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SUMMARY

Recently, an efficient segregated algorithm for incompressible fluid flow and heat transfer problems, called
inner doubly iterative efficient algorithm for linked equations (IDEAL), has been proposed by the present
authors. In the algorithm there exist inner doubly iterative processes for pressure equation at each iteration
level, which almost completely overcome two approximations in SIMPLE algorithm. Thus, the coupling
between velocity and pressure is fully guaranteed, greatly enhancing the convergence rate and stability
of solution process. However, validations have only been conducted for two-dimensional cases. In the
present paper the performance of the IDEAL algorithm for three-dimensional incompressible fluid flow
and heat transfer problems is analyzed and a systemic comparison is made between the algorithm and
three other most widely used algorithms (SIMPLER, SIMPLEC and PISO). By the comparison of five
application examples, it is found that the IDEAL algorithm is the most robust and the most efficient one
among the four algorithms compared. For the five three-dimensional cases studied, when each algorithm
works at its own optimal under-relaxation factor, the IDEAL algorithm can reduce the computation time
by 12.9–52.7% over SIMPLER algorithm, by 45.3–73.4% over SIMPLEC algorithm and by 10.7–53.1%
over PISO algorithm. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical approaches for solving the Navier–Stokes equations may be broadly divided into
two categories [1, 2]: density based and pressure based. The density-based approach works well
for cases of high Mach number, but for low Mach number flow and heat transfer problems, it
becomes unstable and its convergence rate is greatly deteriorated. The pressure-based approach or
the primitive-variable approach, though originally was developed for solving incompressible fluid
flows, has been successfully extended to compressible flows and widely adopted in computational
fluid dynamics and numerical heat transfer. Among the pressure-based approaches, the pressure-
correction method is the most widely used one because of its simplicity and straightforward in
physical concept.

The first pressure-correction method is the SIMPLE algorithm, proposed by Patankar and
Spalding in 1972 [3]. The major approximations made in the SIMPLE algorithm are: (1) the
initial pressure field and the initial velocity field are assumed independently; hence, the intercon-
nection between pressure and velocity is neglected, leading to some inconsistency between them
and (2) the effects of the velocity corrections of the neighboring grids are arbitrarily dropped
in order to simplify the solution procedure, thus making the algorithm semi-implicit. These two
approximations will not affect the final solutions if the solution process converges [4]. However,
they do affect the convergence rate and stability. Therefore, since the proposal of the SIMPLE
algorithm, a number of variants have been proposed in order to overcome one or both of the
approximations. In 1981, Patankar proposed the SIMPLER algorithm [5], which is the method
for overcoming the first approximation in the SIMPLE algorithm. In the SIMPLER algorithm for
overcoming the inconsistency between the initial pressure field and the initial velocity field, the
initial pressure is determined by a pressure equation. In the CSIMPLER [6] and CLEAR [7, 8]
algorithms, the same method is adopted to overcome the first approximation in the SIMPLE. In
1984, Van Doormaal and Raithby proposed the SIMPLEC algorithm [9], in which by changing
the definition of the coefficients of the pressure-correction equation, the effects of dropping the
neighboring grid velocity corrections (the second approximation in the SIMPLE algorithm) are
partially compensated. Van Doormaal and Raithby also proposed the SIMPLEX algorithm [10, 11]
in 1985. In the SIMPLEX algorithm, by solving a set of algebraic equations for the coefficient d
in the velocity-correction equation, the effects of dropping the velocity corrections of the neigh-
boring grids are also taken into account to some degree. However, an additional assumption is
introduced: the corrections of pressure difference across every interface of the main control volume
are the same. PISO algorithm [12] was proposed by Issa in 1985, which implements two correction
steps of pressure correction. This makes some improvement in the completeness of pressure-
correction equation of the current iteration level than that obtained by the single correction step.
In the FIMOSE algorithm proposed by Latimer and Pollard [13] at one iteration level, the
momentum and pressure equations are iteratively solved to reduce the effects of the second
approximation in the SIMPLE algorithm. Yen and Liu [14] proposed the explicit correction step
method to accelerate the convergence by making the velocity explicitly satisfy the momentum
equation. In summary, more than ten variants of SIMPLE algorithm are available in the literature,
but no one has completely overcome the two assumptions in the SIMPLE algorithm except the
CLEAR algorithm. In the CLEAR algorithm, the update of pressure and velocity is not conducted
by adding a small value of correction, rather the pressure field is re-solved based on the intermediate
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velocity, thus the effects of the neighboring grid points can be taken into account, making the algo-
rithm fully implicit. However, the robustness of the CLEAR algorithm is somewhat deteriorated
as indicated in [15] where a modified algorithm, named by CLEARER was proposed. However,
by re-introduction of the correction terms into the algorithm, the fully implicit character has been
destroyed in the CLEARER algorithm. In order to retain the fully implicit feature, while further
enhance the robustness and convergence characteristics, on the basis of the CLEAR algorithm [7, 8],
the inner doubly iterative efficient algorithm for linked equations (IDEAL) [16, 17] was proposed
by the present authors. In the algorithm there exist inner doubly iterative processes for pressure
equation at each iteration level, which almost completely overcome the two approximations in the
SIMPLE algorithm. Thus, the coupling between velocity and pressure is fully guaranteed, greatly
enhancing the convergence rate and stability of solution process.

With the development of different coupling algorithms between pressure and velocity, the
comparisons between different algorithms have also been extensively conducted. These include: the
comparison between the FIMOSE, SIMPLER and SIMPLEC algorithms by Latimer and Pollard
[13]; the comparison of the PISO, SIMPLER and SIMPLEC algorithms by Jang et al. [18]; the
comparison of the PISO and SIMPLE algorithms for steady turbulent flow problems by Wanik
and Schnell [19]; the comparison of the SMAC, PISO and ITA schemes for unsteady flows by
Kim and Benson [20]; the comparison of the SIMPLE with PISO for transient flows by Barton
[21]; the comparison study of the convergence characteristics and robustness for the SIMPLE,
SIMPLER, SIMPLEC and SIMPLEX algorithms at fine grids by Zeng and Tao [22], etc. From
the above comparisons, it can be concluded that, globally speaking, the SIMPLER, SIMPLEC
and PISO algorithms are relatively better. In [8, 17] comparisons were also conducted between
the SIMPLER, CLEAR and IDEAL algorithms for incompressible fluid flow and heat transfer
problems.

Numerical simulation of complex fluid flow and heat transfer problems has become an effective
tool in scientific research and engineering design and its application range has been widely extended
in recent years. One important extension is from two-dimensional flow to three-dimensional case.
All of the algorithm comparisons mentioned above are conducted only for two-dimensional fluid
flow and heat transfer problems. There is very little information concerning the performance
comparisons of different algorithms for three-dimensional fluid flow and heat transfer problems
in the literature. The extension of the dimensionality in the simulation of fluid flow problems
not only cause to a significant increase in computational effort, but also may drastically change
the numerical characteristics of algorithms. It is the authors’ experience that almost all of the
above-mentioned algorithms make no appreciable difference when three-dimensional problems are
solved. Thus, it is a very challenging task and an urgent need to develop an efficient and robust
algorithm for solving three-dimensional fluid flow and heat transfer problems. The major purpose
of the present paper is to adopt the IDEAL algorithm for three-dimensional incompressible fluid
flow and heat transfer problems and make a systemic comparison between the IDEAL and the
algorithms of SIMPLER, SIMPLEC and PISO, which are probably the three most widely used
algorithms in the literature.

In the following, the major solution procedure of the IDEAL algorithm is first briefly reviewed.
Then the comparison conditions and the convergence criterion are described, followed by a systemic
comparison of the robustness and convergence rate among the four algorithms for five three-
dimensional application examples. Finally, some conclusions are drawn.
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2. BRIEF REVIEW OF THE IDEAL ALGORITHM

First, the formulation of the governing equations and a brief description of the discretized results
will be presented. For simplicity of presentation, we take incompressible laminar steady flow in
Cartesian coordinates as an example. The governing equations are as follows:

Continuity equation:
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In this paper, the finite volume method is applied to discretize the continuity and momentum
equations on a staggered grid system.

Discretized continuity equation:

(�u)e Ae−(�u)wAw +(�v)n An−(�v)s As+(�w)t At −(�w)b Ab=0 (5)

Discretized momentum equation:

ae
�u

ue=∑anbunb+be+de(pP − pE ) (6)

an
�v

vn =∑anbvnb+bn+dn(pP − pN ) (7)

at
�w

wt =∑anbwnb+bt +dt (pP − pT ) (8)

where under relaxation is incorporated into the solution process of the algebraic equations and the
terms (1−�u)aeu0e/�u , (1−�v)anv0n/�v and (1−�w)atw0

t /�w have been, respectively, incorporated
into the source terms be, bn and bt . The expressions of the coefficients a and source terms b
depend on the discretized schemes, and have been well documented in the literatures [4, 23, 24].
For the simplicity of presentation, they are not shown here.

In the following, the IDEAL algorithm will be presented. In [16] the IDEAL algorithm has
been proposed for incompressible fluid flow and heat transfer problems, and in [17] comparisons
have been made for two-dimensional cases. In the present paper the algorithm is conducted on
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The solution process of the IDEAL algorithm

Solving the  
momentum equations 

The first inner iteration process  
for pressure equation 

The second inner iteration process 
for pressure equation 

The first inner iteration step 

The second inner iteration step 

Repeat the iteration until the iteration 
times are equal to N1 

Previous iteration level Current iteration level Next iteration level …… …… 

Repeat the iteration until the iteration 
times are equal to N2 

The first inner iteration step 

The second inner iteration step 

Figure 1. The framework of the solution process of the IDEAL algorithm.

a staggered system in three-dimensional Cartesian coordinates. For the convenience of further
presentation, the major points of the IDEAL algorithm are reviewed here.

Figure 1 shows the framework of the solution process of the IDEAL algorithm in detail. The
pressure-based solution method is iterative in nature. In the following we will often use the term
‘iteration level’. By one iteration level we mean that all the computations are completed at the
same values of the coefficients of the discretized momentum equations. In the IDEAL algorithm at
each iteration level there exist two inner iteration processes, or inner doubly iterative processes for
pressure field solution. The first inner iteration process for pressure equation almost completely
overcomes the first approximation in the SIMPLE algorithm. The second inner iteration process
almost completely overcomes the second approximation in the SIMPLE algorithm. The solution
procedure of the IDEAL algorithm is presented as follows:

Step 1: Assume an initial velocity field u0, v0 and w0.
Step 2: Calculate the coefficients a and source terms b of the discretized momentum equations

(6), (7) and (8) by the initial velocity field.
The first inner iteration process for pressure equation:
Step 3: Calculate the pseudo-velocities ũ0, ṽ0 and w̃0 defined in the following equations:
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Step 4: Solve the pressure equation (12) and obtain the temporary pressure pTemp

aP
�p

pTemp
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nb +b

aP = aE +aW +aN +aS+aT +aB
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aS = (�Ad)s, aT =(�Ad)t , aB =(�Ad)b

b = (�ũ0A)w −(�ũ0A)e+(�ṽ0A)s−(�ṽ0A)n+(�w̃0A)b

−(�w̃0A)t +(1−�p)
aP
�p

pPTemp
P

(12)

Equation (12) is obtained by substituting Equations (9), (10) and (11) into the discretized
continuity equation (5). In the first inner iteration process for pressure equation, the pressure
under-relaxation factor �p is incorporated into the pressure equation (12). The under-relaxation
factor is used to make the solution process more stable for some very complicated cases. Generally
speaking, the solution process of the IDEAL algorithm is stable enough, hence for most cases the
pressure in Equation (12) need not be under relaxed and the pressure under-relaxation factor �p
is set as 1.

Step 5: Calculate the temporary velocities uTemp, vTemp and wTemp from Equations (9), (10) and
(11) by the temporary pressure pTemp. Then one inner iteration step is finished and the next inner
iteration step will be started.

Step 6: Regard uTemp, vTemp, wTemp and pTemp calculated in Steps 4 and 5 as the temporary
velocity and pressure of the previous inner iteration step, denoted by uPTemp, vPTemp, wPTemp and
pPTemp. Return to Step 3, and then all the superscripts 0 in Steps 3 and 4 are replaced by PTemp,
and the values of ũ0, ṽ0 and w̃0 are updated. Then pressure equation (12) is re-solved. Repeat
such iteration process composed of Steps 3, 4 and 5 until the iteration times are equal to the
pre-specified times N1.

After the first inner iteration process for pressure equation is finished, the final temporary
pressure pTemp is regarded as the initial pressure p∗.

Step 7: Solve the discretized momentum equations (6), (7) and (8), by the initial velocity and
pressure p∗, and obtain the intermediate velocities u∗, v∗ and w∗.

The second inner iteration process for pressure equation:
Step 8: Calculate the pseudo-velocities ũ∗, ṽ∗ and w̃∗ defined in the following equations:
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Step 9: Solve the pressure equation (16) and obtain the temporary pressure pTemp

aP p
Temp
P =∑

anb p
Temp
nb +b

aP = aE +aW +aN +aS+aT +aB

aE = (�Ad)e, aW =(�Ad)w, aN =(�Ad)n

aS = (�Ad)s, aT =(�Ad)t , aB =(�Ad)b

b = (�ũ∗A)w −(�ũ∗A)e+(�ṽ∗A)s−(�ṽ∗A)n+(�w̃∗A)b−(�w̃∗A)t

(16)

It should be noted that in the second inner iteration process for pressure equation, the pressure
need not be under relaxed.

Step 10: Calculate the temporary velocities uTemp, vTemp and wTemp from Equations (13), (14)
and (15) by the temporary pressure pTemp. Then one inner iteration step is finished and the next
inner iteration step will be started.

Step 11: Regard uTemp, vTemp, wTemp and pTemp calculated in Steps 9 and 10 as the temporary
velocity and pressure of the previous inner iteration step, denoted by uPTemp, vPTemp, wPTemp and
pPTemp. Return to Step 8, and then all the superscripts ∗ in Steps 8 and 9 are replaced by PTemp,
and the values of ũ∗, ṽ∗ and w̃∗are updated. Then pressure equation (16) is re-solved. Repeat the
iteration composed of Steps 8, 9 and 10 until the iteration times are equal to the pre-specified
times N2.

After the second inner iteration process for pressure equation is finished, the final temporary
velocities uTemp, vTemp and wTemp are regarded as the final velocities u, v and w of the current
iteration level.

Step 12: Solve the discretization equations of the other scalar variables if necessary.
Step 13: Regard the final velocities u, v and w as the initial velocities u0, v0 and w0 of the next

iteration level, then return to Step 2 of the next iteration level. Repeat such iterative procedure
until convergence is reached.

It is interesting to note that in the IDEAL algorithm, as in the algorithm of SIMPLER and
CLEAR, the pressure field used to solve the momentum equations, i.e. p∗, is solved by the pressure
equation. Since the algebraic equation is solved iteratively, an initial pressure field is required, and
the goodness of this initial field has a profound effect on the solution convergence. The numerical
practice provided in [6] revealed this important effect. Our numerical practices show that if the
pressure results of the first inner iteration are taken as the initial field for the next level solution,
the total solution procedure can be somewhat enhanced.

In the IDEAL algorithm the first inner iteration times N1 and the second inner iteration times
N2 (hereafter N1 and N2) can be adjusted. N1 and N2 should be increased with the increase
of the velocity under-relaxation factor. At a larger velocity under-relaxation factor the solution
process may become very unstable; therefore, the inner iteration times need to be increased to
ensure the convergence of solution process and to enhance the robustness.

3. COMPARISON CONDITIONS AND CONVERGENCE CRITERION

For making meaningful comparisons of the four algorithms, numerical comparison conditions and
convergence criterion should be specified. In our study the comparison conditions and convergence
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criterion include:
(1)Hardware and codes: All the calculations in this paper are performed on the computer of CPU

2.01GHz and RAM 2.0GB along with FORTRAN 77 compiler. For the justness of comparison,
the codes of SIMPLER, SIMPLEC, PISO and IDEAL algorithms are compiled under the same
program structure. In order to reduce the truncated errors, double precision digital is adopted to
implement computation in our codes.

(2) Discretization scheme: In order to guarantee the stability and accuracy of the numerical
solution, the SGSD scheme [25] is adopted, which is at least of second-order accuracy and
absolutely stable. For stability of the solution process, the deferred-correction method is adopted,
which was proposed in [26] and latter enhanced in [27].

(3) Solution method of the algebraic equations: The algebraic equations are solved by the
alternative direction implicit method.

(4) Under-relaxation factor: In the SIMPLER and IDEAL algorithms, the pressure under-
relaxation factor is set as 1.0. In the SIMPLEC and PISO algorithms the pressure need not be
under relaxed at all [9, 12]. For the four algorithms, the same value is adopted for the velocity and
temperature under-relaxation factors. For the convenience of presentation, the time step multiple E
is used in the following presentation, which relates to the under-relaxation factor � by the following
equation [9]:

E= �

1−�
(0<�<1) (17)

Some correspondence between � and E is presented in Table I. It can be seen that with the
time step multiple, we have a much wider range to show the performance of the algorithm in the
high-value region of the under-relaxation factor.

(5) Grid system: For each problem the same uniform grid system is used for execution of the
four algorithms. The details of each grid system will be presented individually.

(6) Convergence criterion: The adopted convergence criterion requires that both the relative
maximum mass and the relative maximum u, v, w-component momentum residuals are less than
some pre-specified small values.

The relative maximum mass residual is expressed as

RsMass= MAX[|(�u∗A)w −(�u∗A)e+(�v∗A)s−(�v∗A)n+(�w∗A)b−(�w∗A)t |]
qm

(18)

where u∗, v∗ and w∗ are the intermediate velocities of each iteration level and qm is the reference
mass flow rate. For the open system, we take the inlet mass flow rate as the reference mass flow
rate. For the closed system, we make a numerical integration for the mass flow rate along any
section in the field to obtain the reference mass flow rate [23].

Table I. Some correspondence between � and E .

� 0.1 0.5 0.9 0.95 0.96 0.97 0.98 0.99 1
E 0.111 1 9 19 24 32.3 49 99 Infinite
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The relative maximum u, v, w-component momentum residuals are expressed as

RsUMom= MAX{|aeu0e−[∑nb anbu
0
nb+b+Ae(pP − pE )]|}

�u2m
(19)

RsVMom= MAX{|anv0n−[∑nb anbv
0
nb+b+An(pP − pN )]|}

�u2m
(20)
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Figure 2. Flow configuration of lid-driven cavity flow in a cubic cavity.
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RsWMom= MAX{|atw0
t −[∑nb anbw

0
nb+b+At (pP − pT )]|}

�u2m
(21)

where u0, v0 and w0 are the initial velocities of each iteration level and �u2m is the reference
momentum. For the open system, we take the inlet momentum as the reference one. For the closed
system, we make a numerical integration for the momentum along any section in the field to obtain
the reference momentum [23].

(7) Double precision computations: Even though our preliminary study in the single precision
has also obtained quantitatively the same results, in order to reduce the possible effects of the
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Figure 4. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for: (a) Re=100 and (b) Re=300 with grid number=32×32×32 of problem 1.
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algorithms for: (a) Re=100 and (b) Re=500 with grid number=52×52×52 of problem 1.

truncation error and the numerical noise, the double precision is adopted in the comparison
computation.

4. NUMERICAL COMPARISONS

In the following comprehensive comparisons are made among the SIMPLER, SIMPLEC, PISO
and IDEAL algorithms for five three-dimensional problems of fluid flow and heat transfer,
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Figure 6. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for: (a) Re=100 and (b) Re=1000 with grid number=82×82×82 of problem 1.

which are:

(1) lid-driven cavity flow in a cubic cavity (problem 1);
(2) lid-driven cavity flow in a cubic cavity with complicated structure (problem 2);
(3) laminar fluid flow over a backward-facing step (problem 3);
(4) laminar fluid flow through a duct with complicated structure (problem 4);
(5) natural convection in a cubic cavity (problem 5).

Problems 1–4 are fluid flow problems. Among these four problems, problems 1 and 2
belong to closed system, problems 3 and 4 belong to open system. Problem 5 is a velocity–
temperature coupling heat transfer problem. All of the five problems are based on the following
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Table II. Reduced ratio of computation time of IDEAL algorithm over SIMPLER, SIMPLEC and PISO
algorithms at their own optimal time step multiples in problem 1.

Grid number

32×32×32 52×52×52 82×82×82

Re 100 300 100 500 100 1000
Computation time of IDEAL (s) 9.3 9.3 84.0 76.7 704.5 695.8
Reducing ratio over SIMPLER (%) 33.1 30.1 33.5 35.3 40.3 45.9
Reducing ratio over SIMPLEC (%) 54.0 46.9 50.0 45.3 51.4 56.9
Reducing ratio over PISO (%) 32.1 27.3 33.8 33.2 38.8 43.0

H/ 3

H/ 10 H/ 2

H/ 2

H/ 4

H

u lid

z

x

y

Figure 7. Flow configuration of lid-driven cavity flow in a cubic cavity with complicated structure.

assumptions: laminar, incompressible, steady state and constant fluid property. For the fifth
problem, the Boussinesq assumption was adopted [28].
4.1. Fluid flow problems

4.1.1. Problems of closed system. Problem 1: Lid-driven cavity flow in a cubic cavity. Lid-driven
cavity flow in a cubic cavity has served in CFD/NHT as a benchmark problem for testing numerical
procedures for three-dimensional fluid flows [29–31]. The flow configuration is shown in Figure 2.
Calculations are conducted for Re=100–1000 with grid numbers=32×32×32–82×82×82, and
the allowed residuals RsMass,RsUMom,RsVMom and RsWMom should be all less than 10−8. The
Reynolds number is defined by

Re= ulidH

�
(22)

In Figure 3 the velocity profiles along the central lines on the plane z=0.5H are presented. As
shown in this figure, the results calculated by the IDEAL algorithm are in excellent agreement
with those reported by Tang et al. [28]. This comparison gives some support to the reliability of
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Figure 8. Comparison of velocity profiles u along the central axes y on plane z=0.5H for Re=500.

the proposed three-dimensional IDEAL algorithm and the developed code. From the following
comparisons with other well-documented algorithms (SIMPLER, SIMPLEC and PISO) further
strong support to the present algorithm and code will be provided.

Figures 4, 5 and 6 show the computation time and robustness of the IDEAL, SIMPLER,
SIMPLEC and PISO algorithms for different grid numbers and different Reynolds numbers of
problem 1. The inner iteration times N1 and N2 in the IDEAL algorithm are displayed at the top
of these figures. For example 1 & 1 and 1 & 2 at the top of Figure 4(a) show that in the two ranges
of E the two inner iterative times are 1 and 1 and 1 and 2, respectively. From the three figures,
following three features may be noted. First, N1 and N2 increase with the increase of time step
multiple, i.e. with the under-relaxation factor. Second, among the four algorithms compared, the
IDEAL algorithm is far more robust than SIMPLER, SIMPLEC and PISO algorithms, and it can
converge almost at any time step multiple for any case in problem 1. The SIMPLER and PISO
algorithms have the worst robustness and the SIMPLEC algorithm is something in between. Third,
for the consumed computation time the SIMPLEC algorithm needs the largest, and the SIMPLER
and PISO algorithms come next. The IDEAL algorithm needs the least.

Table II shows the reduced ratio of computation time of IDEAL algorithm over SIMPLER,
SIMPLEC and PISO algorithms at their own optimal time step multiples for different cases
of problem 1. Our computations were conducted in a personal computer with memory of 1G
and 2.01GHz frequencies. The CPU computational times of the IDEAL algorithm are listed for
different number of grids, while for other algorithms only the relative saving in CPU times. When
each method works at its own optimal time step multiple, the IDEAL algorithm can reduce the
computation time by 30.1–45.9% over the SIMPLER algorithm, by 45.3–56.9% over the SIMPLEC
algorithm and by 27.3–43.0% over the PISO algorithm for problem 1.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1132–1160
DOI: 10.1002/fld



1146 D.-L. SUN ET AL.

10010 2097

E

100

1000

300

80

(a)

(b)

T
im

e

IDEAL

SIMPLER

SIMPLEC

PISO

1&1 1&2 4&4

10010 208642

E

100

1000

200

500

2000

70

T
im

e

IDEAL

SIMPLER

SIMPLEC

PISO

1&1 1&2 4&4

40 60 80 200

30 50 200

Figure 9. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for: (a) Re=100 and (b) Re=500 with grid number=52×52×52 of problem 2.

Problem 2: Lid-driven cavity flow in a cubic cavity with complicated structure. Problem 1
belongs to the simple closed system. The IDEAL algorithm shows its significant advantages over
the SIMPLER, SIMPLEC and PISO algorithms for this simple closed system. In order to show the
better performance of the IDEAL algorithm superior to the other three algorithms for a complicated
closed system, problem 2 is especially designed. The flow configuration of problem 2 is shown
in Figure 7. Three blocks of baffle plates are inserted into the cubic cavity to make the flow
configuration more complicated. The domain extension method [23] is applied for this irregular
computation domain, i.e. the three blocks are supposed to be the fluids with very large viscosity
and computations are conducted for the entire cubic.
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Figure 10. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for: (a) Re=100 and (b) Re=800 with grid number=82×82×82 of problem 2.

Calculations are conducted for Re=100–800 and grid numbers=52×52×52–82×82×82.
The allowed residuals RsMass, RsUMom, RsVMom and RsWMom should be all less than 10−8. The
Reynolds number is defined by

Re= ulidH

�
(23)

In Figure 8 the velocity profiles u along the central line y on the plane z=0.5H from the four
algorithms are presented. The results calculated by the IDEAL algorithm are in excellent agreement
with those calculated by the other three algorithms. Figures 9 and 10 show the computation
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Table III. Reduced ratio of computation time of IDEAL algorithm over SIMPLER,
SIMPLEC and PISO algorithms at their own optimal time step multiples in problem 2.

Grid number

52×52×52 82×82×82

Re 100 500 100 800
Computation time of IDEAL (s) 68.3 75.2 537.0 706.3
Reducing ratio over SIMPLER (%) 31.1 34.4 36.5 42.8
Reducing ratio over SIMPLEC (%) 48.8 62.6 57.7 57.8
Reducing ratio over PISO (%) 26.5 29.5 34.9 28.9
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Figure 11. Flow configuration of laminar fluid flow over a backward-facing step.
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Figure 12. The predicted reattached lengths, LR , on plane z=4H obtained by
IDEAL algorithm and from Reference [33].

time and robustness of the IDEAL, SIMPLER, SIMPLEC and PISO algorithms for different grid
numbers and different Reynolds numbers of problem 2. From these two figures, we can find that
the relative performances of different algorithms in the complicated closed system are almost the
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Figure 13. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for: (a) Re=100 and (b) Re=300 with grid number=127×32×63 of problem 3.

same as those in the simple closed system. Thus, the IDEAL algorithm also shows its advantages
for complicated closed systems.

Table III shows the reduced ratio of computation time of the IDEAL algorithm over the
SIMPLER, SIMPLEC and PISO algorithms at their own optimal time step multiples for different
cases of problem 2. When each method works at its own optimal time step multiple, the IDEAL
algorithm can reduce the computation time by 31.1–42.8% over the SIMPLER algorithm, by 48.8–
62.6% over the SIMPLEC algorithm and by 26.5–34.9% over the PISO algorithm for problem 2.

4.1.2. Problems of open system. Problem 3: Laminar fluid flow over a backward-facing step.
Laminar fluid flow over a backward-facing step shown in Figure 11 belongs to simple open system.
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Figure 14. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for Re=100 with grid number=202×52×63 of problem 3.

Table IV. Reduced ratio of computation time of IDEAL algorithm over SIMPLER, SIMPLEC
and PISO algorithms at their own optimal time step multiples in problem 3.

Grid number

127×32×63 202×52×63

Re 100 300 100
Computation time of IDEAL (s) 271.8 266.3 1090.2
Reducing ratio over SIMPLER (%) 25.2 31.2 33.1
Reducing ratio over SIMPLEC (%) 66.5 73.4 54.4
Reducing ratio over PISO (%) 27.3 28.3 26.2
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Figure 15. Flow configuration of laminar fluid flow through a duct with complicated structure.

It is another typical configuration widely adopted in computational fluid dynamics study. Again
the domain extension method is used to deal with the solid step and solutions are performed for
the entire region with 2H×8H×25H .
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Table V. Predicted reattachment lengths on plane z=0.5H in problem 4.

Re IDEAL SIMPLER SIMPLEC PISO

100 0.9725 0.9728 0.9730 0.9725
300 2.1099 2.1095 2.1100 2.1095
500 3.2426 3.2495 3.2525 3.2423
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Figure 16. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for: (a) Re=100 and (b) Re=300 with grid number=150×20×20 of problem 4.
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Figure 17. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for: (a) Re=100 and (b) Re=500 with grid number=190×29×29 of problem 4.

Calculations are conducted for Re=100–300 and grid numbers=127×32×63–202×52×63.
The inflow velocity distribution is taken from Shah and London [32], and the fully developed
boundary condition is used at the outflow boundary. The residuals RsMass, RsUMom, RsVMom and
RsWMom are all set to be less than 10−7. The Reynolds number is defined by

Re= uinH

�
(24)

Figure 12 shows the predicted reattachment lengths, LR , on plane z=4H obtained, respectively,
by IDEAL algorithm and from Reference [33]. The results calculated by the IDEAL algorithm
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Table VI. Reduced ratio of computation time of IDEAL algorithm over SIMPLER, SIMPLEC
and PISO algorithms at their own optimal time step multiples in problem 4.

Grid number

150×20×20 190×29×29

Re 100 300 100 500
Computation time of IDEAL (s) 157.1 208.5 447.2 976.9
Reducing ratio over SIMPLER (%) 49.4 52.7 40.7 50.5
Reducing ratio over SIMPLEC (%) 49.7 58.6 67.0 58.9
Reducing ratio over PISO (%) 48.8 53.1 41.4 47.3

(T=T )

Cooled wall

Heated wall

Adiabatic walls

xo

z

H

y

g

C
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Adiabatic walls

Figure 18. Flow configuration of natural convection in a cubic cavity.

Table VII. Comparison of Num solutions with previous works for different Ra values of problem 5.

Ra 104 105 106

Fusegi et al. [34] 2.1000 4.3610 8.770
Wakashima and Saitoh [35] 2.0814 4.4309 8.8681
IDEAL 2.0842 4.4048 8.8005

agree very well with those from [33]. Figures 13 and 14 show the computation time and robustness
of the IDEAL, SIMPLER, SIMPLEC and PISO algorithms for different grid numbers and different
Reynolds numbers of problem 3. As shown in these two figures, the SIMPLER algorithm has the
worst robustness, and the robustness of the PISO and SIMPLEC algorithms is a bit better. The
IDEAL algorithm is the best. From Figures 13 and 14 we can find that the IDEAL algorithm can
converge almost at any time step multiple for any case of problem 3. As far as the consumed
computation time is concerned, the SIMPLEC algorithm needs the largest, and the SIMPLER and
PISO algorithms come next. The IDEAL algorithm needs the least.

Table IV shows the reduced ratio of computation time of IDEAL algorithm over the SIMPLER,
SIMPLEC and PISO algorithms at their own optimal time step multiples for different cases of
problem 3. When each method works at its own optimal time step multiple, the IDEAL algorithm
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Figure 19. Temperatures at the plane z=0.5H for Ra=106, obtained (a) from
Reference [35] and (b) by IDEAL algorithm.
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Figure 20. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for Ra=104 with grid number=30×30×30 of problem 5.

can reduce the computation time by 25.2–33.1% over the SIMPLER algorithm, by 54.4–73.4%
over the SIMPLEC algorithm and by 26.2–28.3% over the PISO algorithm for problem 3.

Problem 4: Laminar fluid flow through a duct with complicated structure. Laminar fluid flow
through a duct with complicated structure belongs to complicated open system. This problem is
adopted to examine whether the IDEAL algorithm is still superior to the SIMPLER, SIMPLEC
and PISO algorithms in a complicated open system. The flow configuration of problem 4 is shown
in Figure 15. Three blocks of baffle plates are inserted into the duct to make the flow configuration
more complicated. The three solid blocks are treated by the domain extension method.
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Calculations are conducted for Re=100–500, grid numbers=150×20×20–190×29×29. The
inflow velocity is uniform, and the fully developed boundary condition is used at the outflow. The
residuals RsMass, RsUMom, RsVMom and RsWMom are all set to be less than 10−7. The Reynolds
number is defined by

Re= uinH

�
(25)

Table V shows the predicted reattachment lengths, LR , on plane z=0.5H obtained by the four
different algorithms. The results computed by the IDEAL algorithm are almost the same as those
by the other three algorithms. Figures 16 and 17 show the computation time and robustness of
the IDEAL, SIMPLER, SIMPLEC and PISO algorithms for different grid numbers and different
Reynolds numbers of problem 4. From these two figures, we can find that the SIMPLEC algorithm
in the complicated open system becomes less robust and less effective than in the simple open
system, the performances of the SIMPLER, SIMPLEC are in the middle and the IDEAL algorithm
is the most robust and efficient.

Table VI shows the reduced ratio of computation time of the IDEAL algorithm over the
SIMPLER, SIMPLEC and PISO algorithms at their own optimal time step multiples for different
cases of problem 4. When each method uses its own optimal time step multiple, the IDEAL
algorithm can reduce the computation time by 40.7–52.7% over the SIMPLER algorithm, by 49.7–
67.0% over the SIMPLEC algorithm and by 41.4–53.1% over the PISO algorithm for problem
4.

4.2. Velocity–temperature coupling problems

Problem 5: Natural convection in a cubic cavity. Natural convection in a cubic cavity is a velocity–
temperature coupling problem, which is a classical fluid flow and heat transfer problem widely
adopted in computational heat transfer community [34, 35]. The flow configuration of problem 5
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Figure 21. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for Ra=105 with grid number=50×50×50 of problem 5.
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Figure 22. Comparison of computation time and robustness of IDEAL, SIMPLER, SIMPLEC and PISO
algorithms for Ra=106 with grid number=80×80×80 of problem 5.

Table VIII. Reduced ratio of computation time of IDEAL algorithm over SIMPLER, SIMPLEC
and PISO algorithms at their own optimal time step multiples in problem 5.

Grid number

30×30×30 50×50×50 80×80×80

Ra 104 105 106

Computation time of IDEAL (s) 25.3 213.2 2314.7
Reducing ratio over SIMPLER (%) 22.4 12.9 13.7
Reducing ratio over SIMPLEC (%) 48.3 63.7 67.9
Reducing ratio over PISO (%) 13.7 10.7 11.9

is shown in Figure 18. The cubic cavity has four adiabatic walls with two vertical walls being
maintained at constant but different temperatures.

Calculations are conducted for Ra=104–106 and grid numbers=30×30×30–80×80×80 with
the residuals RsMass, RsUMom, RsVMom and RsWMom being all less than 10−7. The Rayleigh number
is defined by

Ra= �g�H3(TH −TC )

a�
(26)

In Table VII, a comparison is given between the solutions from the IDEAL algorithm and the
results from [34, 35]. The comparison concerns the mean Nusselt, Num , which is defined as

Num=
∫ ∫

(NuLocal(y, z)|x=0+NuLocal(y, z)|x=H )dy dz

2H2
(27)
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where

NuLocal(y, z)|x=0 or x=H= −(�T/�x)H
TH −TC

(28)

The present results agree very well with the solutions reported by Fusegi et al. [34] and Wakashima
and Saitoh [35]. In Figure 19, the temperatures at the plane z=0.5H for Ra=106 are shown.
From the figure, we can find that the temperature field calculated by IDEAL algorithm agrees very
well with that from the Reference [35].

Figures 20, 21 and 22 show the computation time and robustness of the IDEAL, SIMPLER,
SIMPLEC and PISO algorithms for different grid numbers and different Rayleigh numbers of
problem 5. From these figures, we can find that the performances of different algorithms in
velocity–temperature coupling problems are almost the same as those in decoupled fluid flow
problems, for example, problems 1 and 2. The IDEAL algorithm is the most robust and most
efficient one among the four algorithms compared.

Table VIII shows the reduced ratio of computation time of the IDEAL algorithm over the
SIMPLER, SIMPLEC and PISO algorithms at their own optimal time step multiples for different
cases of problem 5. When each method uses its own optimal time step multiple, the IDEAL
algorithm can reduce the computation time by 12.9–22.4% over the SIMPLER algorithm, by 48.3–
67.9% over the SIMPLEC algorithm and by 10.7–13.7% over the PISO algorithm for problem 5.

5. CONCLUSIONS

In the present paper, the performance of the IDEAL algorithm for three-dimensional incompressible
fluid flow and heat transfer problems has been analyzed by a systemic comparison with three
other most widely used algorithms (SIMPLER, SIMPLEC and PISO). The main conclusions are
as follows:

(1) The IDEAL algorithm is the most robust and most efficient one among the four algorithms
compared.

(2) The IDEAL algorithm can converge almost at any time step multiple for the five problems
studied.

(3) When each algorithm works at its own optimal time step multiple, the IDEAL algorithm can
reduce the computation time by 12.9–52.7% over the SIMPLER algorithm, by 45.3–73.4%
over the SIMPLEC algorithm and by 10.7–53.1% over the PISO algorithm.

Because of the significant superiority of the IDEAL algorithm, it is expected that the proposed
IDEAL algorithm will be widely adopted in the computations of three-dimensional incompressible
fluid flow and heat transfer problems.

The extensions of the three-dimensional IDEAL algorithm to non-orthogonal curvilinear systems
and to unstructured grid systems are now underway in the authors’ group and will be reported
elsewhere.
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NOMENCLATURE

a coefficient in the discretized equation
A surface area
b constant term in the discretized equation
d coefficient in the velocity-correction equation
E time step multiple
g gravitational acceleration
N1, N2 inner doubly-iterative times
p pressure
qm reference mass flow rate
Ra Rayleigh number
Re Reynolds number
RsMass relative maximum mass residual
RsUMom,RsVMom,RsWMom relative maximum u, v, w-component momentum residuals
S source term
T temperature
u, v, w velocity component in x , y, z directions
ũ, ṽ, w̃ pseudo-velocity
x , y, z coordinates
� under-relaxation factor
� expansion coefficient
� dynamic viscosity
� kinematic viscosity
� density

Subscripts

e, w, n, s, b, t cell surface
in inlet
P , E , N , S, W , B, T grid point
m mean
nb neighboring grid points
u, v, w referring to u, v, w momentum equations

Superscripts

PTemp temporary value in previous inner iteration step
Temp temporary value in current inner iteration step
0 initial value
∗ intermediate value
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