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Abstract: The Lattice Boltzmann Method (LBM) has emerged as a computationally efficient and 
increasingly popular numerical method for simulating complex fluid flow. However, the standard 
LBM has always suffered from severe numerical instability. In this paper, we mainly focus on 
Entropic Lattice Boltzmann Methods (ELBM) for high Reynolds number fluid flow. ELBM,  
which is derived from H-theorem, enhances the numerical stability of LBM. The compliance  
of ELBM with H-theorem makes ELBM much more stable than the standard LBM, but the 
computational cost increases because of solving a non-linear equation. We propose a new 
optimisation strategy to improve the efficiency of ELBM, and also implement some numerical 
tests to validate the computational stabilities and correctness. 
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1 Introduction 

In the past decades, the Lattice Boltzmann Method (LBM) 
has provided a novel method to approximate the fluid flow 

problems (Succi, 2001). This method is based on Boltzmann 
kinetic equation which is used to describe a number  
of interacting populations of micro-particles. This is a 
mesoscopic study of the macroscopic problem, into which 
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the basic conservation laws of the hydrodynamic variables 
such as mass and momentum are incorporated. The standard 
LBM reads (Succi, 2001; Qian et al., 1992) 

( , ) ( , ) ( ( , ) ( , ))
0, ..., ,

eq
i i i i if x e t t t f x t f x t f x t

i n
δ δ γ+ + − = −

=  (1) 

where fi represents a single-particle distribution function 
along the lattice directions defined by the discrete speed set 
{ }.ie  The left-hand side of Equation (1) fi represents the 
particle-free streaming, whereas the right-hand side of 
Equation (1) represents particles collision via single-time 
relaxation towards the local equilibrium distribution 
function eq

if on the relaxation frequency γ. The relaxation 
parameter γ is a function of the single-time scale .τ   
The equilibrium distribution of the standard LBM is the 
non-entropy polynomial quasi-equilibrium (Succi, 2001). 
The standard LBM has been proven to be an accurate and 
efficient tool for simulating various non-trivial fluid 
dynamics problems, such as incompressible fluid flows 
(Succi, 2001; Li et al., 2004), turbulent flows for not very 
high Reynolds numbers (Chen et al., 2003), multiphase 
flows (Rothman and Zaleski, 1994; Chen and Doolen, 1998) 
and so on (Takada et al., 2001; He and Li, 2000), and  
has achieved successes in many practical applications. 
However, the standard LBM suffers from numerical 
instability problems (Succi, 2001; Ansumali and Karlin, 
2000; Boghosian et al., 2001). Hence, flows of large 
Reynolds numbers in the standard LBM simulation can be 
simulated only by enlarging spatial grid. It is proved that to 
improve the stability numerical algorithm should be based 
on the analogue of Boltzmann H-theorem (Ansumali and 
Karlin, 2000; Boghosian et al., 2001). In fact, for the 
standard LBM, there is non-existence of the H-theorem 
(Yong and Luo, 2003, 2005). Recently, an isothermal LBM 
has been established by constructing the collision integral 
on the basis of the entropy function, and by stabilising the 
updates on the basis of the discrete H-theorem in the 
discrete velocity spaces (Ansumali and Karlin, 2001; 
Keating et al., 2007). This stabilisation method alleviates 
the instability limitation by restoring the second law of 
thermodynamics. This class of LBM is unconditionally 
stable and is called Entropic Lattice Boltzmann Method 
(ELBM). 

Compared with the standard LBM, ELBM can simulate 
fluid flows of higher Reynolds number. Especially, when 
the single-particle distributions of populations are far from 
the equilibrium, ELBM can work very well. The standard 
LBM exhibits a serious numerical instability for these 
problems, while ELBM can improve the numerical stability 
and holds good numerical accuracy. However, in the 
scheme of ELBM, there exists a non-linear equation, which 
must be solved to gain the modified relaxation frequency. 
Thus, ELBM needs more computational CPU time 
compared with the standard LBM. There have been some 
optimisation strategies to reduce the computational cost of 
ELBM (Tosi et al., 2006a; Brownlee et al., 2006).  

For whatever optimisation strategies being adopted, we still 
aim at enlarging the Reynolds number range of fluid flow 
problems to be simulated. The investigations of this  
paper concentrate on the high Reynolds number fluid flow 
simulation by ELBM with high efficiency. We will propose 
some optimisation strategy to improve the efficiencies  
of ELBM for flows with different Reynolds numbers.  
Some two-dimensional (2D) isothermal hydrodynamics will 
first be simulated with the proposed method and compared 
with benchmark solutions. Then a three-dimensional  
(3D) turbulent fluid flow problem will be predicted by  
the revised ELBM and comparisons will be given with the 
literature. 

2 Brief review of ELBM 

In this section, we will introduce the ELBM and the 
corresponding Boltzmann entropy function. It is  
well known that the single-time relaxation scheme of 
Equation (1) is a significant improvement in the Boltzmann 
kinetic equation from practical application views. The form 
of the single-time relaxation collision operator is the 
diagonal form, that is to say, the LBM scheme can be  
rewritten by a matrix form and the corresponding relaxation 
term is represented by a diagonal matrix. This fundamental 
LBM scheme is supported by the first principle of the 
thermodynamics. Generally, the positive-definiteness of fi 
cannot be sustained for most flow problems at each grid 
node for all time. In such cases, the second principle of 
thermodynamics is violated. The numerical instabilities  
are induced by the loss of compliance with the second 
principle of thermodynamics (Takada et al., 2001). ELBM 
is a strategy to enhance the linear stability of the standard 
LBM scheme via the H-theorem (Tosi et al.,  
2006b) or entropy function. The corresponding equilibrium 
distribution of ELBM is suitable to recover the  
Navier-Stokes equations (Keating et al., 2007). 

To introduce ELBM, we first give the definition of the 
continuous entropy function as follows (Chapman and 
Cowling, 1970): 

( ( , , )) ( ) ( , , ) ln( ( , , )) d .S f x v t H t f x v t f x v t v= − = −∫  (2) 

The right hand of Equation (2) is the minus Boltzmann H 
function (Chapman and Cowling, 1970). We know that 
according to the Boltzmann H-theorem, the H function has 
the following property (Chapman and Cowling, 1970) 

d ( ) 0.
d

H t
t

≤  

In addition, for the system to reach at the equilibrium state, 
the essential condition is as follows: 

d ( ) 0.
d

H t
t

=  

At this moment, the corresponding distribution function  
fi runs to the equilibrium state and becomes the equilibrium 
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distribution function. According to the definition of 
( ( , , ))S f x v t  and the properties of Boltzmann H function, 

we can introduce a Lyapunov’s function into the lattice 
Boltzmann system. On the basis of the Lyapunov’s  
theory (Temam, 2000), we can enhance the stability of the 
dynamic system if we can sustain the property of the 
Lyapunov’s function. The construction of ELBM is based 
on this theory. Here, we give a detailed interpretation  
about this. According to the property of H function,  
we know that if only the equilibrium of system is not yet 
achieved, the H function is decrescent strictly. Let the 
function ( ( )) ( ( )) ( ).eqL f t H f t H f= −  It is obvious that we 
have 

( ( )) ( ( )) ( ( )) 0.L f t t L f t t L f tδ δ∆ + = + − ≤  

So, L−∆  is locally positive, semi-definite and L is a 
Lyapunov function. If the locally positive semi-definite 
condition is tenable, the system shows uniform  
local-asymptotic stability. In other words, L is uniformly 
stable and L = 0 is uniformly locally attractive. There exists 
δ at t such that || ( ( )) ||L f t δ<  and lim ( ( )) 0.

t
L f t

→∞
=  In a 

lattice Boltzmann system, if we can sustain the locally 
positive semi-definite of ,L−∆  we can enhance the stability 
of the lattice Boltzmann system. ELBM is just based on this 
theory to enhance the stability of lattice Boltzmann systems.  
As indicated in Section 1 there is non-existence of the  
H-theorem for the standard LBM (Yong and Luo, 2003, 
2005). So, it is difficult to introduce the Lyapunov function 
into the standard LBM by H-theorem. From this view, 
ELBM is thermodynamically consistent and supported  
by the classical mathematical Lyapunov stability theory.  
So, ELBM is laudable and worth investigating further. 

To establish the ELBM at the special lattice node,  
we need to discretise the entropic function at the special 
lattice velocity direction. The discretisation form of the 
entropy function Equation (2) by Gauss-Hermie quadrature 
formulas reads 

0

0

( ( , )) ( ( , ))

( , ) ln( ( , ) / ),

n

d i i
i

n

i i i
i

S f x t h f x t

f x t f x t w

=

=

= −

= −

∑

∑  (3) 

where wi is the weight associated with the ith particle of 
speed ei and n is the total number of discrete velocity set at a 
grid node. 

The macroscopic characteristics can be obtained via the 
distribution function solved from the following constraint 
optimisation problem 

( ) max,dS f →  (4a) 

and the corresponding constraint condition is 

( )m f M=  (4b) 
 
 

where M denotes the macroscopic characteristics of 
hydrodynamics such as density, moment and energy, and  
m is a function of microscopic state fi. For the isothermal 
fluid flows, there are two macroscopic conservative 
variables 

{ , } { 1| , | }.M u f e fρ ρ
→ →

= = < > < >  (5) 

Introducing the corresponding Lagrange multipliers ( , ),µ β  
the corresponding constraint optimisation problem of 
Equation (4) can be represented by the following problem 
(Ansumali and Karlin, 2001; Keating et al., 2007) 

0

[ ( ) ] 0.
n

i i i i i
i

h f f f eδ µ β
=

− − ⋅ =∑  

Calculating derivatives of the above extremum problem 
with respect to fi yields 

' ( ) .i i ih f eµ β= + ⋅  

From the above extremum problem, we could obtain the 
following equilibrium distributions of ELBM for D2Q9 for 
2D fluid flows (Karlin et al., 2007; Ansumali et al., 2003) 
(see Appendix for the details of velocity sets) 

/
22

2

1

2 1 3
(2 1 3 ) ,

1

ile c

l leq
i i l

l l

u u
f w u

u
ρ

=

 + +
= − +   − 

∏  (6) 

where c is the lattice speed and l is the index of the  
spatial directions. It is obvious that the equilibrium  
Equation (6) of ELBM is not a polynomial form and this 
form is different from the polynomial equilibrium of the 
standard LBM. 

Now the lattice for the ELBM is concerned. For 3D 
fluid flow problems, ELBM needs a highly symmetric 
lattice (Ansumali et al., 2003; Chikatamarla et al., 2006). 
The discrete velocities involve all possible tensor products 
of three one-dimensional velocity sets (Ansumali et al., 
2003; Chikatamarla et al., 2006). Thus for 3D case,  
the velocity number is up to 27 for D3Q27 (see Appendix 
for the details of velocity sets). 

Another important characteristic of the ELBM is in the 
relaxation parameter. Unlike the standard LBM, the 
relaxation parameter γ in Equation (1) is adaptable to make 
the distributions of populations satisfy the monotonicity of 
H-theorem or entropy function. The monotonicity constraint 
on the entropy function is consisted of two steps (Tosi et al., 
2006a): in the first step, populations are changed in the 
direction of the bare collision (Ansumali and Karlin, 2001), 

,eq
i i if f∆ = −  by such procedure the entropy function 

remains constant; in the second step, the dissipation is 
introduced and the magnitude of the entropy function 
increases. The effective relaxation frequency reads 

,γ αβ=  (7) 
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where the parameter β is related to the relaxation time τ  of 
the BGK model by the following formula (Ansumali et al., 
2003; Karlin et al., 2003) 

/(2 ).t tβ δ τ δ= +  (8) 

The parameter α is obtained by solving the non-linear 
equation 

( ) ( ),d dS f S f α= + ∆  (9) 

where α becomes a function of f. By solving Equation (9), 
we can get α. So, from Equations (7) and (8), we will  
obtain the modified relaxation frequency γ. Equation (9) 
guarantees uniform entropy and the monotonicity of  
the H-function. The corresponding effective viscosity ν is 
determined by 

2
eff

1 1( ) ,
2sc tν α δ

αβ
 

= −  
 (10) 

where cs is the lattice Mach number defined by 
2 23 3 .sc RT c= =  (11) 

It is obvious that the variance of α will lead to a change of 
the viscosity. Because of this basic property of ELBM, it is 
proved (Karlin et al., 2003) that the ELBM exhibits a sort of 
built-in subgrid models for turbulence flows. The scheme of 
ELBM reads 

( , ) ( , ) ( ( , ) ( , )).eq
i i i i if x e t t t f x t f x t f x tδ δ γ+ + − = −  (12) 

When we set α = 2, the above scheme is analogous  
to the standard LBM scheme. When 1,β →  the molecular 
viscosity will tend to vanish. So, the zero molecular 
viscosity limit corresponds to 1.β →  At the moment,  
the free degree of the system will increase very quickly  
and the eddy viscosity will dominate the flow field.  
The corresponding eddy viscosity will be adjusted by α. 
The eddy viscosity makes the extra dissipation act on the 
fluid flow system of the finite free degree and reduces  
the free degree of the fluid flow system. This action is  
the main property of ELBM and analogous to the action of 
the subgrid dissipation in Navier-Stokes systems.  
Let eff eff( ) ( ) (2).δ ν ν α ν= −  We will see that if ( ) 0,δ ν >  
this denotes that the effective viscosity is larger than that  
of the molecular viscosity. If ( ) 0,δ ν =  the effective 
viscosity is identical with the molecular viscosity (2).effν  
And if ( ) 0,δ ν <  this case denotes that effective viscosity is 
smaller than the molecular viscosity. This case corresponds 
to a local micro-instability (Karlin et al., 2003). 

The entropic scheme to determine the relaxation 
parameter can be summarised by the following two steps: 
 
 
 
 
 

• Computation of the parameter β related to the viscosity  
(2)effν  by Equation (8). 

• Computation of the parameter α by Equation (9). 

The above procedure guarantees that for a given grid size, 
ELBM can be used to simulate the high Reynolds number  
fluid flows. The updating rule of the ELBM is the same  
as that of the standard LBM, and for the simplicity of 
presentation it is omitted here. 

The ELBM has been proved to enhance stability due  
to its compliance with the H-theorem of kinetic theories, 
which guarantees the second law of the thermodynamics. 
However, the implementation of ELBM costs much time  
for solving the non-linear Equation (9). So, for the 
implementation of ELBM, enhancing the computational 
efficiency is an urgent problem. 

3 Ehrenfests’ coarse-graining idea 

The Ehrenfests’ idea for enhancing the stabilisation  
of the solution process of the lattice Boltzmann equation  
is to supplement the mechanical motion from the kinetic 
equation with periodic averaging in cells to produce 
piecewise constant, or coarse-grained, densities (Brownlee 
et al., 2006). In fact, this operation necessitates entropy 
production (Brownlee et al., 2006). The averaging in cells  
is an analogue of a kind of integration. The problem of  
the entropy maximum, Equation (9), is just a particular 
example because the entropy maximum makes the entropy 
to be locally constant. 

From the Ehrenfests’ idea (Brownlee et al., 2006),  
the entropy maximisation leads to an evolution equation for 
the macroscopic description. Here, we define Ehrenfests’ 
chain as the sequence of quasi-equilibrium distribution 
functions f 0, f 1, f 2, f 3, …. Along the Eherenfests’ chain,  
the entropy increases. The entropy gain in a link in the chain 
is made up of two parts (Brownlee et al., 2006): 

The entropy gain from mechanics motion. 
The gain from the equilibration. 
Owing to the successive entropy gain in the chain, the 

conversation systems become more and more dissipative 
(Brownlee et al., 2006). The increment in the macroscopic 
entropy is expressed by 

( ) ( ) ( ).eq
d i d i d iS f S f S f∆ = −  (13) 

It is obvious that zero increment is achieved when the 
system is in the equilibrium. 

According to Ehrenfests’ chain, we can approximate a 
solution of some coarse-grained macroscopic equations in  
a stepwise manner. The dissipation due to this chain  
is proportional to the relaxation time .τ  By rearrangement  
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of Equation (12), the chain corresponding to the ELBM 
scheme reads 

~
( , ) (1 ) ( , ) ( , ),i i i if x e t t t f x t f x tδ δ β β+ + = − +  (14) 

where 
~

( , ) (1 ) ( , ) ( , )eq
i iif x t f x t f x tα α= − +  and α is a 

function of fi. α could be adjusted to make a constant 
entropy condition being satisfied (Brownlee et al., 2006). 
Now, we show Ehrenfests’ updating step according to an 
entropic threshold as follows, 

~

(1 ) ( , ) ( , ), ( )
( , ) ,

(1 ) ( , ) ( , ), ( )

eq
i i d i

i i

i i d i

f x t f x t S f
f x e t t t

f x t f x t S f

γ γ σ
δ δ

γ γ σ

 − + ∆ >+ + = 
− + ∆ ≤

 (15) 

where σ is the entropic threshold. The scheme of  
Equation (15) does not need to solve Equation (9) at every 
lattice node, but can guarantee the entropic increase 
(Brownlee et al., 2006). 

4 Positivity-enforcing LBM scheme 

To improve the stability of LBM, by avoiding any 
negativeness of the distribution function fi, a scheme, called 
positivity-enforcing LBM, is described by Li et al. (2004). 

0,...
' max( ,1 / ),eq

i ii n
f fτ τ

=
= −  (16) 

where 1/ '.γ τ=  The truncated error of the equilibrium 
distribution eq

if  in Equation (16) is up to fourth order 
(Chen and Teixeira, 2000). Normally, for the standard 
LBM, the truncated error is up to third order.  
The expression of eq

if  in the positivity-enforcing LBM 
scheme is as follows 

2 2

2 4 4

3
2

6 4

( )1 11
2 2

( ) ( )1 1 .
6 2

eq i i
i i

s s s

i i

s s

e u e u uf w
c c c

e u e u
u

c c

ρ
 ⋅ ⋅

= + + −


⋅ ⋅
+ − 



 

In this way, positive post-collision state distributions are 
preserved as long as pre-collision distributions are positive. 
In the section of numerical tests, the positivity-enforcing 
LBM will be implemented based on the above distribution 
and some comparison will be made with the optimised 
ELBM scheme. 

5 Entropic function 

To check the results of numerical simulations, the time 
evolution of the global entropy should be checked.  
In each time step, the following quantity is calculated 

0

( ) ( , ) ln( ( , ) / ).
b

i i i
x i

S t f x t f x t w
=

= −∑∑  (17) 

 

By some simple algebra, we obtain 

0

0

0

0

0

( ) ( , ) ln( ( , ) / ( , ))

( , ) ln( ( , ) / )

( , ) ln( ( , ) / ( , ))

( , ) ln( ( , ) / )

( ( , ) ( , )) ln( ( , ) / ).

b
eq

i i i
x i

b
eq

i i i
x i

b
eq

i i i
x i

b
eq eq

i i i
x i

b
eq eq

i i i i
x i

S t f x t f x t f x t

f x t f x t w

f x t f x t f x t

f x t f x t w

f x t f x t f x t w

=

=

=

=

=

= −

−

= −

−

+ −

∑∑

∑∑

∑∑

∑∑

∑∑  (18) 

For convenience, we introduce the following formulations 

0

( , ) ln( / ),
b

i i i
x i

S f f f f f
=

′ ′= −∑∑  (19) 

0

( , ) ( ) ln( / ).
b

k i i i i
x i

S f f f f f w
=

′ ′= − −∑∑  (20) 

Then, we have the following compact expression 

( ) ( , ) ( , ) ( , ).eq eq eq
kS t S f f S f w S f f= + +  (21) 

( , )S f g  is the Kullback entropy (relative entropy) 
belonging to the family of Massieu-Planck-Kramers 
functions, which measures the distance between two  
‘rays’, f and g (Brownlee et al., 2008). Here, the Kullback 
entropy is expressed in quadratic approximation (Brownlee 
et al., 2008) 

0

2

0

( , ) ln( / )

( )
.

n
eq eq

i i i
x i

eqn
i i

eq
x i i

S f f f f f

f f
f

=

=

= −

−
≈ −

∑∑

∑∑  (22) 

In the section of numerical tests, we will check the entropy 
for optimisation strategies. 

6 Optimisation strategy 

For enhancing efficiency of ELBM, Tosi et al. (2006b) 
proposed a good idea to save the computational cost. But in 
their paper, the optimisation strategies focus on special 
problems. In this paper, we adopt the entropy threshold  
to optimise the implementation of ELBM. The strategy  
for solving Equation (9) is as follows. 

The initial value for solving Equation (9) is adopted as 
follows (Tosi et al. 2006a): 

0,
.

02,

t t
t t

t

δαα
− >

=  =
 (23) 

Newton-Raphson bisection computational method is 
adopted to solve Equation (9). The threshold of entropy σ  
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is chosen to determine whether Equation (9) should be 
solved. When ,dS σ∆ ≤  we solve the Equation (9); 
otherwise, we set 2.tα =  

7 Numerical tests 

In this section, we will carry out some numerical tests to 
validate the optimisation strategy of ELBM. The numerical 
tests include: a 2D lid-driven cavity fluid flow; a 2D 
backward-facing step fluid flow; a 3D backward-facing  
step fluid flow. The lattice schemes are D2Q9 and D3Q27 
for 2D and 3D fluid flow problems, respectively. The Lq 
(q = 1, 2) convergence tolerances for 2D problems are 
defined by Hou et al. (1995). 

1 1

1 11 1

[| | | |]
| |

i i i i
i x

i i
x

u u v v
E

u v
ε

− −

− −

− + −
= ≤

+
∑

∑
 (24) 

and 

1 2 1 2

2 21 1 2

[| | | | ]
,

| |

i i i i
xi

i i
x

u u v v
E

u v
ε

− −

− −

− + −
= ≤

+

∑
∑

 (25) 

where 1ε  and 2ε  are very small real numbers. 

7.1 2D lid-driven cavity fluid flow 

This is a steady, incompressible fluid flow within a square 
cavity caused by a moving lid for not very high Reynolds 
numbers (Re). Numerical simulations are conducted for 
Re = 2000, 3200. The top boundary moves from left to right 
with a constant velocity U = (0.1, 0). The initial density 
ρ = 1.0. The lattice size is 100 by 100. In the numerical 
simulations, the Maxwell diffusive boundary condition is 
considered (Ansumali and Karlin, 2002). 

The simulation results of the stream functions with the 
optimisation strategy of ELBM are shown in Figure 1  
and Figure 2 for Re = 2000 and Re = 3200, respectively.  
In Figure 3, our predicted u and v velocity distributions for 
Re = 3200 are compared with the results of benchmarks 
(Ghia et al., 1982). From the results, we can see that the 
details of vortex structures are revealed and the agreement 
in velocity distributions is quite satisfactory. 

Figure 1 Streamline for Re = 2000 

 

Figure 2 Streamline for Re = 3200 

 

Figure 3 Re = 3200, the results of benchmark and optimisation: 
(a) u-velocity profile along the vertical centreline,  
(b) v-velocity profile along the horizontal centreline 

 
(a) 

 
 (b) 

The values of 1ε  and 2ε  in Equations (24) and (25) are 
listed in Table 1. They are achieved in 5000th step and 
7000th step for Re = 2000 and Re = 3200, respectively.  
In Figures 4 and 5, the evolution of the global entropy and 
global Kullback entropy are presented. From the figures,  
we can see that the global entropy gradually increases and 
achieves its maximum value, and the global Kullback 
entropy gradually decreases and achieves its minimum 
value. The stable solutions are achieved when two kinds of 
entropy gain the corresponding extremum. 
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Figure 4 Global entropy evolution 

 

Figure 5 Global Kullback entropy evolution 

 

Table 1 Convergence errors 

Re 1
iE  2

iE  

2000 5.349E–6 5.741E–6 
3200 6.502E–6 6.450E–6 

Now, attention is turned to the cost of computational  
time. The optimisation strategy makes the procedure  
of computations shortened. The optimised ELBM costs 
2999s compared with 2713s for the positivity-enforcing 
method (Re = 2000) and 2934s compared with 2683s  
for the positivity-enforcing method (Re = 3200). The CPU 
time cost of the optimised ELBM is almost the same as the 
positivity-enforcing method under the same convergence 
tolerances. On the other hand, the optimised ELBM has  
much higher convergence rate than ELBM. Also, since 
ELBM allows to increase the Reynolds number by nearly an 
order of magnitude, given that CPU time scales like 4Re   
(in 3D), it appears that the direct simulation of high 
Reynolds flows is most conveniently handled by the 
optimised ELBM rather that the positivity-enforcing method 
(Tosi et al., 2006b). 

It is proved that ELBM is a built-in subgrid method 
(Karlin et al., 2003). To verify this interpretation,  
we implement the computation of a 2D lid-driven flow  
with a very high Reynolds number up to 5000 and 7500. 
The lattice sizes are 128 by 128 and 160 by 160, 
respectively. The top velocity U = (0.01, 0). For the 
standard LBM, this simulation is very difficult to be 
implemented. The stream function of the two cases are 

provided in Figures 6 and 7, and in Figure 8 the velocity 
distributions are shown. It can be seen that the ELBM  
can simulate the lid-driven fluid flows of the high Reynolds 
numbers on very coarse meshes. On the contrary, the 
standard LBM could hardly implement the simulations on 
such coarse meshes. For high Reynolds number fluid  
flows, the phenomenon of fluid flows is very complicated 
(Bruneau and Saad, 2006; Garcia, 2007). So, there exist 
some differences between the solutions of ELBM and  
Ghia et al. (1982). From this view of the built-in subgrid 
method, ELBM is a more effective method than the standard 
LBM for high Reynolds number fluid flows. 

Figure 6 Streamline for Re = 5000 (lattice: 128 by 128) 

 

Figure 7 Streamline for Re = 7500 (lattice: 160 by 160) 

 

Figure 8 Re = 5000 and Re = 7500, the results of benchmark 
and optimisation: (a) u-velocity profile along the 
vertical centreline and (b) v-velocity profile along the 
horizontal centreline (continues on next page) 

 
(a) 
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Figure 8 Re = 5000 and Re = 7500, the results of benchmark 
and optimisation: (a) u-velocity profile along the 
vertical centreline and (b) v-velocity profile along the 
horizontal centreline (continued) 

 
 (b) 

7.2 2D Backward-facing step fluid flow 

In this section, we implement ELBM for an open system  
of a 2D backward-facing step fluid flow based on the 
optimisation strategy in Section 6. By this example, we just 
want to show that the ELBM with the optimisation strategy 
is valid for open systems. The channel length and channel 
width is 20 and 3, respectively. The step width and  
height is 5 and 1. The inlet velocity profile is parabolic.  
The average velocity mean 0.15.u =  The definition of 
backward-facing step fluid flow Reynolds number is 

meanRe 2 /u h ν=  (h denotes the step height). In this 
simulation, Re = 200 and the channel expansion ratio 
ER = 1.5. The resolutions of ELBM and LBM are 0.1 and 
0.05, respectively. By the computational prediction,  
the reattachment lengths are 6.1056 and 6.4014. Meanwhile, 
from Figures 9 and 10, we see that the ELBM with the 
optimisation strategy can simulate the backward-facing step 
fluid flow very well. 

Figure 9 u-velocity profile along the vertical line at Y = 10 

 

It is very clear that from 2D fluid flows the ELBM with the 
optimisation strategy can simulate the fluid flow problems 
very well. Moreover, ELBM does not need very fine  
meshes compared with the standard LBM. All of these  
are attributed to the built-in subgrid property of ELBM.  
For the standard LBM, the relaxation frequency is kept 

invariant. So, the corresponding viscosity in the standard 
LBM is invariant and describes the molecular viscosity.  
We know that for high Reynolds number fluid flows,  
if the spatial grid-free degree is not enough to catch  
the small-scale information, we need to modify the viscosity 
of the fluid flow model to enhance the dissipation of  
fluid flow systems and smear out the small-scale 
information. The subgrid model established in macroscopic 
Navier-Stokes equations enhances dissipation by adding  
an eddy viscosity term. Generally, this eddy viscosity  
term modifies the molecular viscosity and makes the 
effective viscosity to be changed according to the 
characteristics of flow fields. Normally, this term added  
into macroscopic Navier-Stokes equations is experimental, 
especially, for the related parameters. But, ELBM enhances 
the dissipation of high Reynolds number flows by H 
function. From this view, ELBM has the profoundly 
physical consistency and can adjust viscosity to enhance 
dissipation by the second law of thermodynamics. And there 
does not exist any experimental parameter. So, ELBM plays 
a physically consistent subgrid role for high Reynolds 
number fluid flows. 

Figure 10 Velocity vectors: (a) velocity vector by ELBM  
and (b) velocity vector by the standard LBM 

 
(a) 

 
(b) 

7.3 3D backward-facing step channel fluid flow 

In this section, we implement the ELBM with the 
optimisation strategy for a 3D fluid flow problem. A typical 
example we chose is a 3D transitional backward-facing step 
channel fluid flow. The fluid flow domain is constructed  
in a cuboid [0, 20] × [0, 3] × [0, 4]. The Reynolds number  
is defined by meanRe 2 / 1000.u h ν= =  The step width is 
equal to 5.0 and the step height is equal to 1. The spatial 
resolution scale is 0.05. The time step interval is equal to 
0.0075. Except inlet and outlet boundaries, other boundaries 
possess a non-slip boundary condition. The computational 
results are shown in Figures 11–14. The number  
of computational step is up to 2666 time steps.  
The corresponding time t = 19.995. According to the results 
of ELBM simulation, it is clear that although the geometry 
of the backward-facing step is simple, there exist complex 
physical phenomena. The physical complexity is attributed 
to the presence of eddies near the step wall (Rani et al., 
2007). ELBM can simulate these 3D complex physical 
phenomena very well. All of these demonstrate the validity 
of ELBM with the optimisation strategy. 
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Figure 11 Iso-surfaces of u, v and w: (a) u = –0.0237;  
(b) v = 0.0138 and (c) w = 0.0148 

 
(a) 

 
(b) 

 

(c) 

Figure 12 Velocity norm magnitude slice at z = 2 

 

Figure 13 Iso-surfaces of vorticity vectors: (a) magnitude  
of x component of vorticity = 0.0065; (b) magnitude  
of y component of vorticity = 0.013 and (c) magnitude 
of z component of vorticity = 0.0054 (continues on next 
column) 

 
(a) 

 
(b) 

 
 

Figure 13 Iso-surfaces of vorticity vectors: (a) magnitude  
of x component of vorticity = 0.0065; (b) magnitude of 
y component of vorticity = 0.013 and (c) magnitude  
of z component of vorticity = 0.0054 (continued) 

 
(c) 

Figure 14 Vorticity norm magnitude slices at z = 1, 2, and 3 

 

8 Conclusion 

In this paper, we investigate the two kinds of fluid flow 
problems by ELBM. It is known that there exists an 
infamous limitation about the standard LBM for low 
viscosities. ELBM with the optimisation strategy alleviates 
this limitation and saves the computational cost. ELBM 
needs to solve a non-linear equation at every lattice  
site and costs much time to implement the numerical 
simulations. Although some optimisation methods are 
proposed, there still exist some restrictions to enlarge the 
applications. We turn to Ehrenfests’ coarse-graining  
idea and restrict the solving of the non-linear equation to 
some special points at which the local entropy  
decreases (below some threshold values). By this method, 
we could save the computational time and also get the 
correct numerical approximate solutions. By numerical 
illustrations, we verify ELBM with the optimisation strategy 
for 2D and 3D fluid flow problems. These tests demonstrate 
the validity of ELBM as a tool for high Reynolds  
number simulations. In all, ELBM is an effective and  
high-stable method for the high Reynolds fluid flows. 
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Appendix 

A: D2Q9 model 

Lattice nodes: 

X = {0, –1, –1, –1, 0, 1, 1, 1, 0} 

Y = {0, 1, 0, –1, –1, –1, 0, 1, 1} 
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Weight: 

W = {4/9, 1/36, 1/9, 1/36, 1/9, 1/36, 1/9, 1/36, 1/9} 

B: D3Q27 model 

Lattice nodes: 

X = {0, –1, 0, 0, –1, –1, –1, –1, 0, 0, –1, –1, –1, –1, 1, 0, 
0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1} 

Y = {0, 0, –1, 0, –1, 1, 0, 0, –1, –1, –1, –1, 1, 1, 0, 1, 0, 1, 
–1, 0, 0, 1, 1, 1, 1, –1, –1} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Z = {0, 0, 0, –1, 0, 0, –1, 1, –1, 1, –1, 1, –1, 1, 0, 0, 1, 0, 
0, 1, –1, 1, –1, 1–1, 1, –1} 

Weight: 

W = {8/27, 2/27, 2/27, 2/27, 1/54, 1/54, 1/54, 1/54, 1/54, 
1/54, 1/216, 1/216, 1/216, 1/216, 2/27, 2/27, 2/27, 1/54, 
1/54, 1/54, 1/54, 1/54, 1/54, 1/216, 1/216, 1/216, 1/216} 




