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1 Introduction 

In the last several decades, some researchers (Le Quéré, 
1990; Leonard and Drummond, 1995; Wakitani, 1997) 

studied the problem of natural convection in a vertical  
air-filled slot, whose two vertical walls are at different 
temperatures, and two horizontal walls are insulated. They 
tried to find the structure of the secondary flows under 
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different Rayleigh number and different ratios of height and 
width. In this paper, in order to compare with the Leonard 
and Drummond’s results (1995), a selfdeveloped steady  
code is used to simulate the same problem with very  
fine grids : natural convection in a tall vertical cavity with  
a ratio of 33 : 1 and a Ra number of 6745. The Nusselt 
number and the secondary vortex flows are analysed  
in detail. The SIMPLER algorithm is adopted in our  
code. For solving the algebraic equation, in CFD and NHT 
several iterative methods are often implemented in 
SIMPLE-Like algorithms, e.g., Gauss-Seidel, Successive 
Over-Relaxation (SOR), and Alternating Direction Implicit 
(ADI) methods (Tao, 2000, 2001). Although these methods 
are easy to implement, their computational efficiency  
are usually slower. In fact, the recent researches of  
the computational and applied mathematics, for example 
(van der Vorst, 2002; Saad, 2000a; Benzi, 2002),  
have shown that the Krylov subspace method can  
often converge much faster than the above classical iteration 
methods, and convergence takes place for a much wider 
class of matrices. Moreover, Benzi (2002) considered  
that, they can be desirable for much wider engineering 
application and are easier to be implemented than the  
multi-grid method. 

In this paper, we perform the preconditioning 
Transpose-Free Quasi-Minimal Residual (TFQMR) 
algorithm presented by Freund (1993), which is one of the 
most popular Krylov subspace method, to calculate an 
example of the natural convection problem reported by 
Leonard and Drummond (1995). 

2 Krylov subspace method 

Krylov subspace methods started in the early 1950s with the 
introduction of the conjugate gradients methods. In the past, 
these methods have been the most important iterative 
techniques and popular, used in the solution of large  
sparse matrix (Saad, 2000b; Benzi, 2002). These methods 
are designed to construct approximate solution in the  
so-called Krylov subspaces. 

As mentioned in van der Vorst (2002) and Saad (2000a, 
2000b), given a linear system 

Ax = b. (1) 

Here, A is a large, usually sparse, non-singular matrix: 
A ∈ Rn×n and b ∈ Rn is a known vector. Defining two  
m-dimension subspaces Km and Lm in Rn, for some given 
initial vector x0, we can seek an approximate solution xm  
in shifted Krylov subspaces according to Petrov-Galerkin 
theory: 
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where r0 = b – Ax0, and matrixes C is also related to  
matrix A. 

Generally speaking, constructing a different Lm,  
the different versions of Krylov subspace will arise.  
Usually two versions are broadly used. One is Lm = Km as 
Arnoldi algorithm (Arnoldi, 1951) and the other  
is Lm = AKm as GMRES algorithm (Saad and Schultz, 
1986). In addition, we can select and construct  
the orthonormal bases vi, wi (i = 1, 2, … m) of Km and Lm  
to get the up Hessenberg matrix Hm through the  
Gramm-Schmidt orthonormal processing or a triangle 
diagonal matrix through the Lanczos double orthonormal 
processing. 

FOM (or Arnoldi) algorithm was presented and 
originally attained through the Gramm-Schmidt 
orthonormal processing. In order to get xm, Saad and  
Schultz (1986) presented GMRES algorithm, which  
also run the Gramm-Schmidt orthonomal processing but is 
different from FOM method to avoid solving 1

mH −  by 
minimising the Euclidean norm ||b – Axm|| during the 
Gramm-Schmidt orthonormal processing. However, 
although GMRES algorithm can usually get better 
convergence characters, those kinds of methods  
need much storage, which is increased linearly with  
the iteration times. The Krylov subspace methods  
based on the Lanczos double orthonormal processing  
can overcome this disadvantage and keep invariable 
storages during the iteration. BiCG (or Lanczos)  
algorithm (Lanczos, 1952) is actually the typical 
computation processing of this kind of method. After this 
algorithm, many new algorithms were developed, such  
as CGS (Sonnoveld, 1989), Bi-CGSTAB (van der Vorst, 
1992), QMR (Freund and Nachtigal, 1991), TFQMR 
(Freund, 1993) and so on. In the following the TFQMR 
algorithm is briefly presented. 

2.1 TFQMR algorithm 
The TFQMR method was firstly presented by Freund in 
1993. It is one of the three most popular transpose-free 
Krylov subspace methods. Its algorithm includes following 
steps: 
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3 Preconditioning technique 

Although in algebraic research field Krylov subspace 
method has been the main method to solve large  
and sparse algebraic equations, and some advanced  
and new algorithms continue to be proposed, the speed of 
convergence of such systems strongly depends on the 
spectrum or the eigenvalues distribution of coefficient 
matrices, which can be highly improved through 
implementing the preconditioning technique. So, the 
application of the preconditioning technique is actually a 
vital part in high performance computing. Recent research is 
more oriented in that direction than in trying to further 
accelerate the Krylov subspace methods (van der Vorst, 
2002; Benzi, 2002). 

Many different preconditionings have been suggested 
over the years, such as Incomplete LU (ILU) factorisations 
(Meijerink and van der Vorst, 1977), Sparse Approximate 
Inverses (SPAI) (Benson, 1973; Benson and Frederickson, 
1982), Multilevel (Botta and Wubs, 1999; Cohen and 
Masson, 1999; Bridson and Tang, 2001; Zhang, 2000;  
Saad and Suchomel, 2002; Bollhofer and Mehrmann, 2002) 
preconditioning technique and so on. However, among all 
these preconditionings the ILU factorisations are the most 
popular to use because of their higher convergence speed 
and the cheapest cost in constructing the preconditioner. 

Usually, there are three styles to implement 
preconditioning (Saad, 1996). If a preconditioner M is 
supposed, and the system (1) is transferred into  

1 1 .M Ax M b− −=  (5) 

It is so called left preconditioning; it can also precondition 
from right 

1 1,AM y b x M y− −= =  (6) 

the third style is split preconditioning: 

1 1 1 1
1 2 1 2,M AM y M b x M y− − − −= =  (7) 

where the preconditioner is 1 2 .M M M=  
In this paper, left ILU(0) preconditioning technique is 

implemented with TFQMR algorithm (Freund, 1993). 

4 Physical problem 

4.1 Mathematical model 

In the paper of Leonard and Drummond (1995), the problem 
of a two-dimensional, buoayancy-driven flow in a tall  
(the ratio of height and width is 33 : 1), rectangular cavity  
is simulated (Fig. 1). 

Figure 1 Geometry of the tall cavity 

 

To this enclosure, two vertical, isothermal walls are 
bounded by differing temperatures and two horizontal walls 
are insulated. The flow is driven as the fluid heated at the 
hot wall. Apply the Boussinesq approximation and give  
the non-dimensional governing equations: 
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where the non-dimensional parameters are defined as 
follows: 
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The boundary conditions are as follows: 

0, 0, 1
1 , 0, 0

0, 0, 0

1, 0, 0.
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4.2 Calculation results 

To compare our solution with that of Leonard and 
Drummond (1995), we also calculate this problem by 
QUICK and PWL schemes, respectively, in different fine 
grid numbers. SIMPLER algorithm is used, and the 
preconditioning TFQMR method is implemented as the 
inner-iterative method. In fact, we also tried to use ADI 
method or ADI with block-correction technique as the 
inner-iterative method to solve this problem, but the results 
become divergent in fine grid numbers. 

According to the calculation results of our code,  
in the 31 × 129 grids used by Leonard and Drummond’ 
paper in 1995, both QUICK and PWL schemes cannot get 
secondary circulations in this tall cavity, which is clearly 
shown in Figure 2; however, slightly increasing the grid 
numbers to 32 × 145, QUICK scheme can calculate nine 
secondary circulations as it is shown in Figure 3, and 
corresponding dimensionless cell coordinates of secondary 
circulations are listed in Table 1, in contrast, PWL scheme 
cannot get the secondary circulations. To attain the  
grid-independent solution, we use three kinds of fine grid 
numbers, namely 82 × 2482, 102 × 3102 and 122 ×3722 
grids. All results of streamline patterns are drawn in Figures 
4–9 and their corresponding dimensionless cell coordinates 
of secondary circulations are listed in Tables 2–7. 

Figure 2 Resulting streamline pattern from  
(a) QUICK + TFQMR and (b) PWL + TFQMR 
(31 × 129) (see online version for colours) 

  
 (a) (b) 
Grid number 31 × 129. 

Figure 3 Streamline pattern calculated with QUICK + TFQMR 
(32 × 145) (see online version for colours) 

 
Grid number 32 × 145. 

Figure 4 Streamline pattern calculated with QUICK + TFQMR 
(82 × 2482) (see online version for colours) 

 
Grid number 82 × 2482. 

Figure 5 Streamline pattern calculated with PWL + TFQMR 
(82 × 2482) (see online version for colours) 

 
Grid number 82 × 2482. 
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Figure 6 Streamline pattern calculated with QUICK + TFQMR 
(102 × 3102) (see online version for colours) 

 
Grid number 102 × 3102. 

Figure 7 Streamline pattern calculated with PWL + TFQMR 
(102 × 3102) (see online version for colours) 

 
Grid number 102 × 3102. 

Figure 8 Streamline pattern calculated with QUICK + TFQMR 
(122 × 3722) (see online version for colours) 

 
Grid number 122 × 3722. 

Figure 9 Streamline pattern calculated with PWL + TFQMR 
(122 × 3722) (see online version for colours) 

 
Grid number 122 × 3722. 

Table 1 Dimensionless cell coordinate calculated with 
QUICK + TFQMR in grid number 32 × 145 

 X Y 

1 0.499894154383 26.5380160006 

2 0.497841216961 24.2311608211 

3 0.499801130602 21.6916530414 

4 0.499801130602 18.925273354 

5 0.499801130602 16.3861965728 

6 0.499801130602 13.8516400199 

7 0.499801130602 11.538574651 

8 0.499801130602 9.22615502905 

9 0.491617495844 6.94054939748 

Nu = 38.38. 

Table 2 Dimensionless cell coordinate calculated with 
QUICK + TFQMR in grid number 82 × 2482 

 X Y 

1 0.500017447225 27.8372011363 

2 0.497778427178 25.8042456902 

3 0.499905455425 23.5245709102 

4 0.500407482985 21.1278355833 

5 0.499270155285 18.6954905666 

6 0.499270155285 16.2620057445 

7 0.499270155285 13.8649946995 

8 0.499270155285 11.4679836546 

9 0.499270155285 9.11428522004 

10 0.499270155285 6.87912656138 

11 0.499270155285 4.88560667663 

Nu = 39.03. 
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Table 3 Dimensionless cell coordinate calculated with 
PWL + TFQMR in grid number 82 × 2482 

 X Y 

1 0.504514732143 27.9619197963 

2 0.498515248326 25.9640916853 

3 0.498515248326 23.7082857701 

4 0.498515248326 21.3744865653 

5 0.504514732143 19.0166894252 

6 0.498515248326 16.6588922852 

7 0.504514732143 14.3130941127 

8 0.498515248326 11.9492974888 

9 0.504514732143 9.59749983259 

10  0.504514732143 7.32969494978 

11 0.498515248326 5.29586993583 

12 0.487479860578 3.84590893162 

Nu = 39.0. 

Table 4 Dimensionless cell coordinate calculated with 
QUICK + TFQMR in grid number 102 × 3102 

 X Y 

1 0.497872010351 28.1268829228 

2 0.497872010351 26.1496078523 

3 0.497872010351 23.8847291352 

4 0.497872010351 21.5179907932 

5 0.503863752989 19.1033185102 

6 0.497872010351 16.6946379697 

7 0.497872010351 14.2679822014 

8 0.503863752989 11.8413264331 

9 0.503863752989 9.46260460583 

10 0.497872010351 7.16177543288 

11 0.497872010351 5.13057467865 

Nu = 39.02. 

Table 5 Dimensionless cell coordinate calculated with 
PWL + TFQMR in grid number 102 × 3102 
(continues on next column) 

 X Y 

1 0.498515248326 27.8179321847 

2 0.498515248326 25.7841071708 

3 0.498515248326 23.4863048689 

4 0.498515248326 21.1045097935 

5 0.498515248326 18.6927172991 

 
 
 
 

Table 5 Dimensionless cell coordinate calculated with 
PWL + TFQMR in grid number 102 × 3102 
(continued) 

 X Y 

6 0.498515248326 16.2869242885 

7 0.498515248326 13.8871307617 

8 0.498515248326 11.4933367187 

9 0.498515248326 9.1415390625 

10 0.498515248326 6.89773211496 

11 0.498515248326 4.92390193917 

Nu = 39.0. 

Table 6 Dimensionless cell coordinate calculated  
with QUICK + TFQMR in grid number 122 × 3722 

 x y 

1 0.497979207081 28.1593511088 
2 0.497979207081 26.0977478535 
3 0.497979207081 23.7544720605 
4 0.5039722398 21.2973286457 
5 0.497979207081 18.7922409693 
6 0.497979207081 16.2631811619 
7 0.497979207081 13.7521004527 
8 0.497979207081 11.294957038 
9 0.497979207081 8.88575788499 

10 0.497979207081 6.62039151726 
11 0.491986174362 4.65467678548 

Nu = 38.98. 

Table 7 Dimensionless cell coordinate calculated with 
PWL + TFQMR in grid number 122 × 3722 

 X Y 

1 0.5039722398 28.2732187305 
2 0.497979207081 26.3134970314 
3 0.497979207081 24.1080609909 
4 0.497979207081 21.8127294596 
5 0.497979207081 19.5353770264 
6 0.497979207081 17.2819967241 
7 0.497979207081 15.0346094545 
8 0.497979207081 12.787222185 
9 0.497979207081 10.5218558172 

10 0.497979207081 8.26847551495 
11 0.497979207081 6.13495586703 
12 0.491986174362 4.27711572419 

Nu = 39.04. 
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Through the results from those figures and tables,  
it is easily found that the numbers of secondary flows in this 
enclosure are not nine as it was reported by the reference 
Leonard and Drummond (1995), in the sparse grids. 
Actually, its numbers cannot be uniquely identified in fine 
grids. In 82 × 2482 and 122 × 3722 grids, the numbers by 
QUICK are 11 but they are 12 by PWL; however, in 
102 × 3102 grids, it is amazing that, QUICK and PWL 
schemes can get the same numbers of secondary flows 
namely 11, although their dimensionless cell coordinates of 
those secondary flows, which are calculated by the two 
schemes, are a bit different. 

In addition, the average Nu numbers got by QUICK and 
PWL schemes respectively at those different fine grids are 
listed in Table 8. Through Table 8, we can easily find that 
the relative differences calculated by the two schemes are 
just slightly different even at the sparse grids. For example, 
in 31 × 129 grids, the relative difference of two kinds of 
schemes is 0.05%; in other fine grids, the maximum relative 
difference is 0.36%. 

Table 8 Nu number and relative difference calculated by 
QUICK and PWL schemes in different grids 

 31 × 129 32 × 145 82 × 2482 102 × 3102 122 × 3722
QUICK 38.26 38.38 39.03 39.02 38.98 
PWL 38.24 38.24 39.0 39.0 39.04 
Relative 
difference 

0.05% 0.36% 0.07% 0.05% 0.15% 

To further prove the fact of indefinite solution  
to this kind of problem, we change Ra into 9500 to calculate 
this problem again by QUICK in 102 × 3102 and 
122 × 3722 grids. Through Figures 10 and 11 of streamline 
pattern, we can find the numbers of secondary flows are  
11 by QUICK in 102 × 3102 grids but 10 in 122 × 3722;  
in fact, their corresponding Nu numbers are very close  
in different grids, namely 42.61 and 42.89. Their 
corresponding dimensionless cell coordinates of secondary 
circulations are listed in Tables 9 and 10. 

Figure 10 Streamline pattern calculated with QUICK + TFQMR in 
Ra = 9500 (102 × 3102) (see online version for colours) 

 
Grid number 102 × 3102. 

Figure 11 Streamline pattern calculated with QUICK + TFQMR 
in Ra = 9500 (122 × 3722) (see online version  
for colours) 

 
Grid number 122 × 3722. 

Table 9 Dimensionless cell coordinate calculated with 
QUICK + TFQMR in Ra = 9500 and grid number 
102 × 3102 

 X Y 

1 0.518501419014 29.1039634016 

2 0.490007077493 27.4006482603 

3 0.499915660431 24.67564866 

4 0.499997148246 21.9077572869 

5 0.499991534052 19.1825723813 

6 0.499886807287 16.4151439754 

7 0.499878758708 13.6898093029 

8 0.499990193278 10.9220760437 

9 0.50007191963 8.19718832227 

10 0.500120639936 5.47165901886 

11 0.479889934259 3.81172796021 

Nu = 42.61. 

Table 10 Dimensionless cell coordinate calculated with 
QUICK + TFQMR in Ra = 9500 and grid number 
122 × 3722 

 X Y 

1 0.49951133821 28.122061409 

2 0.498431589852 25.5643056905 

3 0.498942083134 22.9433716559 

4 0.498942083134 20.3499175707 

5 0.499572375592 17.7600132047 

6 0.499572375592 15.1695660227 

7 0.499572375592 12.5794947036 

8 0.499572375592 9.98904752164 

9 0.499947421409 7.39784861384 

10 0.499572375592 4.84386013421 

Nu = 42.89. 

Grid 
Nu 
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So, it is implied that, to this kind of natural-convective 
problems, whose two vertical walls are at different 
temperatures and two horizontal walls are insulated, it is 
also possible that their solutions are indefinite. It is 
interesting to note that Le Quéré(1990) and Wakitanis 
(1997) had also point out that for the natural convection in a 
2-D tall cavity the fluid flow solutions may be dependent on 
the initial conditions in a certain range of Rayleigh number. 
However, the grid numbers used in their studies were very 
coarse, about only one hundredth of the present study.  
In addition, their concerns were only in the flow fields,  
the information about the Nusselt number for different flow 
patterns at the same Rayleigh number was not provided  
in their papers. Our numerical results are seemingly the  
first in the literature to confirm the fact of solution 
bifurcation at very fine grid and to show the minor 
difference in Nuseelt number for different flow patterns 
when bifurcation occurs. 

5 Conclusions 

We apply the QUICK and PWL schemes respectively,  
in fine grid numbers to simulate the natural convection 
problem in a tall cavity that was also calculated  
in the Leonard and Drummond’s paper, and meanwhile 
implement the preconditioning TFQMR algorithm as the 
inner-iteration method of SIMPLER. We finally attain 
conclusions as follows: 

• it is the first in the literature to point out the uncertainty 
of the flow field solutions to natural convection 
problems at very fine grid system,, whose two vertical 
walls are at different temperatures and two horizontal 
walls are insulated 

• the preconditioning TFQMR method can get 
convergent far better than ADI method as the  
inner-iterative method of SIMPLER in fine grid 
numbers to this problem 

• in fine grid numbers, we make sure the numbers of 
secondary circulations are not nine but 11 or 12 in 
Leonard’s vertical slot; moreover, PWL scheme can 
also get the accurate results like  the  QUICK scheme  
in those fine grids. 

Acknowledgements 

This study was supported by the National Natural Science 
Foundation of China (Grant No. 50636050). 

References 
Arnoldi, W.E. (1951) ‘The principle of minimized iteration in the 

solution of the matrix eigenvalue problem’, Quart. Appl. 
Math., Vol. 17, No. 9, pp.17–29. 

Benson, M.W. (1973) Iterative Solution of Large Scale Linear 
Systems, MSc Thesis, Lakehead University, Thunder Bay, 
Ontario. 

Benson, M.W. and Frederickson, P.O. (1982) ‘Iterative solution of 
large sparse linear systems arising in certain multidimensional 
approximation problems’, Util. Math., Vol. 127, No. 22, 
pp.127–140. 

Benzi, M. (2002) ‘Precontioning techniques for large linear 
systems: a survey’, J. Comput. Phs., Vol. 182, pp.418–477. 

Bollhofer, M. and Mehrmann, V. (2002) ‘Algebraic multilevel 
methods and sparse approximate inverses’, SIAM J. Matrix 
Anal. Appl., Vol. 1, No. 24, pp.191–218. 

Botta, E.F.F. and Wubs, F.W. (1999) ‘Matrix renumbering ILU:  
an effective algebraic multilevel ILU preconditioner for 
sparse matrices’, SIAM J. Matrix Anal. Appl., Vol. 4, No. 20, 
pp.1007–1026. 

Bridson, R. and Tang, W.P. (2001) ‘Multiresolution approximate 
inverse preconditioners’, SIAM J. Sci. Comput., Vol. 23, 
pp.463–479. 

Cohen, A. and Masson, R. (1999) ‘Wavelet methods for  
second-order elliptic problems, preconditioning, and 
adaptivity’, SIAM J. Sci. Comput., Vol. 3, No. 21,  
pp.1006–1026. 

Freund, R.W. (1993) ‘A transpose-free quasi-minimal residual 
algorithm for non-Hermitian linear systems’, SIAM J. Sci. 
Statist. Comput., Vol. 14, No. 2, pp.470–482. 

Freund, R.W. and Nachtigal, N.M. (1991) ‘QMR: a quasi-minimal 
residual method for non-Hermitian linear systems’, Numer. 
Math., Vol. 60, pp.315–339. 

Lanczos, C. (1952) ‘Solution of systems of linear equtions by 
minimized iterations’, J. Res. Nat. Bur. Standards, Vol. 49, 
pp.33–53. 

Leonard, B.P. and Drummond, J.E. (1995) ‘Why you should not 
use ‘Hybrid’, ‘Power-law’ or related exponential schemes for 
convective modelling – there are much better alternative’,  
Int J Numer Methods Fluids, Vol. 20, pp.421–442. 

Le Quere (1990) ‘A note on multiple unsteady solutions in  
two-dimensional convection in a tall cavity’, ASME Journal 
of Heat Transfer, Vol. 112, pp.965–974. 

Meijerink, J.A. and van der Vorst, H.A. (1977) ‘An iterative 
solution method for linear systems of which the coefficient 
matrix is a symmetric M-matrix’, Math. Comput., Vol. 148, 
No. 31, pp.148–162. 

Saad, Y. (2000a) ‘Iterative solution of linear systems in the 20th 
century’, J. Comput Appl Math, Vol. 123, pp.1–33. 

Saad, Y. (2000b) Iterative Methods for Sparse Linear Systems,  
2nd ed., PWS Publishing Company, Boston.  

Saad, Y. and Schultz, M.H. (1986) ‘GMRES: a generalized 
minimal residual algorithm for solving a nonsymmetric linear 
systems’, SIAM J. Sci. Statist. Comput., Vol. 7, No. 3, 
pp.856–869. 

Saad, Y. and Suchomel, B. (2002) ‘ARMS: an algebraic recursive 
multilevel solver for general sparse linear systems’, Numer. 
Linear Algebra Appl., Vol. 9, pp.359–378. 

Sonnoveld, P. (1989) ‘CGS: a fast Lanczos-type solver for 
nonsymmetric linear systems’, SIAM J. Sci. Statist. Comput., 
Vol. 10, pp.36–52. 

Tao, W.Q. (2000) Recent Advance in Computational Heat 
Transfer, Science Press, Beijing.  

Tao, W.Q. (2001) Numerical Heat Transfer, 2nd ed., Xi’an 
Jiaotong University Press, Xi’ an, China. 

van der Vorst, H.A. (1992) ‘Bi-CGSTAB: a fast and smoothly 
converging variant of Bi-CG for the solution of  
non-symmetric linear systems’, SIAM J. Sci. Statist. Comput., 
Vol. 13, pp.631–644. 



 How many secondary flows are in ‘Leonard’s vertical slot’? 291 

van der Vorst, H.A. (2002) ‘Efficient and reliable iterative 
methods for linear system’, J. Comput. Appl Math, Vol. 149, 
pp.251–265. 

Wakitani, S. (1997) ‘Development of multicellular solution  
in natural convection in an air-filled vertical cavity’,  
ASME Journal of Heat Transfer, Vol. 119, pp.97–101. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zhang, J. (2000) ‘Sparse approximate inverse and multilevel block 
ILU preconditioning techniques for general sparse matrices’, 
Appl. Numer. Math., No. 35, pp.67–86.  




