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Abstract

Three-dimensional numerical simulations were performed for laminar flow of wavy fin-and-tube heat exchangers by using body-fitted coor-
dinates (BFC) method with fin efficiency effect accounted. The prediction results of average Nusselt number, friction factor and fin efficiency
were compared with the related experimental correlations [R.C. Xin, H.Z. Li, H.J. Kang, W. Li, W.Q. Tao, An experimental investigation on heat
transfer and pressure drop characteristics of triangular wavy fin-and-tube heat exchanger surfaces, J. Xi’an Jiaotong Univ. 28 (2) (1994) 77–83]
and Schmidt approximation [T.E. Schmidt, Heat transfer calculations for extended surfaces, Refrigerating Engineering (April 1949) 351–357].
For Reynolds numbers based on the tube outside diameter ranging from 500 to 4000, the mean deviation is 3.3% for Nusselt number, 1.9% for
friction factor and 3.6% for fin efficiency. The distributions of local Nusselt number and fin efficiency on fin surface were studied at wavy angle
equal to 0◦ (plain plate fin), 10◦ and 20◦ respectively. The local Nusselt number decreases along the air flow direction, but fin efficiency increases
in general. The wavy angle can greatly affect the distributions of local Nusselt number and fin efficiency, and make the distributions present
fluctuation along the flow direction. The result also shows that the fin efficiency at the inlet region of wavy fin is larger than that of plain plate fin
at the same region. With the increase of Reynolds number, the effects of wavy angle on the distributions of local Nusselt number and fin efficiency
are more and more significant.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Fin-and-tube heat exchangers are employed in varieties of
engineering applications, for example, applications in such ar-
eas like air conditioning units, process gas heaters and coolers,
compressor intercoolers, etc. Since majority of the thermal re-
sistance of fin-and-tube heat exchangers is on the air side, im-
proving air side fin configuration and enhancing its heat transfer
is the most effective way to improve the performance of the
heat exchangers. The conventional method for enhancing air
side heat transfer is by adopting the wavy and slot fins. A lot
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of experimental and/or numerical studies have been conducted
on airside heat transfer performance of wavy fin-and-tube heat
exchangers. Wang et al. [1,2] made extensive experiments on
the heat transfer and pressure drop characteristics of wavy fin
and tube heat exchangers. Wongwises and Chokeman [3] ex-
perimentally investigated the effects of fin pitch and number of
tube rows on the air side performance of herringbone wavy fin
and tube heat exchangers. Jang and Chen [4] numerically stud-
ied the heat transfer and fluid flow in a three-dimensional wavy
fin-and-tube heat exchanger. Manglik et al. [5] analyzed the ef-
fects of fin density on low Reynolds number forced convection
in three-dimensional wavy-plate-fin compact channels by nu-
merical simulation.

The foregoing literature review shows that in all the previous
studies, the main emphasis was placed on studying the effects
of parameters on the average air side heat transfer and pressure
drop characteristics of wavy fin-and-tube heat exchanger, lit-
tle discussions about fin efficiency have been reported. Many
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Nomenclature

A total surface or cross-sectional area . . . . . . . . . . m2

Af fin surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

Ao total surface area . . . . . . . . . . . . . . . . . . . . . . . . . . m2

Cp specific heat . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

D tube outside diameter . . . . . . . . . . . . . . . . . . . . . . . m
f friction factor
Fp fin pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
h heat transfer coefficient . . . . . . . . . . . . W m−2 K−1

k thermal conductivity . . . . . . . . . . . . . . . W m−1K−1

L fin length along flow direction . . . . . . . . . . . . . . . m
N the number of control volume or point
n tube row numbers
Nu total Nusselt number (h · D)/k

Nui,j local Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
�p pressure drop in flow direction . . . . . . . . . . . . . . Pa
Pl longitudinal tube pitch . . . . . . . . . . . . . . . . . . . . . . m
Pt transverse tube pitch . . . . . . . . . . . . . . . . . . . . . . . . m
Q heat transfer capacity . . . . . . . . . . . . . . . . . . . . . . . W
qw heat flux at fin surface . . . . . . . . . . . . . . . . . . W m−2

r tube outside radius . . . . . . . . . . . . . . . . . . . . . . . . . . m
Re Reynolds number based on tube outer side diameter

(UcD/υ)

S tube row pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T bulk average temperature . . . . . . . . . . . . . . . . . . . . K
p bulk average pressure . . . . . . . . . . . . . . . . . . . . . . . Pa

u,v,w x,y, z velocity components . . . . . . . . . . . . . . m s−1

Uc velocity at the minimum cross sectional area m −1

U,V,W transformed velocity . . . . . . . . . . . . . . . . . . . m s−1

x, y, z Cartesian coordinates

XL

√
(Pt/2)2 + P 2

l /2, geometric parameter . . . . . . m
XM Pt/2, geometric parameter . . . . . . . . . . . . . . . . . . m

Greek symbols

α wavy angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦
μ dynamic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . Pa s
υ kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

λ thermal conductivity . . . . . . . . . . . . . . W m−1 K−1

ξ, η, ζ body-fitted coordinates
η fin efficiency
Γ boundary segment

Subscripts

cal calculation results
exp experiment results
in inlet parameters
m mean or average value
o air side
out outlet parameters
w at fin surface conditions
wt at tube surface conditions
i, j local values
investigators [6–8] also applied the uniform heat transfer coef-
ficient assumption for fin efficiency calculation. However, it is
well known that there exists a very complex flow pattern within
a wavy fin-and-tube heat exchanger due to its three-dimensional
nature and flow separations, which causes local variations of
the heat transfer coefficient. Jones and Russell [9], Saboya and
Sparrow [10], Rosman et al. [11] and Ay et al. [12] demonstrate
that there exists a great variation of the heat transfer rate on the
fin surface of the plate fin-and-tube heat exchanger. This also
implies that the heat transfer coefficient on the fin surface is
very nonuniform and the actual steady-state heat transfer coef-
ficient on the fin surface should be the function of position. But
it is very difficult to measure the local heat transfer coefficient
on the fins, because for this purpose the local fin temperature
and local heat flux are needed. The study of the distributions of
the local heat transfer coefficient and fin efficiency on the fin
surface is an important task to design high-performance heat
exchangers because the results can be used to point out the ar-
eas where the enhancement is mostly needed and effective.

In this study, a 3D numerical simulation of the air side heat
transfer and flow characteristics of wavy fin-and-tube heat ex-
changers was performed by body-fitted coordinates system with
taking fin efficiency into account. The predictions of average
Nusselt number, friction factor and fin efficiency were com-
pared with the available experimental correlations and Schmidt
approximation [13]. The local Nusselt number and fin effi-
ciency distributions were investigated. The variations of local
Nusselt number and fin efficiency along the air flow direction
and the distributions of local Nusselt number and fin efficiency
on the whole fin surface were obtained. The effects of wavy an-
gle and Reynolds number on temperature, local Nusselt number
and fin efficiency distributions were studied at wavy angle equal
to 0◦ (plain plate fin), 10◦ and 20◦.

2. Model description

2.1. Physical model

The schematic diagram of the wavy fin-and-tube heat ex-
changer is shown in Fig. 1 with two rows of tubes in the
flow direction. Table 1 lists all the geometric dimensions for
this heat exchanger. The air flow direction is x-direction, fin
span wise direction is y-direction and fin thickness direction is
z-direction, as shown in Figs. 1 and 2. Fig. 2 shows the com-
putational domain of the wavy fin. The actual length of the
computation domain was 7.5 times of the original heat trans-
fer zone. The domain was extended 1.5 times of the original
heat transfer zone for the entrance section to ensure the inlet
uniformity, and at the exit, the domain was extended 5 times
of the original heat transfer zone in order to make sure that the
exit flow boundary has no flow recirculation and the local one-
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Table 1
Geometric dimension for the studied heat exchanger

Tube row number 2
Tube outside diameter (mm) 10.55
Transverse pitch (mm) 25.0
Longitudinal pitch (mm) 21.65
Fin pitch (mm) 2.0
Fin thickness (mm) 0.2
Wavy angle (◦) 17.44
Wavy length (mm) 10.825
Air flow direction length (mm) 43.3

Fig. 1. Schematic diagram of a wavy fin-and-tube heat exchanger.

Fig. 2. Computational domain of the fin.

Fig. 3. Schematic of grid systems generated by body-fitted coordinates.

way method can be used for the numerical treatment of the exit
flow boundary condition. The grid system for the computation
domain generated by BFC is shown in Fig. 3, where the up-
stream and downstream parts of the computation domain are
not presented in order to save the space. In these two extended
computation domains a much coarser grid was adopted to save
the computing resource.

2.2. Grids generation technique

The traditional method to simulate the fin-and-tube heat
exchanger was mostly performed in Cartesian coordinates by
adopting the step-approaching method at the tube surface. But
this approximation method will cause some errors related to the
grid precision, the coarser of the grid, the larger of the error. Too
fine grid will lead to more computation time, and the compli-
cated computation domain makes the use of step-approaching
method more difficult. In this paper, the body-fitted coordinates
were adopted, which helps to transform the complex compu-
tational domain in physical space into a simple domain in the
computational space.

The basic idea of the body-fitted coordinate is to numeri-
cally generate a curvilinear coordinate system having coordi-
nate lines coincident with each boundary of the real compu-
tational domain, regardless of the shapes of these boundaries.
This is implemented by solving elliptic partial differential equa-
tions. Constant values of one of the curvilinear coordinates
are specified as Dirichlet boundary condition on each bound-
ary. Values of the other coordinates are either specified by a
monotonic variation over a boundary as Dirichlet boundary
conditions, or determined by Neumann boundary conditions. In
the latter case, the curvilinear coordinate lines can be made to
intersect the boundary according to some specified conditions,
such as being normal or parallel to some given directions. It is
also possible to exercise control over the spacing of the curvi-
linear coordinate lines in the field in order to concentrate lines
in regions of expected higher gradients. In any case, the numer-
ical generation of the coordinate system is done automatically
for any shape boundaries, requiring only the input of points on
the boundary.

In order to obtain a grid in the computational space, a grid
system generating method needs to be developed. The simplest
equation that could be used to generate the grid is Laplace equa-
tion,

∇2ξi = 0, i = 1,2,3 (1)

The commonly used grid generation techniques are based on
the Poisson equation proposed in Thompson et al. [14]. The 3D
Poisson equation in physical space can be expressed as:

∂2ξ

∂2x
+ ∂2ξ

∂2y
+ ∂2ξ

∂2z
= P(ξ, η, ς)

∂2η

∂2x
+ ∂2η

∂2y
+ ∂2η

∂2z
= Q(ξ,η,ς)

∂2ς

∂2x
+ ∂2ς

∂2y
+ ∂2ς

∂2z
= R(ξ,η, ς) (2)

where P , Q and R are functions for controlling the spacing be-
tween coordinate lines. The above partial differential equations
are subject to a set of Dirichlet boundary conditions, such as:[

ξ

η

ζ

]
=

[
ξ1(x, y, z)

η1
ζ1(x, y, z)

]
, (x, y, z) ∈ Γ (3)

where η1 is a specified constant, ξ1(x, y, z) and ζ1(x, y, z) are
specified monotonic functions on a boundary segment Γ .

The above equations are transformed into the computational
space where the Cartesian coordinates are the dependent vari-
ables. Then we have

α11xξξ + α22xηη + α33xζζ + 2α12xξη + 2α13xξζ + 2α23xηζ

+ J 2(Pxξ + Qxη + Rxζ ) = 0

α11yξξ + α22yηη + α33yζζ + 2α12yξη + 2α13yξζ + 2α23yηζ

+ J 2(Pyξ + Qyη + Ryζ ) = 0

α11zξξ + α22zηη + α33zζζ + 2α12zξη + 2α13zξζ + 2α23zηζ

+ J 2(P zξ + Qzη + Rzζ ) = 0 (4)
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where αjk = ∑3
m=1 βmjβmk , and βmk is the cofactor of the

(m, k) element in the matrix M :

M =
[

xξ xη xζ

yξ yη yζ

zξ zη zζ

]
, and J = det |M| (5)

Thus,

α11 = β2
11 + β2

21 + β2
31

α22 = β2
12 + β2

22 + β2
32

α33 = β2
13 + β2

23 + β2
33

α12 = β11β12 + β21β22 + β31β32

α13 = β11β13 + β21β23 + β31β33

α23 = β12β13 + β22β23 + β32β33 (6)

The transformed boundary conditions are:[
x

y

z

]
=

[
f1(ξ, η1, ζ )

f2(ξ, η1, ζ )

f3(ξ, η1, ζ )

]
, (ξ, η1, ζ ) ∈ Γ ∗ (7)

where f1(ξ, η1, ζ ), f2(ξ, η1, ζ ) and f3(ξ, η1, ζ ) are determined
by the known shape of the boundary segment Γ and the speci-
fied distribution of ξ and ζ thereon. Γ ∗ is the boundary segment
of Γ in the transformed space.

In order to improve the quality of the generated grid sys-
tem, especially for the parts of wave crest and wave trough, in
this paper the final grid systems were generated by the block
structured method with body-fitted coordinates [15]. The grid
systems generated by body-fitted coordinates for the fin part
are shown in Fig. 3.

2.3. The governing equations

The governing equations for the forced steady, laminar, in-
compressible fluid flow and heat transfer in the physical space
are:

Continuity equation:

∂

∂xi

(ρui) = 0 (8)

Momentum equation:

∂

∂xi

(ρuiuk) = ∂

∂xi

(
μ

∂uk

∂xi

)
− ∂p

∂xk

(9)

Energy equation:

∂

∂xi

(ρuiT ) = ∂

∂xi

(
k

Cp

∂T

∂xi

)
(10)

The governing equations in the computational space are:

∂

∂ξ
(ρU) + ∂

∂η
(ρV ) + ∂

∂ς
(ρW) = 0 (11)

∂

∂ξ
(ρUΦ) + ∂

∂η
(ρV Φ) + ∂

∂ς
(ρWΦ)

= ∂

∂ξ

(
α

J
Γ Φ ∂Φ

∂ξ

)
+ ∂

∂η

(
β

J
Γ Φ ∂Φ

∂η

)

+ ∂
(

γ
Γ Φ ∂Φ

)
+ JS (12)
∂ς J ∂ς
where U , V and W are velocity components in transformed
space and Φis the general variable.

U = α1u + α2v + α3w

V = β1u + β2v + β3w

W = γ1u + γ2v + γ3w

J = xξyηzζ + xηyζ zξ + xζ yξ zη

− xζ yηzξ − xηyξ zζ − xξyζ zη (13)

2.4. Boundary conditions

The fluid is assumed to be incompressible with constant
property and the flow is laminar and in steady state condition.
In order to study the fin efficiency distribution, the heat con-
ductivity of the fin must be considered. In the paper, the fin
surfaces are considered as a part of the solution domain and
will be treated as a special type of fluid. The temperature of the
tube surface is higher than that of the inlet air. The boundary
conditions are described for the three regions as follows.

(a) In the upstream extended region (domain inlet)
At the inlet boundary:

u = uin = const, v = w = 0

T = Tin = const (14a)

At the upper and lower boundaries:

∂u

∂z
= ∂v

∂z
= 0, w = 0,

∂T

∂z
= 0 (14b)

At the front and back boundaries:

∂u

∂y
= ∂w

∂y
= 0, v = 0,

∂T

∂y
= 0 (14c)

(b) In the downstream extended region (domain outlet)
At the upper and lower boundaries:

∂u

∂z
= ∂v

∂z
= 0, w = 0,

∂T

∂z
= 0 (15a)

At the front and back boundaries:

∂u

∂y
= ∂w

∂y
= 0, v = 0,

∂T

∂y
= 0 (15b)

At the outlet boundary:

∂u

∂x
= ∂v

∂x
= ∂w

∂x
= ∂T

∂x
= 0 (15c)

(c) In the fin coil region
At the upper and lower boundaries:

Velocity condition:

u = v = w = 0 (16a)

Temperature condition: periodic conditions
At the front and back boundaries:

Fluid region:

∂u = ∂w = 0, v = 0,
∂T = 0 (16b)
∂y ∂y ∂y
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Fin surface region:

u = v = w = 0,
∂T

∂y
= 0 (16c)

Tube region:

u = v = w = 0, T = Twt = const (16d)

3. Numerical methods and grid independency validation

The fluid–solid conjugated heat transfer problem is solved
by the full-field computation method. The solid in the computa-
tional domain is regarded as a special fluid of infinite viscosity.
The harmonic mean method is adopted for the interface dif-
fusion coefficient. In order to guarantee the continuity of the
flux rate at the interface, the thermal conductivity of the fin and
fluid adopts individual values, while the heat capacity of the
fin takes the value of the fluid. This is because in the nominal
diffusion coefficient in the energy equation, Eq. (10), is k/cp ,
and from the definition of the harmonic mean such practice is
needed. For more details references [15,16] may be referred.
The computational domain is discretized by nonuniform grids
with the grids of the fin coil region being finer and those in the
extension domains being coarser. The governing equations are
discretized by the finite volume method [15], and the convec-
tion term is discretized by the power-law scheme. The coupling
between pressure and velocity is implemented by the SIMPLE
algorithm. The convergence criterion for the velocities is that
the maximum relative mass residual of the cells is less than
1.0 × 10−6, and the criterion for temperature is that the relative
difference between the two heat transfer rates obtained from
two iterations separated by 100 successive iterations is less than
1.0 × 10−6.

In order to validate the solution independency of the grid,
four different grid systems were investigated, they are: 78 ×
12 × 12, 142 × 12 × 12, 142 × 22 × 12, 142 × 32 × 12. As
shown in Fig. 4, at Re = 1000, the grid 142 × 22 × 12 yields a
Nu 1.0% higher than that of the finest grid 142 × 32 × 12. So in
this paper, in order to save the calculating time, the grid system
142 × 22 × 12 was adopted for the computations of the average
characters. However, in order to resolute the details of the local
Nusselt number distributions around tube, the wavy crest and

Fig. 4. Variation of the predicted Nusselt number with grid number systems at
Re = 1000.
trough, a more finer grid system was adopted for those local
characteristics. This practice will be described in the following
presentation.

In our numerical simulation, the Reynolds number ranging
from 500 to 4000 based on the tube outside diameter. A ques-
tion may be raised that whether the laminar and steady model
is appropriate. First, if we regard the flow between two ad-
jacent fin surfaces as a channel flow, the transition Reynolds
number may take the value of 2300, with the double spacing
between the two fin surfaces as the reference dimension for the
Reynolds number [17]. It should be noted that the tube outside
diameter is usually 5–10 times of the fin spacing, so the val-
ues of the Re = 2300 (based on the fin spacing) correspond to
the value around 6000–11 000 based on the tube diameter. Sec-
ond, if we take the flow between two adjacent fin surfaces as
the flow through a cylinder, the experimental data have shown
that the turbulent flow occurs for Red � 2 × 105 [17]. Third,
recently, Xue and Min [18] performed a comparative study for
flow in corrugated channels by using steady and transient mod-
els with the same conditions. They found that when the flow
reaches periodic unsteady regime, it is appropriate to use steady
model to predict the Nusselt number and friction factor. He et
al. [19] conducted a comparison between steady and unsteady
modes for plain plate fin-and-tube heat exchange at Re = 5000
based on tube outside diameter. It is found that the difference in
the averaged Nusselt number between these two models is only
about 0.35%. Many other numerical studies in the existing liter-
ature adopted the steady and laminar modes for heat exchanger
surfaces, and reasonably good results are obtained. From the
above discussion, for the studied case at the Reynolds number
ranging from 500 to 4000, the laminar and steady model is still
appropriate.

4. Simulation results and discussions

In this study, the body-fitted coordinate system was used to
generate a general curvilinear coordinate system numerically
by solving elliptic Poisson equations with proper control of grid
densities. The 3D numerical simulation was performed on heat
transfer characteristics of wavy fin-and-tube heat exchangers
with fin efficiency effect accounted by the self-developed code.
The major results are presented in the following section.

4.1. Parameter definitions

In order to present the simulation results, some parameters
are defined as follows:

Re = UcD/υ, Nu = hD/k

h = Q/A�T, Q = ṁCp(T in − T out)

T =
∫∫

A
uT dA∫∫

A
udA

, �T = (Twt − T in) − (Twt − T out)

ln[(Twt − T in)/(Twt − T out)]
p =

∫∫
A

p dA∫∫
A

dA
, �P = pin − pout

f = �pD/
[
(1/2)ρU2

c L
]

(17)
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where Uc, υ , k and Cp are the mean velocity in the minimum
flow cross-section, viscosity, thermal conductivity and specific
heat, D is the outside tube diameter, �p is the pressure drop
along the air flow direction, L is the fin length along the air flow
direction, and A is the heat transfer surface which is determined
by A = Ao + Af η. The determination of the fin efficiency will
be presented in the following discussion.

4.2. Comparisons of average heat transfer coefficient and
friction factor

In order to validate the reliability of the numerical simulation
procedure and the self-developed code, numerical simulations
were carried out at the same operating conditions and fin geo-
metrical configurations as presented in [20]. In Figs. 5 and 6,
the comparisons of simulated average heat transfer coefficient
and friction factor with the values calculated by experimen-
tal correlations[2,20] were performed under different Reynolds
numbers ranging from 500 to 4000 (the corresponding frontal
velocity ranges form 0.46 to 3.71 m s−1).

As can be seen from the figures, the heat transfer coefficient
increases and the friction factor decreases with the increase of
Reynolds number. Compared to the Xin et al.’s experimental re-
sults [20], the mean deviation of Nu number is 3.3%, the max
deviation is −6.0% for conditions other than Reynolds number

Fig. 5. Comparison of Nusselt number between prediction and test results.

Fig. 6. Comparison of friction factor between prediction and test results.
at 500. When compared to the Wang et al.’s experimental re-
sults [2], the mean deviation of Nu number is 5.3%, the max
deviation is 8.6%. The mean deviation of f between simula-
tion results and experimental correlation [20] is 1.9%, the max
deviation is 7.5%. It is worth noting that for numerical simu-
lation of heat transfer and friction factor characteristics, such
agreement between simulation and test correlation should be
regarded rather good. Because in simulation, the model is per-
fect heat exchanger and many little details have been simplified.
For example, the plain plate fin for the actual fin surface is not
a perfect plain plate, there are some small bumpiness caused
by manufacturing process. On the other hand, the experimen-
tal correlation itself has some deviation from their experimental
data, usually being in the order of about 10–15%. Thus the good
agreements between the predicted and tested results show the
reliability of the physical model and the code developed.

4.3. Comparisons of average fin efficiency

Fig. 7 shows the comparison of predicted average fin ef-
ficiency to the values calculated by the Schmidt approxima-
tion [13] under different Reynolds numbers raging from 500
to 4000. The fin efficiency greatly depends on the fin ther-
mal conductivity, in this paper fin thermal conductivity (kf ) is
236 W m−1 K−1. The Schmidt approximation is expressed as
follows.

η = tanh(mrφ)

mrφ
(18)

where

m =
√

2ho

kf δf

(19)

φ =
(

Req

r
− 1

)[
1 + 0.35 ln

(
Req

r

)]
(20)

for staggered tube layout,

Req

r
= 1.27

XM

r

(
XL

XM

− 0.3

)1/2

(21a)

Fig. 7. Comparison of average fin efficiency between prediction and test results.
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and for an inline layout, or 1-row coil,

Req

r
= 1.28

XM

r

(
XL

XM

− 0.2

)1/2

(21b)

Because of the heat transfer coefficient predicted is a total
value which includes fin surface effectiveness, as follows:

ho = h

ηo

(22)

ηo = 1 − Af

Ao

(1 − η) (23)

So, the air-side heat transfer coefficient (ho) and fin efficiency
(η) need to be determined by iteration using Eqs. (18)–(23).

It can be seen form Fig. 7 that although the predicted η is
larger than that calculated by Schmidt approximation, the dif-
ference between them is quite small. The mean deviation of η

between numerical prediction and Schmidt calculation is 3.6%,
and the max deviation is 4.0%. It can also be seen that with the
increase of the Reynolds number, the fin efficiency decreases
and in the computational conditions when Reynolds number
is changing from 500 to 4000, fin efficiency decreases from
94.6% to 86.9%. The good agreement between the predicted
results and Schmidt approximation shows the reliability of the
developed code to predict the wavy fin efficiency. On the other
hand, our numerical simulation of the fin efficiency is based
on the strict definition of heat transfer theory, while Schmidt’s
method is an approximation. The good agreement of the two
results shows that Schmidt’s approximation is suitable for engi-
neering design.

4.4. Distributions of local Nusselt number, local fin efficiency
and temperature

A lot of papers had studied the average heat transfer and flow
characteristics of wavy fin-and-tube heat exchangers numeri-
cally or experimentally. But because it is difficult to measure the
temperature distributions on the whole fin surface and flow do-
main, the local heat transfer coefficient and local fin efficiency
are not easy to be obtained experimentally.

For a regular rectangle channel with either constant wall
temperature or constant wall heat flux, when flow gets fully de-
veloped, the local Nusselt number is constant. But to the wavy
fin-and-tube heat exchangers, there are wavy angle, tube, and
fin efficiency, all of which would affect the local temperature
distribution and heat flux, so the distribution of the local Nusselt
number and local fin efficiency are complicated and irregular. In
the present study, in order to simulate the distributions of the lo-
cal Nusselt number and fin efficiency accurately, the grid distri-
butions around the tube surface, wave crest and wave trough are
made more denser than that adopted in the grid-independency
examination, which is shown in Fig. 8.

The local Nusselt number and fin efficiency are obtained by
the following equations

Nui,j = q̇w,i,jD

k(Tw,i,j − Tb,i,j )
(24)

ηi,j = Tw,i,j − Tb,i,j

T − T
(25)
wt b,i,j
Fig. 8. Grid system being made denser around the tube surface, wave crest and
wave trough.

where q̇w,i,j , Tw,i,j , and Twt are the local heat flux, local tem-
perature on fin surface and temperature on tube surface; the
fluid bulk temperature Tb,i,j is defined as

Tb,i,j =
∫

T U dA/

∫
U dA (26)

The local average Nusselt number and fin efficiency in
y-direction are defined as:

Nui =
∑

j Nui,jAi,j∑
j Ai,j

(27)

ηi =
∑

j ηi,jAi,j∑
j Ai,j

(28)

As the baseline, Fig. 9 shows the distributions of the local
Nusselt number, fin efficiency and temperature at Fp = 1.2 mm
for the plain plate fin (wavy angle α = 0◦). Figs. 9(a) and (b)
shows that the local Nusselt number is very large at inlet region
and then decreases along the flow direction. At the outlet re-
gion, the local Nusselt number is very much smaller compared
with that at the inlet region. These conclusions are coincident
with the results of Chen et al. [21]. In order to investigate the
local heat transfer coefficient on the fin of one-tube plain plate
finned-tube heat exchangers, they divided the whole plate fin
surface into 6 sub-fin regions, and the heat transfer coefficient
on each sub-fin region is assumed to be a constant value. They
analyzed the 6 average local heat transfer coefficients on the
sub-fin surfaces and found the ratio of the average heat trans-
fer coefficient in the front region to that in the back region can
be up to 10. In the present study, it can also be seen that at
the front of the tube region because of the cross section de-
creases and the velocity increases, the decreasing tend of the
local Nusselt number is slower. And at the tube back region the
local Nusselt number is quickly decreased due to the decreasing
of velocity and flow separation, which indicates that at this re-
gion, the convective heat transfer is weak, and we can improve
the total heat transfer coefficient by enhancing the local Nus-
selt number of this region. The local fin efficiency as a whole
increases along the fluid flow direction, as shown in Fig. 9(c)
and (d). At the inlet region, due to the high local heat transfer
coefficient and low local temperature, the value is very small,
and then it increases quickly. At the tube region the increas-
ing tend is slower because of the high local temperature. At the
back region of tube, the local fin efficiency has a decrease due
to the decreasing of the local temperature, and then it repeats
the foregoing variation process. For comparison purposes, the
temperature distributions at the whole plain plate fin surface
(x–y plane) and along the flow direction at middle section (x–z
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(a) Local average Nu number of y-direction Nui variation along x-direction

(b) Local Nusselt number distribution on the whole fin surface

(c) Local average fin efficiency of y-direction (ηi ) variation along the flow
direction

(d) Local fin efficiency distribution on the whole fin surface

Fig. 9. Distributions of local Nusselt number, fin efficiency and temperature in
α = 0◦, Re = 1000.

plane) are shown in Fig. 9(e) and (f). In Fig. 9(f) the temperature
distributions are separated into two parts along the x-direction
with the same length, on the scale of 1, and at z-direction on the
scale of 2.

By the analysis of the local Nusselt number distributions,
such conclusions can be gained that in fin-and-tube heat ex-
changers the heat transfer coefficient at inlet region is much
larger than that at the outlet region, so the convective heat trans-
fer mostly occurs at the inlet region.

Figs. 10 and 11 show the distributions of the local Nusselt
number, fin efficiency and temperature at Fp = 1.2 mm for
wavy angle α = 10◦, 20◦ respectively. As shown in Fig. 10,
because of the small wavy angle α = 10◦, the effects of wavy
(e)Temperature distribution on the fin surface

Temperature distribution on the middle section-1

Temperature distribution on the middle section-2

(f) Temperature distribution on the middle section of x–z plane

Fig. 9. (continued)

angle on the distributions of the local Nusselt number, fin ef-
ficiency and temperature are not obvious, the distributions are
similar to those of plain plate fin. But the existence of wavy
angle causes the local Nusselt number and fin efficiency dis-
tributions are not as regular as the plain plate fin and present
some fluctuation. The effect of wavy angle on the distributions
of the local Nusselt number, fin efficiency and temperature can
be seen clearly in Fig. 11 for wavy angle α = 20◦.

Fig. 11(a) and (b) shows the computed local Nusselt number
distributions for α = 20◦. Generally speaking, the local Nusselt
number decreases along the flow direction which is similar to
plain plate fin, but the detailed variation is more complicated.
The local Nusselt number decreases sharply at the inlet region,
and then it increases near to the first wave crest due to the wave
crest breaking the heat transfer boundary layer. After the first
wave crest, it decreases sharply again because here the flow sep-
aration occurs, and then it decreases slowly up to the first wave
trough where the local Nusselt number becomes a relative min-
imum due to a reversed corner flow. At every wave crest and
wave trough we find the similar trend, the only difference is the
degree of variation. The local fin efficiency as a whole increases
along the fluid flow direction and at the back region of the tube,
the local fin efficiency has a decrease, as shown in Fig. 11(c)
and (d), which is the same as that of the plain plate fin. But at in-
let region and the wave crest or wave trough, due to the effect of
local Nusselt number and temperature, the fin efficiency distrib-
ution present obvious fluctuation. The temperature distributions
of fin surface and middle section in x–z plane are expressed in
Fig. 10(e), (f) and Fig. 11(e), (f) for wavy angle of 10 and 20◦,
respectively. And in Fig. 10(f) and Fig. 11(f), the schematic di-
agrams were presented on the scale of 1 in x-direction and 2 in
z-direction.

From Figs. 9–11, we can see the distributions of local Nus-
selt number, fin efficiency and temperature on fin surface of
wavy fin-and-tube heat exchanger are more complicated and ir-
regular than those of plain plate fin. The wavy angle can greatly
affect the distributions of local variables, the larger of the wavy
angle value, the more distinct of the effects.

Based on the prediction results, it is clear that the fin effi-
ciency and heat transfer coefficient varies locally. For example,



776 Y.B. Tao et al. / International Journal of Thermal Sciences 46 (2007) 768–778
(a) Nui variation along x-direction

(b) Local Nusselt number distribution on the whole fin surface

(c) ηi variation along x-direction

(d) Fin efficiency distribution on the whole fin surface

Fig. 10. Distributions of local Nusselt number, fin efficiency and temperature in
α = 10◦ , Re = 1000.

the fin efficiency at the inlet region of wavy fin is larger than that
of plain plate fin, by replacing the plain fin with wavy fin can-
not only increase average Nusselt number but also improve the
local fin efficiency at the inlet. For fin-and-tube heat exchang-
ers the heat transfer coefficient at inlet region is much larger
than that at the outlet region and the convective heat transfer
mostly occurs at the inlet region. Thus by increase the fin area
and wavy angle at the inlet and decrease the fin area and wavy
angle at the outlet could not only enhance heat transfer but also
decrease material consumes and pressure drop.

In Fig. 12, the distributions of local Nusselt number and
fin efficiency are presented at different Re numbers for Fp =
1.2 mm, wavy angle α = 100. It can be seen that the variation
(e)Temperature distribution on the fin surface

Temperature distribution on the middle section-1

Temperature distribution on the middle section-2

(f) Temperature distribution on the middle section of x–z plane

Fig. 10. (continued)

trends along the x-direction at different Re numbers are very
similar. The effects of the wave crest and wave trough on the
distributions of the local Nusselt number and fin efficiency in-
crease with the increasing of Re number.

5. Conclusions

In this paper, the BFC method was adopted to generate 3D
computational grids, then the air side heat transfer and fluid
flow characteristics of wavy fin-and-tube heat exchanger were
performed by taking into account the fin efficiency effect. The
simulation results of average Nusselt number, friction factor
and fin efficiency were compared with experimental correla-
tions and Schmidt approximations, the good agreements vali-
date the model code. The local Nusselt number, fin efficiency
and temperature distributions on fin surface at different wavy
angle ranging from 0◦ (plain plate fin) to 20◦ were studied. The
following conclusions can be made:

(1) The average Nusselt number of the wavy fin-and-tube heat
exchanger increases with the increase of Reynolds number,
but the friction factor and average fin efficiency decrease.

(2) For the plain plate fin, the local Nusselt number decreases
quickly along the flow direction, at the outlet region, it is
much smaller compared with the values of the inlet region,
and at the back region of tube, the local Nusselt number has
a drastic decrease, which are coincident with the results of
Ref. [21]. Because the local Nusselt number at the inlet is
much larger than that at the outlet, and the convective heat
transfer mostly occurs at the inlet region, an appropriate in-
crease of the fin area at the inlet and decrease of the fin
area at the outlet cannot only enhancing heat transfer but
also decreasing material consume. The local fin efficiency
increases along the flow direction due to the effect of local
Nusselt number and temperature: at the inlet the fin effi-
ciency is very low, it increases along the flow direction and
then after the tube the fin efficiency decreases.
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(a) Nui variation along x-direction

(b) Local Nu number distribution on the whole fin surface

(c) ηi variation along x-direction

(d) Fin efficiency distribution on the whole fin surface

Fig. 11. Distributions of local Nusselt number, fin efficiency and temperature in
α = 20◦ , Re = 1000.

(3) For wavy fins, the distributions of the local Nusselt num-
ber, local fin efficiency are more complicated due to the
effect of the wavy angle. The local Nusselt number de-
creases sharply at the inlet region, and then it increases at
near to the first wave crest. After the first wave crest, it de-
creases sharply again, and then it decreases slowly up to
the first wave trough where the local Nusselt number be-
comes a relative minimum. At every wave crests and wave
troughs, the trend is similar, only difference is in variation
degree. The larger value of the wavy angle, the more dis-
tinctness of the phenomenon. At inlet region and the wave
crest or wave trough, due to the effect of local Nusselt num-
ber and temperature, the fin efficiency distribution presents
obvious irregular fluctuation.
(e) Fin temperature distribution on the fin surface

Temperature distribution on the middle section-1

Temperature distribution on the middle section-2

(f) Temperature distribution on the middle section of x–z plane

Fig. 11. (continued)

(a) Nui variations along x-direction at different Re numbers

(b) ηi variations along x-direction at different Re numbers

Fig. 12. Distributions of local Nusselt number and fin efficiency at different Re
numbers in α = 10◦ .
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(4) The fin efficiency at the inlet region of wavy fin is larger
than that of plain plate fin. And for fin-and-tube heat ex-
changers the heat transfer coefficient at inlet region is very
larger than that at the outlet region and the convective heat
transfer mostly occurs at the inlet region. We can appropri-
ately increase the fin area and wavy angle at the inlet and
decrease the fin area and wavy angle at the outlet, which
could not only enhance heat transfer but also decrease ma-
terial consume and pressure drop.
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