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The equivalent thermal resistance of a heat exchanger is defined based on the concept of the entransy
dissipation rate, which measures the irreversibility of heat transfer for the purpose of object heating or
cooling, rather than from the heat to work conversion. The relationships between the heat exchanger
effectiveness and the thermal resistance (or conductance) are developed, which do not depend on its flow
arrangement, and hence useful for the performance comparison among heat exchangers with different
flow arrangements. In addition, such relationships bridge a gap between the heat exchanger irreversibil-
ity and its effectiveness. The monotonic decrease of the effectiveness with increasing the thermal resis-
tance shows that the heat exchanger irreversibility can be described by its thermal resistance when
evaluated from the transport process viewpoint, while the so-called entropy generation paradox occurs,
if the irreversibility is measured by the entropy generation number for a heat exchanger.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since heat exchangers are used in a number of applications in
various industries, improving the performance of heat exchangers
plays an important role in the efficient energy utilization. Heat ex-
changer design and analysis can be conducted commonly by the
LMTD (logarithmic mean temperature difference) [1,2] method or
the effectiveness–number of transfer units (P—NTU) method. For
the LMTD method, heat transfer equation can be written as:

_Q ¼ UADTM ¼ UAFDTLM ð1Þ

where U, overall heat transfer coefficient; A, surface area for heat
transfer; DTM, true mean temperature difference between two flu-
ids of the heat exchanger, and is related to log-mean temperature
difference by a correction factor F. Note that F is dependent on
the flow arrangement of two fluids in addition to the temperature
effectiveness P and heat capacity rate ratio R. For single-pass (paral-
lel or counterflow) heat exchangers:

DTM ¼ DTLM ¼
DT i � DTo

ln DT i=DToð Þ ð2Þ

where DT i and DTo are the temperature differences of the two fluids
at inlet and outlet ends of either fluid in the exchanger. The LMTD
method can be extended to complex flow arrangements, such as
multiple-pass shell-and-tube exchangers by introduction of a cor-
rection factor F noted above. Studies by Bowman et al. [3] showed
ll rights reserved.
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that the correct mean temperature difference for a complex geom-
etry can be obtained by the LMTD multiplied by the correction fac-
tor F. Bowman et al. [3] and TEMA [4] derived expressions and/or
provided charts for the correction factor, which are different for dif-
ferent heat exchanger flow arrangements. If the fluid terminal tem-
peratures and overall heat transfer coefficient are known, we can
straightforward obtain the total heat transfer area A required for
specified heat transfer rate in a sizing problem. Nevertheless, itera-
tions are needed by the LMTD method for the rating problem to
determine the outlet temperatures for the case of fixed U and A. A
more appropriate method to solve the rating problem is the effec-
tiveness–NTU method devised by Kays and London [5]. They de-
fined a dimensionless parameter called the heat exchanger
effectiveness P which is the ratio of actual heat transfer rate to
the maximum possible heat transfer rate. For the single-pass paral-
lelflow and counterflow heat exchangers, P—NTU expressions are:

Ppara ¼
1� exp �NTUð1þ C�Þ½ �

1þ C�
ð3aÞ

Pcoun ¼
1� exp �NTUð1� C�Þ½ �

1� C� exp �NTUð1� C�Þ½ � ð3bÞ

where NTU ¼ UA=Cmin is the number of transfer units, and
C� ¼ Cmin=Cmax is the ratio of heat capacity rate of the fluid with
the smaller heat capacity (hereafter, the minimum fluid) to that
of the fluid with the larger one (hereafter, the maximum fluid). Kays
and London [6], Shah and Sekulic [7] and Shah and Pignotti [8] have
presented effectiveness–NTU formulas for over 100 different heat
exchanger flow arrangements in the form of charts, tables and
analytical closed-form P—NTU formulas. The effectiveness–NTU
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Nomenclature

A surface area for heat transfer (m2)
c specific heat (J=kg KÞ
Cmax the larger heat capacity rate of two fluids (W/K)
Cmin the smaller heat capacity rate of two fluids (W/K)
C� heat capacity rate ratio
EEIN enthalpy exchange irreversibility norm
F correction factor
_G entransy flow rate (W K)
_G/ entransy dissipation rate (W K)
Gvh entransy (J K)
G1 the resistance factor of non-counterflow arrangement
G2 the resistance factor of unbalanced flow
K thermal conductivity (W=m KÞ
l length (m)
LMTD logarithmic mean temperature difference (K)
_m mass flow (kg/s)

M mass (kg)
N� dimensionless thermal conductance
NS entropy generation number
NTU number of transfer unit
P heat exchanger or temperature effectiveness
_Q heat transfer rate (W)
_q heat flux (W=m2)
_Q l heat transfer rate per unit length (W=m)
Qvh internal energy (J)
R thermal resistance (K/W)
R� dimensionless equivalent thermal resistance
Rex equivalent thermal resistance (K/W)
_S entropy generation rate (W/K)

T temperature (K)
t time (s)
U overall heat transfer coefficient (W=m2 K)
V control volume (m3)
x coordinate (m)

Greek symbols
d wall thickness in 1D heat conduction (m)
_e entransy flux (W K=m2)
_e/ local entransy dissipation rate (W K=m3)
e entransy density (J K=m3)
q density (kg=m3)

Subscripts
AM arithmetic mean
b bulk
c cold fluid
cond heat conduction
conv heat convection
coun counterflow arrangement
ex equivalent
h hot fluid
i inlet
LM logarithmic mean
M mean
o outlet
para parallel flow arrangement
tube tube flow
w wall
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method also offers advantages for the performance comparison be-
tween various types of heat exchangers, that is from given value of
NTU the goodness of the heat exchanger can be easily identified
from its value of P.

Because heat transfer is an irreversible process, one tries to
establish the ties between the effectiveness and the irreversibility
associated with the heat exchanger and to understand why heat
exchangers with different flow arrangements differ in heat transfer
performance under the same given design conditions. Bejan [9]
introduced the concept of irreversibility due to finite temperature
difference and fluid flow friction in heat transfer process based on
the second law of the thermodynamics. To evaluate quantitatively
the entropy generation in counterflow heat exchangers, he intro-
duced an entropy generation number NS defined as the entropy
generation rate scaled by the heat capacity rate of the minimum
fluid, i.e., _S=Cmin. He provided the formula for NS for a counterflow
heat exchanger and showed that NS has a maximum from
NTU ¼ 0ðP ¼ 0Þ to NTU ¼ 1ðP ¼ 1Þ. Since the relation between
NS and P before NS;max conflicts with one’s expectation that heat
transfer irreversibility and the consequent NS would decrease as
the NTU increases, Bejan [10,11] called it ‘‘the entropy generation
paradox”. Sekulic [12] conducted an irreversibility analysis for heat
exchangers in terms of enthalpy exchange irreversibility norm
(EEIN), defined by the ratio of the actual entropy generation to
the maximum possible entropy generation of an adiabatic mixing
of the streams. In the counterflow case, the EEIN has a maximum
too from NTU ¼ 0 to NTU ¼ 1. An attempt was made by Hesselg-
reaves [13] to resolve the entropy generation paradox through
non-dimensionalising the entropy generation rate by _Q=T1. Ogiso
[14] and Xu et al. [15] demonstrated that the Bejan’s paradox can
be removed by using the entropy generation index _S=UA. Based
on the irreversibility analysis for 18 heat exchanger flow arrange-
ments, Shah and Skiepko [16] showed that the heat exchanger
effectiveness can be maximum, having an intermediate value or
minimum at the maximum irreversibility operating point. There-
fore they concluded that the concept of minimum irreversibility
associated with the maximum efficiency for energy conversion
process in thermal systems is not quite applicable to the heat ex-
changer analysis. Guo et al. [17] introduced the concepts of en-
transy and entransy dissipation in terms of the analogy between
heat and electric conduction. Their study demonstrated that when
evaluated from the viewpoint of energy transport process, the en-
transy dissipation rather than the entropy generation is a measure
of the irreversibility of a heat transfer process. This concept has
been applied in the optimization of heat conduction [18] and con-
vection [19].

In the following presentation, the concepts entransy and en-
transy dissipation are first briefly reviewed for the readers’ conve-
nience (Guo et al. [17]). Then the irreversibility analysis for heat
exchangers is carried out and the thermal resistance of a heat ex-
changer is defined based on the concept of entransy dissipation
rate. The relations between the heat exchanger effectiveness and
the thermal resistance/thermal conductance are derived for the
performance analysis and comparison between various flow
arrangements. Finally some conclusions are made.
2. Entransy dissipation and equivalent thermal resistance of
heat exchanger

2.1. Heat conduction irreversibility and resistance [17]

As well known, the heat conduction and the electric conduction
are analogous with Fourier’s law for 1D conduction being analo-
gous to Ohm’s law for electric circuits. In the analogy, many quan-
tities in two systems have many one-to-one correspondences, as



Table 1
Analogies between electrical and thermal parameters.

Electrical charge stored in a capacitor Electrical current (charge flux) Electrical resistance Capacitance
Qve I Re Ce ¼ Qve=Ue

Heat stored in a body Heat flow Thermal resistance Heat capacity
Qvh ¼ McT _Qh Rh Ch ¼ Qvh=T

Electrical potential Electrical current density Ohm’s law Electrical potential energy in a capacitor
Ue _qe _qe ¼ �Ke

dUe
dn

Ee ¼ 1
2 QveUe

Thermal potential (temperature) Heat flux density Fourier’s law Entransy [17]
Uh ¼ T� _qh _qh ¼ �Kh

dT
dn Gvh ¼ 1

2 QvhT

� T is actually DT ¼ T � 0 (absolute zero).

Fig. 1. One-dimensional steady heat conduction.

Z.Y. Guo et al. / International Journal of Heat and Mass Transfer 53 (2010) 2877–2884 2879
listed in Table 1, except for the electric potential energy in a capac-
itor. In view of this fact, an appropriate quantity, Gvh has been de-
fined [17] as :

Gvh ¼
1
2

Q vhT ð4Þ

where Qvh ¼ McT is the internal energy or the heat stored in an ob-
ject relative to a reference system with absolute zero temperature.
This quantity, which corresponds to the electric potential energy in
the electric system, is referred to as Entransy because it possesses
both the nature of ‘‘energy” (from which the prefix ‘‘en-” is bor-
rowed) and the heat transfer (from which the postfix ‘‘-trans” is
copied) ability, i.e., ability for transferring thermal energy which,
in turn, is resulted from both energy and temperature level.

For heat conduction problems without a heat source, the ther-
mal energy conservation equation is:

qc
@T
@t
¼ �r � _q ¼ r � KrTð Þ ð5Þ

The above equation multiplied by T leads to the entransy balance
equation as follows:

qcT
@T
@t
¼ �r � _qTð Þ þ _q � rT ð6aÞ

Eq. (6a) can be rewritten as:

@e
@t
¼ �r _e� _e/ ð6bÞ

where e ¼ 1
2 qcT2, _e ¼ _qT and _e/ ¼ � _q � rT.

The LHS of Eq. (6b) is the time variation of entransy density. The
first and second terms on the right of Eq. (6b) are the entransy flux
and the local entransy dissipation rate, respectively. This indicates
that during heat transfer process the entransy is not conserved due
to dissipation caused by thermal resistance, while the thermal en-
ergy is conserved. The local entransy dissipation rate
_e/ ¼ � _q � rT ¼ KðrTÞ2 resembles the local electric energy dissipa-
tion rate in the electric system and the mechanical energy dissipa-
tion rate in viscous fluid flow.

For simplicity, consider one-dimensional steady heat conduc-
tion in a plate with thickness d as shown in Fig. 1, where the output
heat flux is the same as the input one ( _qo ¼ _qi), while the output
entransy flux is less than the input one ( _eo < _ei) due to the entransy
dissipation inside the plate:

_Gi � _Go ¼ l
Z d

0
� _q � dT

dx

� �
dx ¼ l _q T i � Toð Þ ¼ _Q T i � Toð Þ ð7Þ

where _Gi ¼ l _ei and _Go ¼ l _eo stand for the input and the output en-
transy flow rates.

The thermal resistance is commonly defined as the ratio of the
temperature difference to the heat flux. This definition will induce
some arbitrariness for multi-dimensional problems of heat con-
duction where a so-called equivalent mean temperature difference
must be defined, otherwise this definition is valid locally for a dif-
ferential point. However, the definition of the equivalent mean
temperature difference is not unique. Thus the value of the equiv-
alent thermal resistance may differ from different averaging meth-
od for the same problem. In order to avoid this drawback, the
equivalent thermal resistance for multi-dimensional problems
based on the entransy dissipation rate has been [17] defined as
follows:

Rcond ¼
_G/

_Q 2
ð8Þ

where _G/ ¼
R

V KðrTÞ2dV is the entransy dissipation rate over the
whole heat transfer area, and _Q is the total heat flow. On the con-
trary to the other methods of the definition, the definition of the
equivalent thermal resistance based on the entransy dissipation
rate has no arbitrariness because it is uniquely determined as long
as the temperature distribution is known.

For the one-dimensional, steady heat conduction without an
internal source, Eq. (8) reduces to the conventional expression of
the thermal resistance as follows:

Rcond ¼
_QDT
_Q 2
¼ DT

_Q
ð9Þ
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2.2. Convection irreversibility and resistance for tube flow heat
transfer

For heat convection in a circular tube with cold fluid at a con-
stant temperature (e.g., evaporation) as shown in Fig. 2a, the ther-
mal energy balance equation in terms of the fluid bulk temperature
gives:

� _mc
dTbðxÞ

dx
¼ _Q lðxÞ ð10Þ

where _m is the mass flow rate, _mc is the heat capacity rate, Tb is the
fluid bulk mean temperature. The LHS in Eq. (10) is the variation of
enthalpy flow rate per unit tube length, while the RHS, _Q lðxÞ, is the
local heat transfer rate per unit length between fluid and the wall.

Multiplying the both sides of Eq. (10) by TbðxÞ yields:

� _mcTbðxÞ
dTbðxÞ

dx
¼ TbðxÞ _Q lðxÞ ð11Þ

The LHS in Eq. (11) is the variation of the entransy flow rate per unit
tube length, and the right one is the local entransy leaving from the
fluid associated with heat transfer at Tb in the radial direction
shown in Fig. 2b.

By integrating Eq. (11) over the tube length gives:

_Gi � _Go ¼
1
2

_mcT2
bi �

1
2

_mcT2
bo ¼

Z l

0
TbðxÞ _Q lðxÞdx ð12aÞ

where _Gi; _Go are the entransy flow rates in and out from the tube.
It should be noted that all the heat transfer rate between fluid

and wall is leaving the wall at temperature Tw, thus the entransy
is transferred in two ways. One way is through the fluid flow, the
Fig. 2. Heat convection in a circular tube.
other through the wall. Since the entransy flow rate leaving from
the tube wall at Tw is

R l
0 Tw

_Q lðxÞdx (see Fig. 2b), we have the en-
transy balance equation for the whole tube:

_G/ ¼ _Gi � _Go �
Z l

0
Tw

_Q lðxÞdx ¼
Z l

0

_Q lðxÞ Tb � Twð Þdx ð12bÞ

where _G/ is the entransy dissipation rate over the whole tube flow.
Thus the equivalent thermal resistance and the temperature

difference of tube flow can be defined, respectively, as:

Rtube ¼
_G/

_Q 2
ð13Þ

and

DTM;tube ¼
_G/

_Q
¼ Rtube

_Q ð14Þ

where the heat flow rate _Q ¼
R l

0
_Q lðxÞdx ¼ _mcðTbi � TboÞ.

Substituting Eq. (12b) into Eq. (14) gives:

DTM;tube ¼
1
2

_mcT2
bi � 1

2
_mcT2

bo � _QTw

_mc Tbi � Tboð Þ ¼ Tbi þ Tbo

2
� Tw ¼ DTAM ð15Þ

Hence the true mean temperature difference for tube flows with
constant wall temperature is in fact the arithmetic mean tempera-
ture difference of fluid terminal temperatures. For the constant
wall temperature case studied, the convective heat transfer rate
is _Q ¼ UADTLM [20] and 1=UA is regarded as the convection thermal
resistance, we have the relation between the tube flow thermal
resistance and the convection thermal resistance:

Rtube ¼
DTM; tube

_Q
¼ 1

UA
DTAM

DTLM
¼ Rconv �

DTAM

DTLM
ð16Þ

It can be found that the tube flow thermal resistance is always
larger than the convection resistance because the arithmetic mean
temperature difference between the fluid and the wall is always
larger than that of the logarithmic mean.

Like the heat exchanger effectiveness, we can define the tube
flow heat transfer effectiveness as:

Ptube ¼
actual heat transfer

maximum possible heat transfer
¼ Tbi � Tbo

Tbi � Tw
ð17Þ

Substituting DTLM in Eq. (16) by _Q=UA ¼ DTLM and
_Q ¼ _mcðTbi � TboÞ leads to the relation between the effectiveness
and the resistance:

Rtube ¼
1

UA
DTAM

DTLM
¼ 1

UA
UA

_mc Tbi � Tboð Þ
Tbi þ Tbo

2
� Tw

� �

¼ 1
_mc Tbi � Tboð Þ Tbi � Tw �

1
2

Tbi � Tboð Þ
� �

¼ 1
_mc

1
Ptube

� 1
2

� �
ð18Þ

and

R�tube ¼ Rtube _mc ¼ 1
Ptube

� 1
2

ð19aÞ

By introducing fluid heat capacity rate C ¼ _mc, then we have:

R�tube ¼ RtubeC ¼ 1
Ptube

� 1
2

ð19bÞ

or

Ptube ¼
2

2R�tube þ 1
ð20Þ

where R�tube is the dimensionless thermal resistance for the tube
flow heat transfer. It can be obviously seen that the smaller the
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thermal resistance and hence smaller the consequent irreversibility
is, the higher is the effectiveness of the tube flow heat transfer.

2.3. Heat exchanger irreversibility and resistance

Consider a heat exchanger with arbitrary flow arrangement, as
shown in Fig. 3. The one-dimensional thermal energy conservation
equations for hot and cold fluid in each passage are:

�Ch
dThðxÞ

dx
¼ _Q lðxÞ ð21Þ

and

Cc
dTcðxÞ

dx
¼ _Q lðxÞ ð22Þ

where Ch; Cc are heat capacity rates of hot and cold fluid, _Q lðxÞ is the
local heat transfer between two fluids per unit tube length.

Multiplying the both sides of Eqs. (21) and (22) by Th and Tc,
respectively, gives:

� ChTh xhð Þ
dThðxhÞ

dxh
¼ _Q lðxhÞTh xhð Þ ð23Þ

CcTc xcð Þ
dTcðxcÞ

dxc
¼ _Q lðxcÞTc xcð Þ ð24Þ

The LHS in Eqs. (23) and (24) are the variation of entransy flow
rate of hot and cold fluid, respectively. The RHS in Eq. (23) is the
entransy output from the hot fluid and the RHS in Eq. (24) is the
entransy input to the cold fluid.

Integrating Eqs. (23) and (24) over the tube length, we have:

_Ghi � _Gho ¼
1
2

ChT2
hi �

1
2

ChT2
ho ð25Þ

and

_Gco � _Gci ¼
1
2

CcT2
co �

1
2

CcT2
ci ð26Þ

where _Ghi; _Gci are the entransy flow rates of hot and cold fluid at in-
let, and _Gho; _Gco are the entransy flow rate of hot and cold fluid at
outlet, respectively.

Thus, the entransy dissipation rate in the heat exchanger is:

_G/ ¼ _Ghi þ _Gci

� �
� _Gho þ _Gco

� �

¼ 1
2

ChT2
hi þ

1
2

CcT2
ci

� �
� 1

2
ChT2

ho þ
1
2

CcT2
co

� �
ð27Þ

We can then define the equivalent thermal resistance of heat ex-
changer as:

Rex ¼
_G/

_Q 2
ð28Þ
Fig. 3. Two fluids heat exchanger with arbitrary flow arrangement.
and the equivalent temperature difference of heat exchanger as:

DTex ¼
_G/

_Q
¼ Rex

_Q ð29Þ
3. Effectiveness–thermal resistance method

The reciprocal of UA, which is usually referred to as the thermal
resistance of a heat exchanger, can be regarded as the thermal resis-
tance of convective heat transfer since the tube wall thermal resis-
tance is usually negligible or at least comparatively small:

Rconv ¼
1

UA
¼ DTM

_Q
ð30Þ

Substituting Eq. (27) to Eq. (29), we have the equivalent tem-
perature difference for the heat exchanger with any flow
arrangement:

DTex ¼
1
2 Ch T2

hi � T2
ho

� �
� Cc T2

co � T2
ci

� �h i
Ch Thi � Thoð Þ

¼ Thi þ Tho

2
� Tco þ Tci

2
¼ DTAM ð31Þ

where DTAM is the arithmetic mean temperature difference. In the
derivation of Eq. (31), the energy balance condition for a heat ex-
changer, ChðThi � ThoÞ ¼ CcðTco � TciÞ, has been used.

Combining Eqs. (29) and (30) yields:

Rex ¼ Rconv
DTAM

DTM
¼ Rconv

DTLM

DTM

DTAM

DTLM
¼ RconvG1G2 ð32Þ

where G1 ¼ DTLM=DTM ¼ 1=F is the resistance factor of non-coun-
terflow arrangement and G2 ¼ DTAM=DTLM is the resistance factor
of unbalanced flow (i.e., Ch – Cc). F is the correction factor.

Substituting DTAM;DTM into Eq. (32):

Rex ¼
1

UA

� �
DTAM

DTM

¼ 1
UA

UA
Cmin Tco � Tcið Þ

Thi þ Tho

2
� Tci þ Tco

2

� �

¼
Thi � Tcið Þ � Thi�Tho

2 þ Tco�Tci
2

� �
Cmin Tco � Tcið Þ

¼ 1
Cmin

1
P
� 1

2
Cmin

Cmax
þ 1

� �� �
ð33Þ

Then, the dimensionless thermal resistance and conductance of
a heat exchanger are, respectively, as follows:

R� ¼ Rex

Cminð Þ�1 ¼
1
P
� 1

2
Cmin

Cmax
þ 1

� �
ð34Þ

N� ¼ 1
P
� 1

2
Cmin

Cmax
þ 1

� �� ��1

ð35aÞ

The dimensionless thermal conductance can be further ex-
pressed as:

N� ¼ 1
R�
¼ UA

Cmin

DTM

DTAM
¼ NTU

DTM

DTAM
¼ NTU

F
G2

ð35bÞ

The relationship between the effectiveness and dimensionless
thermal resistance or conductance can be rewritten as:

P ¼ 2
2R� þ 1þ C�ð Þ ð36Þ

P ¼ 2N�

2þ N� 1þ C�ð Þ ð37Þ

where C� ¼ Cmin=Cmax is the heat capacity ratio.
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Unlike the relation between the effectiveness and the number
of heat transfer unit, which differs for different flow arrangements,
Eqs. (36) and (37) hold for any heat exchanger geometries although
N� is dependent on the flow arrangement. Hence, this effective-
ness–thermal resistance method can be regarded as a mixed meth-
od of log-mean temperature difference and P—NTU.

In the following some typical cases will be discussed.

(a) For the balanced counterflow heat exchanger, C� ¼ 1;N� ¼
NTU (Eq. (35b)), Eq. (37) reduces to the expression related
to the effectiveness and the number heat transfer unit:
P

Fig. 4.
capacit
P ¼ 2N�

2þ 2N�
¼ NTU

1þ NTU
ð38Þ
(b) For the balanced parallel flow heat exchanger with infinite
number of heat transfer units, C� ¼ 1;NTU!1.
N� ¼ NTU
DTM

DTAM
¼ 1 ð39Þ

P ¼ N�

1þ N�
¼ 0:5 ð40Þ

This result agrees with that from P—NTU method.

(c) For the counterflow and parallel flow heat exchanger with

C� ! 0;NTU!1;DTM ! 0.
 0.3

NTU
0.25 0.67 1.5 4.00 ∞
N� ¼ NTU
DTM

DTAM
¼ 2 ð41Þ

P ¼ 2N�

2þ N�
¼ 1 ð42Þ
 0.1

 0.2

N
S

Thi/Tci=0.4

Eq. (37) is illustrated in Fig. 4, where point a on the curve for C� ¼ 1
represents the maximum effectiveness Pmax ¼ 0:5 for the parallel
flow, because its N� cannot be greater that unity. Point b on the
curve for C� ¼ 0:5 corresponds to the maximum effectiveness
Pmax ¼ 0:667 for the parallel flow. Point c on the curve for C� ¼ 0
holds for the balanced counterflow only, because for other flow
arrangements, N� < 2 and hence Pmax < 1.
 0
 0  0.2  0.4  0.6  0.8  1

P

Thi/Tci=0.6

Thi/Tci=0.8

Fig. 5. Entropy generation rate in a balanced counterflow heat exchanger with zero
pressure drop irreversibility [10].
4. About the entropy generation paradox

Based on the second law of thermodynamics, Bejan [10,11] ob-
tained the relation between the heat transfer induced entropy gen-
eration number for the balanced counterflow heat exchanger:

NS ¼
_S

Cmin
¼ ln 1� P 1� Thi

Tci

� �� �
1þ P

Tci

Thi
� 1

� �� �� 	
ð43Þ
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

N*

C*=1
C*=0.5

C*=0

a

b

c

Dimensionless thermal conductance versus the effectiveness with the heat
y ratio as a parameter.
where _S is entropy generation rate, and Thi=Tci is the ratio of inlet
temperatures.

The behavior of NS at constant Thi=Tci is illustrated in Fig. 5.
Bejan [11] expected any heat transfer irreversibility to increase

monotonically as the heat exchanger area (or NTU) decreases. The
behavior in the range P 2 ½0;0:5�, which does not agree with the
expectation (Fig. 5), is then called the entropy generation paradox
[11]. Shah [16] indicated, however, that this so-called paradox for
the standalone heat exchanger is an intrinsic behavior of the tem-
perature difference irreversibility function and it can never be re-
moved without violating the second law. He calculated the
variation of dimensionless entropy generation number _S= _Smax and
temperature effectiveness P with respect to NTU of a 2 pass-2 pass
plate heat exchanger with overall parallelflow and individual
passes in counterflow (Fig. 6), a 1-2 TEMA G exchanger with overall
counterflow (Fig. 7) and a 1-2 TEMA J exchanger (Fig. 8). He [16]
showed that the dimensionless entropy generation can be maxi-
mum (Fig. 6), having an intermediate value (Fig. 7) or local mini-
mum (Fig. 8) at the maximum temperature effectiveness point
Pmax.

According to the forgoing analysis, the heat exchanger irrevers-
ibility should be measured by the entransy dissipation based
dimensionless thermal resistance, rather than the entropy genera-
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Fig. 6. _S= _Smax;Rex=Rex;max and P as a function of NTU for a 2 pass-2 pass plate heat
exchanger with overall parallelflow and individual passes in counterflow for
Thi=Tci ¼ 2:0.
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tion number. Fig. 9 gives the relation between the dimensionless
thermal resistance and the effectiveness with heat capacity ratio
as a parameter. It can be seen in Fig. 9 that the effectiveness de-
creases monotonically with increasing the dimensionless thermal
resistance. Furthermore, Figs. 6–8 show that the dimensionless
equivalent thermal resistance is always the minimum at the max-
imum temperature effectiveness point, that is, no paradox occurs.

5. Concluding remarks

1. The equivalent thermal resistance of heat exchanger is defined
based on the concept of entransy dissipation rate, which equals
to the thermal resistance of convective heat transfer multiplied
by the ratio of the arithmetic temperature difference to the
mean temperature difference. This temperature difference ratio
reflects the thermal resistance increase due to the deviation of
the heat exchanger geometry from the balanced counterflow.

2. The relationship between the effectiveness and the thermal
resistance (or thermal conductance) is derived, which, unlike
the relationship between the effectiveness and the number of
heat transfer unit, holds for heat exchangers with any flow
arrangement, and is useful for the performance comparison
among heat exchangers with different flow arrangement.
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Fig. 7. _S= _Smax;Rex=Rex;max and P as a function of NTU for a 1-2 TEMA G exchanger
with overall counterflow for Thi=Tci ¼ 2:0.
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Fig. 8. _S= _Smax;Rex=Rex;max and P as a function of NTU for a 1-2 TEMA J exchanger for
Thi=Tci ¼ 2:0.
3. The irreversibility of heat transfer for the purpose of heat-work
conversion is well known measured by the entropy generation
rate, while the irreversibility of heat transfer for the purpose of
object heating or cooling should be measured by the entransy
dissipation rate. Hence, the thermal resistance based on the
entransy dissipation represents the heat exchanger irreversibil-
ity and the effectiveness decreases monotonically with increas-
ing the thermal resistance of a heat exchanger. The so-called
entropy generation paradox, i.e., the non-monotonic variation
of the effectiveness with the entropy generation number – is
due to the fact that the entropy generation number does not
reflect the heat exchanger irreversibility evaluated from trans-
port process rather than from heat-energy conversion.
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