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Abstract: In this paper, Lattice Boltzmann Method (LBM) is used to investigate the  
freely- decaying two-dimensional (2D) turbulence. The main purpose focuses on recent 
mathematical results about a central assumption in the theory of two-dimensional turbulence 
proposed by Batchelor. The numerical results found an approximate exponent of energy spectrum  
E(k) ~ k–3.5 at the high mesh resolutions and an approximate decaying exponent of enstrophy 
ω2  ~ T–2/3. In addition, an approximate exponent of integral length scale l ~ T1/2 is observed.  

These results validate the recent new results of 2D turbulence and are different from the results 
derived by Batchelor’s 2D model.  
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1 Introduction 
Lattice Boltzmann Method (LBM) has attracted much 
attention since 1990s. It has achieved a great success in 
simulations of fluid flow problems. In particular, the natural 
advantage of lattice-based models for performing parallel 
computation and handling complex geometries problems, 
with local operations, indicates that the lattice models may 
provide an alternative efficient numerical scheme for 
studying many complex phenomena (Qian et al., 1992;  
Qian and Zhou 1998), including turbulence. In fact, LBM 
has been widely used to simulate turbulent fluid  
flows (Succi, 2001; Orszag et al., 2006) and the results offer 
us some fundamental understanding of turbulence (Chen  
et al., 2003, 2004). So far, for Direct Numerical  
Simulation (DNS) of turbulence, most researchers still use 
Navier-Stokes equations. Boltzmann equation describes the 
phenomena of turbulence in the statistical physics 
framework, which possesses some inherent consistency with 
physical processes. It is in this aspect that Boltzmann 
equation has its particular advantage in the simulation of 
turbulence. In this paper, the complete Galilean-invariant 
D2Q17 LBM model (Qian and Zhou, 1998) will be adopted 
to simulate 2D free-decaying turbulence.  

It is well-known that much progress has been made on 
the study of 2D turbulence, but still, a number of 
fundamental questions remain unanswered and dubitable 
(Tabeling, 2004). Most characteristics of the energy cascade 
process, seemingly, need to be reconsidered. The inverse 
cascade is much less understood. Especially, the exponent 
of kinetic spectrum is not very clear. The theoretical 
understanding of these phenomena is still in its developing 
stage. Compared with 3D turbulence, 2D turbulence 
exhibits a rich variety of phenomena. In three dimensional 
case, the energy cascade goes uniquely from large eddies  
to small eddies, while in two dimensional case, there  
exist several types of cascades, and turbulence may exist 
without cascade at all (Tabeling, 2004). From this point of  
view, two-dimensional turbulence is wealthier than the 
three-dimensional one. 

In 1969, Batchelor (1969), proposed a model of 2D 
turbulence, in which there is a self-similar decay of energy 
spectrum. In this model it is anticipated that there exists  
a finite, non-zero value of the enstrophy dissipation and
an invariant kinetic energy in the limit of Re →  ∞
(or viscosity parameter ν → 0). Recent mathematic  
analysis and numerical simulations showed that the 
enstrophy dissipation decays with Re → ∞ as (lnRe)–1

(Choung and David, 2006; Dmitruk and Montgomery, 
2005). In addition observations and analysis (Dmitruk and

Montgomery, 2005; Bartello and Warn, 2005; McWilliams, 
1984) suggest that the two-dimensional turbulence of 
Re → ∞ remembers the peak value of vorticity, which is 
supported by the theoretical analysis of McWilliams (1984), 
Legras et al. (2001) and Mariotti et al. (2001) but not 
indicated in Batchelor’s 2D model. The above two issues 
may imply that the central assumption made in the 
Batchelor’s theory of 2D turbulence is questionable and this 
stimulates us to revisit the behaviours of 2D turbulence  
by LBM. 

In order to investigate 2D freely-decaying turbulence,  
DNS will be taken in a periodic domain. Grid systems  
with large resolutions of mesh (10242, 20482 and 40962)
are adopted to simulate the turbulence field for very  
high Re. The initial velocity of 2D turbulence will be 
initialised by random fields, which are established in 
Fourier spectrum space. The peak of initial energy spectrum 
will be set at low wave number area such that no  
significant inverse energy cascade takes place over short 
simulation duration.  

This paper is organised as follows. In Section 2,  
the basic theory of LBM is reviewed. In Section 3,  
the fundamental theory of 2D turbulence is recalled.  
In Section 4, the plans of the simulation are established and 
various numerical results are given. Finally, a conclusion  
of the simulation results is presented.  

2 A review of Lattice Boltzmann Method 
We now introduce the lattice BGK model as a solver for  
the incompressible Navier-Stokes equations. The LBM is 
built up from the lattice gas cellular automata models 
(Succi, 2001). The numerical scheme of LBM is established 
based on a finite discrete-velocity model of the Boltzmann 
equation as follows 

( , ) ( , )i i i if x tc t t f x tδ δ+ + − = Ω (1)

where fi denotes the single-particle distribution function 
along the direction ,ic  and ic  is an element of the discrete 
velocity set 0{ , , }.nV c c= Ωi represents the collision 
operator. The macroscopic variables, the density ρ and the 
velocity u , are defined locally by the distribution functions 
as follows 

(eq)

0 0
( , ) ( , ) ( , ),

n n

i i
i i

x t f x t f x tρ
= =

= =  (2) 

(eq)1 1( , ) ( , ) ( , ).
( , ) ( , )

i i

i i i i
c V c V

u x t c f x t c f x t
x t x tρ ρ∈ ∈

= =  (3) 
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For the standard LBM, the collision operator is defined by 
the so-called BGK collision 

(eq)1 [ ( , ) ( , )].BGK
i i if x t f x t

τ
Ω = − −  (4)

The local equilibrium distribution function eq ( , )if x t  is 
defined by 

(eq) (eq) (eq)( , ) ( , ) ( , ),L Q
i i if x t f x t f x t= +  (5) 

where (eq) ( , )L
if x t  and (eq) ( , )Q

if x t  denote the linear part and 
the quadratic part of the equilibrium distribution function, 
respectively. The linear part is given by  

(eq) *
2

1( , ) 1 ( , ) ,L
i i i

s

f x t f c u x t
C

ρ= + ⋅  (6)

and the quadratic part is defined by  

(eq) *
4

1( , ) ( ( , ) ( , )) : ,
2

Q
i i i

s

f x t f u x t u x t
C

ρ= Σ  (7) 

where Cs is the speed of sound of the model, *
if

denotes the weight and iΣ  is a second order tensor  
defined by 

2 .i i i sc c Cαβ α β αβδΣ = −  (8) 

Here, the related tensor product definition among n
first-order tensors ( 1, , )

i
a i n=  is given as follows  

11

1 1
, ,( ) ,nn

n n
a a a aα αα α = (9)

and the corresponding tensor product between m n-order
tensors, 1 ( 1, , ),n

i
A i mα α =  is given by  

1 1 1

1

1 2 1 2

, , 1
: : : ,n n n

n

dm m
A A A A A Aα α α α α α

α α =

=  (10) 

where d denotes the spatial dimension. 
For 2D incompressible fluid flows, the popular  

D2Q9 model (Qian et al., 1992) is widely used to  
simulate various fluid flow problems. Equations (6) and (7) 
will lead to the standard D2Q9 equilibrium distribution 
functions. By using the Chapman-Enskog expansion,  
the Navier-Stokes equations can be derived up to the second 
order of Knudsen number at long wavelength and long time 
limits (Qian et al., 1992),  

3( ) ( ) 0,t u O tα αρ ρ δ∂ + ∂ + =  (11) 

( ) ( ) ( )
( ),

t u u u P u u
u u u

α β α β α β β α α β

β γ α β γ

ρ ρ ρν ρς
σ ρ

∂ + ∂ = − ∂ + ∂ ∂ + ∂

− ∂ ∂  (12) 

where
2 ( 0.5).sC tν ζ δ τ= = −  (13) 

In Equation (12) P is the thermodynamic pressure and can 
be determined by the equation of state as follows: 

2 .sP C ρ=  (14) 

The parameter σ in Equation (12) is given by  

σ = δ t (τ – 0.5). (15) 

In Equation (12), the parameter σ in the cubic term is a new 
term, which is often ignored in the most numerical 
computation. The physical meaning of this cubic term is the 
nonlinear response due to the quadratic term in the 
equilibrium function (Qian and Zhou, 1998).  

It has been proved that the cubic term in Equation (12)  
is a source of non-Galilean invariance. The effect of  
this cubic term will lead to some nonphysical phenomena 
for solving Navier-Stokes equations (Qian and Zhou, 1998).  
In order to eliminate this nonphysical phenomenon,  
Qian and Zhou (1998) proposed a modified equilibrium to 
eliminate this cubic term. A cubic tensor about macroscopic 
velocity is introduced to the equilibrium function,  

(eq) *
6

1( , ) ( ( , ) ( , ) ( , )) :
6

C
i i i

s

f x t f u x t u x t u x t T
C

ρ=  (16)

where the third order tensor Ti is defined by  
2( 3 ).i i i i sT c c c Cαβγ γ α β αβδ= −  (17) 

The modified equilibrium distribution function (eq) ( , )if x t
can be rewritten as follows  

(eq) (eq) (eq) (eq)( , ) ( , ) ( , ) ( , ).L Q C
i i i if x t f x t f x t f x t= + +  (18)

In order to satisfy the basic physical conservative properties, 
for two-dimensional case the original 9-velocity discrete 
space (Qian et al., 1992) is enriched as a 17-velocity 
discrete space (D2Q17) (Qian and Zhou, 1998). By the 
D2Q17 model, the moment equation can be recovered as 
follows  

( ) ( ) ( )
( ),

t u u u P u u
u u u

α β α β α β β α α β

β γ α β γ

ρ ρ ρν ρς
ξ ρ

∂ + ∂ = −∂ + ∂ ∂ + ∂

+ ∂ ∂ (19)

where ξ is defined by 

( 1) .ξ θ σ= −  (20) 

In order to eliminate the third-order term in Equation (19),  
ξ must be equal to 0. In such a way, the cubic nonlinear 
term is exactly cancelled out without introducing any  
other high order nonlinearities. The details about the values 
of weight and sound speed can be found in the work of  
Qian and Zhou (1998).  

3 Basic theory and results of 2D free-decay 
turbulence

It is known that the 2D turbulence encompasses a  
rich variety of phenomena (Tabeling, 2004). Recently,  
some researchers (Choung and David, 2006; Dmitruk  
and Montgomery, 2005; Bartello and Warn, 2005;  
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McWilliams, 1984; Legras et al., 2001; Mariotti et al., 2001) 
show that following original results about 2D turbulence are 
questionable:  

• the value of energy spectrum exponents 

• the centre assumption of Batchelor’s 2D  

• turbulence theory 

• the values of various scaling exponents. 

This situation stimulates us to reconsider the 2D  
turbulence based on numerical evidences. The results  
of such researches will redirect us to understand  
the physical properties and nonlinear interactions in 2D 
turbulence.

3.1 Batchelor’s classical theory of 2D turbulence 

In 2D freely-decaying  turbulence, the k–3-like (k denotes 
‘wavenumber’) energy spectrum is found according to  
the Kolmogorov ideas. Batchelor (1969) extended the 
Kolmogorov’s approach to the free decay problem and 
predicted an energy spectrum in the form  

2 3( ) .E k t k− −  (21) 

It is well-known that there does not exist vortex stretching 
in 2D turbulence. So, the enstrophy ω2  decays as

2
21 d | | .

2 dt
ω ν ω= − ∇  (22) 

It is clear that the enstrophy is bounded by its initial  
values. For freely-decaying 2D turbulence, the kinetic 
energy is governed by  

2
21 d .

2 d
u
t

ν ω= −  (23) 

From Equations (22) and (23), it is seen that the  
kinetic energy is approximately conservative as ν → 0
(Batchelor, 1969), 

21 constant.
2

u ϕ= =  (24) 

Batchelor predicted that the energy spectrum should have 
the following form  

3/ 2 1/ 2( , ) ( )E k t tg ktϕ ϕ=  (25) 

where g is a function with a universal form. According to 
the above similarity relation, the energy of the turbulence  
is moving into eddies of large length scales, with the 
representative scale increasing in proportion to t
(Batchelor, 1969). Meanwhile, the energy transferred to
smaller wavenumbers indicates that the 1/2 ω2  term 
decreases with time and the time dependent relation  
is given by  

2 2 2

0

1 ( ) d ,
2

k E k k Atω
∞ −= =  (26) 

where

2

0
( ) d .A z g z z

∞
=  (27) 

According to Batchelor’s theory, the similarity relation  
(Eq. 25) could not be extended to the large  
wave number range where the viscosity effects  
are significant. But, Equation (25) still holds in the  
inertial sub-range because there is only one parameter χ
which is the non-zero term of enstrophy dissipation  
and determined by  

2
31 d 2 .

2 d
At

t
ωχ −= − =  (28) 

So, in the inertial sub-range the vorticity spectrum has the 
following form 

2 / 3 2 1 2 / 3 1( , ) ~ (2 ) ~ .k t A t k kχ− − −Ω  (29) 

3.2 Issues of 2D turbulence 

The theory of Batchelor (1969) has been examined by 
Davidson (2004) and some high-resolution numerical  
results supporting the k–1 form of the inertial-range  
enstrophy spectrum (Dmitruk and Montgomery, 2005).  
The fundamental support of Batchelor’s theory is a basic 
assumption that there exists a finite, non-zero enstrophy 
dissipation χ in the limit of Re → ∞. This assumption 
implies that the interaction of eddies is local. However, 
recent mathematical theory (Choung and David, 2006; 
David et al., 2007) has proved that this assumption is 
questionable. The enstrophy dissipation satisfies the 
following inequality 

2
2

1/ 2

|| ||| | ,
(ln(Re))
ω ωχ ν ω ∞= ∇ ≤  (30) 

where || ||ω ∞  is the supremum of the enstrophy.  
From inequality (30), it is clear that the enstrophy 
dissipation is dependent on Re. This result contradicts  
with the 2D turbulence theory proposed by Batchelor 
(1969).

In 2D turbulence, the mean-strain associated with eddies 
lying the wave number range k0 ≤ k ≤ kν is related to their 
enstrophy as follows (David et al., 2007) 

0

2 2 2 / 3

0

1 ( )d ln ,
2

k

k

kk E k k
k

ν νω χ=  (31) 

where k0 and kν are defined by 

2 1/ 2

0 2 1/ 2

( )d
,

( )d

kE k k
k

uE k k
ω= =  (32) 

and
2 1/ 2

1/ 2
0 2

0

Re , Re .k k
kν

ω
ν

= =  (33) 



Revisiting two-dimensional turbulence by Lattice Boltzmann Method 137 

The terms of 1/2 ω2  in Equation (31) and 2 1/ 2u  in 
Equation (32) are assumed as the inviscid invariants of 
enstrophy and energy, respectively. 

From Equation (31), it can be seen that eddy interactions 
are not local (Davidson, 2004). If it is assumed that the 
interactions are localised in k-space, a cascade of k–3 can be 
obtained by dimensional analysis. However, we then get 
into a contradiction. The non-local interactions shown in 
Equation (31) will undermine the dimensional argument of 
k–3 law. 

Furthermore, from Equation (31), it is seen that  
(Choung and David, 2006) 

2 2 / 3 ln(Re).ω χ  (34) 

If the k–1 law of the enstrophy implied in the Batchelor’s 
model is admitted,  

0

2 1

0

1 d ln
2

k

k

kCk k C
k

ν νω −= = . (35) 

From the work of Choung and David (2006), we can 
immediately get 

2
1( ) .

ln(Re)
k kω −Ω =  (36) 

From Equation (36), the spectrum of ( )kΩ  is dependent on 
Re and is scaled by ln(Re),  which is, obviously, in conflict 
with Equation (29). 

Other important issues are about the decay exponent of 
the enstrophy and the increase exponent of the integral 
length scale. From Equation (26), it is known that the 
enstrophy decaying exponent is –2 with respect to t.
The recent results of Victor (2004) suggests an enstrophy 
decaying exponent of –2/3 with respect to t and the 
numerical investigates of Chasnov (1997), Clercx and 
Nielsen (2000) and Ossia and Lesieur (2001) show that the 
exponent of t are –0.8, –1.0 and –1.1. These results for the 
decay exponent of the enstrophy are all differ from that of 
Batchelor. In addition, Batchelor (1969) presented a linear 
growth in the integral length scale l ~ t. But the l ~ t1/2

scaling is observed in some simulations and dimension 
analysis (Davidson, 2004; Lowe and Davidson, 2005). 

The above two issues will be re-examined in our 
numerical simulation.

4 Numerical simulations 
Our numerical simulations are implemented by the enriched 
D2Q17 LBM model (Qian and Zhou, 1998). The initial 
velocity fields are established by random fields in a spectral  
space. The initial energy spectrum is given by Dmitruk and 
Montgomery (2005)  

8 2( ) exp( 8 ( / 8) ),E k ak kπ= −  (37) 

which peaks at the low wavenumber 32 /k π= .
This spectrum will not lead to the significant inverse energy 
cascade for a short duration simulation. The initial RMS 

velocity magnitude is 0.005 (lattice unit), which leads a very 
small Mach number. The viscosity is set so that the viscous 
wavenumber occurs at 3/4 of the maximum wavenumber 
n/2. This choice could ensure adequate dissipation at high 
wavenumber to resolve the statistics of |∆ω|2  and other 
fine scale quantities (David et al., 2007). The Reynolds 
numbers for three different mesh systems of 10242, 20482

and 40962 are 1.243 × 103, 6.377 × 103 and 2.304 × 104,
respectively.

4.1 Energy spectrum 
As indicated above the Batchelor’s theory (Batchelor, 1969) 
of 2D turbulence predicted that the kinetic spectrum had  
a k–3 scaling law. The previous investigations of most 
numerical results supported the scaling law of kinetic 
energy (Davidson, 2004). However, there exist other 
controversial results (Davidson, 2004) which show that the 
energy spectrum scaling laws do not obey k–3, but exhibit 
some faster decaying exponents compared with k–3.
In Figure 1, the energy compensated spectra are presented 
for three given Reynolds numbers at the fifth eddy turnover 
time. According to the current computations, it is found that 
the scaling exponent n of kinetic energy spectra ( ) nE k k −

is about 3.5 at the initial transition period. For the full 
development turbulent of Re = 2.304 × 104, the scaling 
exponent n is close to three in Figure 2. Interestingly,  
it seems that the exponent of ( ) nE k k −  relationship 
depends on the initial condition. It is implied that the 
assumption, 2D turbulence remembers only u2 , is 
questionable as adopted in the Batchelor’s model 
(Batchelor, 1969). This indicates that the 2D turbulence is 
more complex than understood by the conventional theories.  

Figure 1 Energy spectra for three different Re at the fifth eddy 
turnover time: (a) the energy compensated spectrum for 
Re = 1.243 × 103; (b) the energy compensated spectrum 
for Re = 6.377 × 103 and (c) the energy compensated 
spectrum for Re = 2.304 × 104 (continues on next page) 

 (a) 

 (b) 



138 H. Xu, Y-H. Qian and W-Q. Tao 

Figure 1 Energy spectra for three different Re at the fifth eddy 
turnover time: (a) the energy compensated spectrum for 
Re = 1.243 × 103; (b) the energy compensated spectrum 
for Re = 6.377 × 103 and (c) the energy compensated 
spectrum for Re = 2.304 × 104 (continued) 

(c)

Figure 2 Energy spectrum for Re = 2.304 × 104 for full 
development turbulence 

4.2 Integral length scale and vorticity correlations 
In Figures 3 and 4, the relations of normalised length  
scale and eddy turnover time are given. Davidson (2004) 
and Lowe and Davidson (2005) observed that the growth of 
the normalised length scale can be well represented by 

1/ 2l T  (T is normalised by the eddy turn over time).  
From Figure 3, we note that the normalised length scale is 
dependent on the initial fields. However, the 1/ 2l T  scale
is asymptotically approached very well when the turbulence 
is mature. 

Figure 3 Normalised integral scale l/l0 against eddy  
turnover time 

Figure 4 Normalised integral scale l/l0 multiplied by T1/2 against 
eddy turnover time 

Now, we give the ensemble averaged normalised vorticity 
correlation ω ⋅ ω′  in Figures 5–7. The arrow in the figures 
represents the growth in the length scale of the turbulence. 
The form of the initial conditions determines the nature  
of the vorticity correlation during the initial evolution of the 
turbulence (Lowe and Davidson, 2005). The correlation 
oscillates about r-axis when the energy is closely peaked 
around a narrow range of wave number. From Figures 5–7, 
the initial correlation values oscillate around 0 over 
15 → 20 initial integral length scales. Meanwhile, it is 
found that the similar form of the correlation is observed 
after about 20 eddy turnover times. 

Figure 5 The ensemble averaged vorticity correlation 
ω ⋅ ω′ / ω2  for Re = 1.243 × 103

Figure 6 The ensemble averaged vorticity correlation 
ω ⋅ ω′ / ω2  for Re = 6.377 × 103
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Figure 7 The ensemble averaged vorticity correlation 
ω ⋅ ω′ / ω2  for Re = 2.304 × 104

4.3 Evolutions of turbulence basic quantities 
In Figures 8–10, the variations of normalised vorticity peak, 
kinetic energy and enstrophy with the eddy turnover time 
are given. From the figures, the two conserved quantities of 
kinetic energy and vorticity peak can be observed. It is 
known that at modest values of Re, the peak vorticity ω
is not conserved (Lowe and Davidson, 2005). However,  
at high Re, ω  tends to be located at the centre of coherent 
vortices, and declines due to diffusion only (McWilliams, 
1984). At high Re, the diffusion has a small effect and  
so ω  is expected to be conserved (Legras et al., 2001; 
Mariotti et al., 2001). Our numerical investigations of the 
basic quantities for three different high Re endorse these 
results.  

Figure 8 Evolution of normalised basic quantities: vorticity peak 
,ω  kinetic energy u2  and enstrophy ω2  for 

Re = 1.243 × 103

Figure 9 Evolution of normalised basic quantities: vorticity peak 
,ω  kinetic energy u2  and enstrophy ω2  for 

Re = 6.377 × 103

Figure 10 Evolution of normalised basic quantities: vorticity peak
ω , kinetic energy u2  and enstrophy ω2  for 
Re = 2.304 × 104

Another important quantity is the decay exponent of the 
enstrophy ω2 . It is shown by Victor (2004) that in the limit 
Re → ∞ the total enstrophy in the system obeys a universal 
asymptotic relation 2 2 / 3.Tω −  For Re = 1.243 × 103,
a long time computation was implemented and a decay 
relation is obtained in Figure 11. It is observed that  
there exists an approximate relation of 2 2 / 3.Tω −

In Figures 12–14 the snapshots of coherent vortices are 
shown. It is clear that the coherent vortices wind up the 
surrounding vorticity filaments. One possible explanation 
for T1/2 growth of the integral scale in 2D turbulence 
involves the interaction of the coherent vorticity with the 
surrounding vorticity filaments (Davidson, 2004; Lowe  
and Davidson, 2005).  

Figure 11 Evolution of the enstrophy for Re = 1.243 × 103

Figure 12 Vorticity snapshot for Re = 1.243 × 103 at T = 5
(see online version for colours)
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Figure 13 Vorticity snapshot for Re = 6.377 × 103 at T = 5
(see online version for colours) 

Figure 14 Vorticity snapshot for Re = 2.304 × 104 at T = 5
(see online version for colours) 

5 Conclusion 
In this paper, we revisit the freely-decaying 2D turbulence 
by LBM. The numerical investigations found  
an approximate exponent of energy spectrum 3.5( )E k k −

at the high mesh resolutions and an approximate decaying 
exponent of enstrophy 2 2 / 3.Tω −  Also, an approximate 
exponent of integral length scale 1/ 2l T  is observed.  
These results validate the recent new results of 2D 
turbulence and are different from the results derived by 
Batchelor’s 2D model. The numerical results demonstrate 
that LBM can be used to implement fundamental and 
theoretical researches of turbulence. 
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