are suggested separately from the velocity distributions. The convergence to
steady-state flow is expected to be accelerated by the proposed CFVLBM(II).

Extension to higher Mach numbers and 3-D computations is now underway in
the authors’ group and will be reported later.
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