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Abstract

Purpose – This paper aims to accelerate the iteration convergence for elliptic fluid flow problems, so
that an under-relaxation factor control method is developed.

Design/methodology/approach – There should be an optimal under-relaxation factor that can
result in the equivalence of the global residual norms of momentum equation u and momentum
equation v. The two residual norms of the momentum equations will be equivalent through controlling
the velocity under-relaxation factors, and then the iteration convergence can be accelerated. Two
expressions ða ¼ ða 0Þb

g

and a ¼ ða 0Þð1=bÞ
g

Þ are proposed to adjust the values of under-relaxation
factors for every n iterations.

Findings – From the five preliminary computations it is found that the value of g can be larger than 1
and of n can be less than 5 for an open system, and the value of g should be less than 1 and that of n
should be larger than 10 for a closed system. These two pairs of parameters are then used in another
five examples. It is found that the saving in CPU times is at least 43.9 percent for the closed system and
67.5 percent for the open system.

Research limitations/implications – When the Re or Ra of the two-dimensional problems are low,
this control method is feasible. More research work is needed in order to apply it in three-dimensional
or high Re or Ra problems.

Originality/value – This method is helpful for the acceleration of iteration convergence in simple
problems, and is a preparation for the advanced research in complicated problems.
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Nomenclature
A ¼ area of control-volume face
ae, anb ¼ coefficients in the discretized

conservation equations
b ¼ source term in discretized

conservation equations
c ¼ constant
D ¼ characteristic length of channel or

cavity

DIV ¼ divergence
G ¼ global residual norm
H ¼ height
L ¼ length
n ¼ iteration number for the control

method
p ¼ pressure
p* ¼ intermediate pressure
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p0 ¼ pressure correction
R ¼ residual
Ra ¼ Rayleigh number
Re ¼ Reynolds number
r ¼ radial coordinate
T ¼ temperature
u, v ¼ velocity components in x and y

direction
u*, v* ¼ intermediate velocity
u0 v0 ¼ velocity correction
x, y ¼ spatial coordinates
a ¼ under-relaxation factor
b ¼ exponent in equations (15)–(18)
g ¼ exponent in equations (15)–(18)

1 ¼ pre-specified small value to
control convergence

r ¼ density

Subscripts
c ¼ lowest temperature
E, N, P ¼ grid points
e, n, p ¼ cell faces
h ¼ highest temperature
in ¼ inlet
nb ¼ neighbor points
p ¼ pressure
u, v ¼ velocity components in x and y

direction

1. Introduction
In numerical analysis of fluid flow and heat transfer problems, iterative methods are
frequently adopted in which velocity components are solved in segregated manner and
the linkage between velocity and pressure is ensured by the SIMPLE-series algorithm.
Since, the leading iterative approach SIMPLE was proposed (Patankar and Spalding,
1972), it has been widely applied in the fields of computational fluid dynamics (CFD)
and numerical heat transfer (NHT). Over the past three decades, many variants such as
SIMPLER, SIMPLEC, SIMPLEX and so on were developed, which consist the so-called
SIMPLE-family solution algorithms. During the development of the SIMPLE-family
algorithms, how to accelerate the iteration convergence is one of the key problems for
enhancing the solution algorithm.

In SIMPLE-family algorithms, the iteration convergence can be accelerated by three
methods (Tao, 2000). First, an explicit correction step for the velocities was suggested
(Yen and Liu, 1993). By applying this explicit correction step to the SIMPLE, SIMPLEC
and PISO algorithms, significant reductions in the number of iterations and CPU time
to achieve convergence were demonstrated. The second method is to choose
appropriate values of the under-relaxation factors. Patankar (1980) pointed out that for
the SIMPLE algorithm the velocity under-relaxation factor of 0.5 and the pressure
under-relaxation of 0.8 were found to be satisfactory in a large number of fluid-flow
computations. However, it is recommended that if the computational grid is not
severely nonorthogonal, the relation:

au þ ap ¼ c ð1Þ

gives almost the optimum result, where the constant c is 1 (Demirdzic et al., 1987) or 1.1
(Peric, 1990). Later a pressure under-relaxation factor based on the minimization of the
global residual norm of the momentum equations was proposed (Chatwani and Turan,
1991). The procedure was applied to SIMPLE and SIMPLEC algorithms to
automatically select the pressure under-relaxation factor to minimize the global
residual norm of the momentum equations at each iteration level, but a notable increase
in convergence was not achieved. Some other researchers (Latimer and Pollard, 1985;
Macarthur and Patankar, 1989; Marek and Straub, 1993) all stated the need for a
method of automatically optimizing the relaxation factors. Some new methods are
developed in recent years to accelerate the iteration convergence. For example, fuzzy
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mathematics has been developed as a new branch of mathematics in the last 20 years.
It is extensively applied in many fields of science and technology such as the control of
convergence in CFD simulations (Ryoo et al., 1999; Dragojlovic et al., 2001). Later, this
method was improved (Liu et al., 2002). On the other hand, a new algorithm SOAR
based on the comparison between SIMPLE algorithm and the Newton-Raphson
method for automatically determining the optimum values of relaxation factors for
SIMPLE algorithm was developed (Morii and Vierow, 2000). Recently, the SOAR
algorithm and the SIMPLE algorithm for computing performance in collocated grid are
compared (Morii, 2005). The results showed that the SOAR had better computing
performance than that of SIMPLE as the grid is refined.

The other methods for different special cases are grouped into the third method. For
example, the SIMPLE-family algorithms will converge slowly when there is rapidly
varying pressure in flow field, such as flow through a blunt sampler and dust-laden
fluid flow through a paper filter. A method to improve the rate of the convergence
for the SIMPLE-family algorithms for such cases is proposed (Wen and Ingham,
1993, 1994).

This paper gives a simpler method for the under-relaxation factor control based on a
new idea for elliptic fluid flow simulation, which is different from the above-mentioned
methods. The discussion will focus on the 2D recirculating flows. By using the
proposed method the two momentum equations can be iterated consistently through
controlling the velocity under-relaxation factor, and the iteration convergence can be
significantly accelerated. The feasibility of the proposed method is validated by ten
typical examples.

2. Under-relaxation factor control method
2.1 Criteria of iteration convergence
Commonly, for an open flow system which has both inflow and outflow boundaries, the
criterion for terminating the iteration of nonlinear computation is that the relative
residual norm of the momentum equations is less than a pre-specified small value.
For example, this pre-specified small value was 1 # 1 £ 1023 , 1 £ 1025 (Latimer and
Pollard, 1985). That is for momentum equation u, if following condition is satisfied:

Gu ¼

P
node aeue 2

P
nbanbunb þ bþ Aeð pP 2 pE Þ

� �� �2
� �1=2

ru2
in # 1

ð2Þ

the convergence of u momentum equation is reached. In this paper, this pre-specified
value is taken as small as 1 £ 1028.

For a closed system, a numerical integration can be made for the momentum
equation along any section in the field to obtain the reference momentum shown in the
denominator of equation (2).

For a two-dimensional elliptic flow field, there are two norms of momentum
equations of x direction and y direction, respectively, which are denoted by Gu and Gv.
Therefore, the criteria for iteration convergence is:

maxðGu;GvÞ # 1 ð3Þ

An under-
relaxation factor

control method

795



It usually takes much time to make the maximum of Gu and Gv to be less than the same
pre-specified small value since the two values of Gu and Gv are not always in the same
order.

2.2 Analysis of the existence of an optimum velocity under-relaxation factor
For the SIMPLE algorithm, the revised velocities in the correction step are:

u ¼ u*þ u0 v ¼ v*þ v0 p ¼ p*þ p0 ð4Þ

For momentum equation u, the residual is given by:

Ru ¼ aeue 2
X

anbunb 2 b2 Aeð pP 2 pEÞ

¼ aeue 2
X

anbunb 2 b2 Ae½ð p
*
P þ app

0
P Þ2 ð p*E þ app

0
E Þ�

¼ Ru;0 2 apAeð p
0
P 2 p0EÞ

ð5Þ

where:

Ru;0 ¼ aeue 2
X

anbunb 2 b2 Aeð p
*
P 2 p*E Þ ð6Þ

A similar equation can be written for the v momentum equation. The global residual
norm is given by, therefore:

G ¼
X

ðR2
u þ R2

vÞ ð7Þ

Chatwani and Turan (1991) considered that G could be minimized with respect to the
under-relaxation factor for the pressure correction ap by setting the derivative to be
zero. This leads to following equation for ap:

ap ¼

P
Ru;0Aeð p

0
P 2 p0EÞ þ Rv;0Anð p

0
P 2 p0N Þ

� �
P

A2
eð p

0
P 2 p0E Þ

2 þ A2
nð p

0
P 2 p0N Þ

2
h i ð8Þ

Assuming that the difference of the pressure corrections between two adjacent points
is everywhere identical and is denoted by Dp0. The above equation for ap can be
rewritten as:

ap ¼

P
ðRu;0Ae þ Rv;0AnÞP
ðA2

eDp
0 þ A2

nDp
0Þ

ð9Þ

Combining the two residuals of the momentum equations with equation (8) the
following relations can be derived:

Ru ¼
Ru;0

P
A2

e 2 Ae

P
ðRu;0AeÞ þ Ru;0

P
A2

n 2 Ae

P
ðRv;0AnÞP

ðA2
e þ A2

nÞ
ð10Þ
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Rv ¼
Rv;0

P
A2

n 2 An

P
ðRv;0AnÞ þ Rv;0

P
A2

e 2 An

P
ðRu;0AeÞP

ðA2
e þ A2

nÞ
ð11Þ

For a grid system with Ae ¼ An, assuming that the value of Ru,0 on all points are
identical, and the value of Rv,0 on all points are identical, too, we can get the following
relation:

Ru ¼ 2Rv ¼

P
ðRu;0A

2
nÞ2

P
ðRv;0AeAnÞP

ðA2
e þ A2

nÞ
ð12Þ

That is:

Gu ¼ Gv ð13Þ

Above analysis shows that the optimal pressure under-relaxation factor proposed by
Chatwani and Turan (1991) can lead to the equivalence between the two global residual
norms of momentum equations u and v under the above four assumptions
(Dp0 identical, Ae ¼ An, Ru,0 identical and Rv,0 identical). And it is the authors’ believe
that the equivalence of the two residuals will greatly help to improve the convergence.
Such special case, of course, can hardly occur in practical numerical simulations.
However, if we can somehow make the two residuals approximately the same, the
iteration convergence rate will also be accelerated. Since, the velocity under-relaxation
au, av and the pressure under-relaxation factor are inherently related, say equation (1)
(Demirdzic et al., 1987), we have tried to reach such a situation by controlling the
velocity underrelaxation factor. In the following our numerical findings will be
presented.

2.3 Velocity under-relaxation factor control method
The above analysis illustrates that there may be an optimal velocity under-relaxation
factor which can make the two residual norm of the two momentum equations strictly
the same. And it is the authors’ believe that when such an under-relaxation factor is
used, the convergence will be accelerated. As how to find such a relaxation factor, it is a
matter of experiences. Through a great number of numerical practices we developed a
velocity under-relaxation factor control method, which can approximately realize the
above purpose. The velocity under-relaxation factor control method is now described
as follows.

At first, the ratio between Gu and Gv is denoted by b, i.e.:

b ¼
Gv

Gu
ð14Þ

The optimal velocity under-relaxation factor can be adjusted for three different
categories as follows:

(1) b is less than 1 when the velocity under-relaxation factors are small, or b is
larger than 1 when the velocity under-relaxation factors are large. The
controlling relation is defined as:

a ¼ ða 0Þb ð15Þ
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where a is the velocity under-relaxation factor used for the present level, a 0 the
under-relaxation factor used in the previous iteration.

(2) b is larger than 1 when the under-relaxation factors are small, andb is less than 1
when the under-relaxation factors are large. The controlling relation is defined as:

a ¼ ða0Þ1=b ð16Þ

(3) When the adoption of one of the above rules leads to a severe change in the velocity
under-relaxation factor, the iteration process may be deteriorated and even leads
to diverge. If this happens, i.e. the change of the velocity under-relaxation factor is
over the given range (the upper limit of the velocity under-relaxation factor is
taken as 0.98) with one of the two relations, the velocity under-relaxation factor
should be re-adjusted. This re-adjustment is very simple: use the other relation
instead of the one used before. That is, when use of the first relation leads to
an acute variation of the velocity under-relaxation factor, then use the second
relation to get a new value, and vice versa.

In order to further optimize the under-relaxation factor through the above two
relations, two more parameters, g and n, are introduced. The two relations, equations
(15), (16) can be rewritten as:

a ¼ ða 0Þb
g

ð17Þ

a ¼ ða 0Þð1=bÞ
g

ð18Þ

The value of g is always larger than zero. It is used to adjust the value of the exponent in
the two relations and enhance or alleviate the variation of the under-relaxation factor
value between two iteration levels. For instance, the iteration may diverge with an acute
variation of the under-relaxation factor, and then reducing the value of g is helpful to
alleviate this phenomenon. The value of b may change severely if we adjust the
under-relaxation factor each iteration, especially at the beginning of the iteration, which
may decelerate the iteration convergence or even leads to the divergence of the iteration.
So, we should adopt the method after several iterations from the beginning of the
computation, then adjust the under-relaxation factor every n iterations. Additionally, to
avoid the severe change of b, the range of b is given from 0.2 to 5.0. For a common
example, the method can be adopted after 200 iterations from the beginning of the
computation. Therefore, n is regarded as another parameter to enhance the convergence.
From the following examples, we can see that an appropriate value ofn is very important
to the iteration convergence and some suggested value of n will be presented.

In the following presentation, the results of preliminary numerical tests will first be
presented, from which the values of g and n will be obtained through detail numerical
practices for five selected problems. Then these values are used in another five more
examples directly, without any try and error computations. If the suggested values can
still lead to a significant saving of computational times for the five additional
examples, then the feasibility of the proposed method can be considered justified in
some extent. Fortunately, it is the case.

3. Preliminary test examples
Five flow and heat transfer problems (lid-driven cavity, flow in a 2D axisymmetric
sudden expansion, flow over a backward-facing step, flow in annulus with the inner
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wall rotating about the axis and natural convection in a square cavity) are used to
validate the performance of the method and to find out the suggested values of g and n.
The governing equations are discretized by the control volume method. The SIMPLEC
algorithm is adopted to deal with the coupling between velocity and pressure, where
the pressure correction under-relaxation factor is fixed at 1 (van Doormaal and
Raithby, 1984; Tao, 2001). And the velocity under-relaxation factor is dealt with by the
proposed control method. The pre-specified small value 1 is 1 £ 1028. Computations
are also conducted for au ¼ av ¼ 0.5 and the results by using these two
under-relaxation factors will be compared with the results obtained by adopting the
proposed control method. We have tried different constants of au and av. The results
show that the computational CPU time is different under different initial values of au

and av. For different cases, the optimal values of au and av are also different. Hence, the
saving in CPU time are different by our method when different initial au and av are
used. However, since for most cases people usually try to use au ¼ av ¼ 0.5 as
suggested by Patankar, therefore, such practice is adopted in this paper. To compare
the CPU time between the velocity under-relaxation factor control method and
au ¼ av ¼ 0.5 the relative time is adopted, i.e. for an example, the CPU time under
au ¼ av ¼ 0.5 is divided by the CPU time under different cases.

3.1 Lid-driven cavity
The schematic of lid-driven cavity flow is shown in Figure 1. Computation is conducted
for Re ¼ 100 (Re ¼ UD/v), and the grid system used is 52 £ 52. Table I shows the CPU
time under different values of g and n. It can be observed that the saving in CPU time is

Figure 1.
Lid-driven cavity

(Re ¼ 100)

x

y

U0=1, V=0

D

D

n 1 2 3 4 5 10 15 20 30 50 au ¼ 0.5

g ¼ 0.5 0.307 0.276 0.210 0.194 0.200 0.250 0.290 0.334 0.398 0.483 1
g ¼ 0.8 0.301 0.328 0.276 0.231 0.201 0.213 0.244 0.274 0.328 0.403
g ¼ 1.0 0.293 0.324 0.295 0.256 0.212 0.201 0.224 0.255 0.298 0.363
g ¼ 1.2 0.326 0.325 0.307 0.269 0.237 0.191 0.209 0.238 0.282 0.339
g ¼ 1.5 0.271 0.323 0.306 0.336 1.027 0.195 0.203 0.221 0.257 0.302

Table I.
CPU time of lid–driven

cavity (s)
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80.9 percent with the appropriate value of g and n compares to au ¼ 0.5. The iteration
can converge under different value of n with the smaller value of g. When the value of
g becomes larger, the iteration is easy to be diverged. Additionally, Figure 2 shows the
relationship between iteration times and under-relaxation factor with n ¼ 10. It can be
observed that when the value g is smaller, the variation of the under-relaxation factor
is not significant. When the value of g becomes larger, the variation of the
under-relaxation factor becomes acute. Therefore, for this closed system, n is about 10
and g can be larger than 1.

Figure 2.
The relationship between
iteration times and
under-relaxation factor
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(a) g = 0.5

200 300 400 500 600 700

0.5

0.6

0.7

0.8

0.9

1.0

iteration number

(b) g = 0.8
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(c) g = 1.0
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(d) g = 1.2 

(e) g = 1.5
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3.2 Flow in a 2D axisymmetric sudden expansion
Figure 3 shows the schematic of flow in a 2D axisymmetric sudden expansion. The
sizes in computational region are Lx/Din ¼ 60, Lin/Din ¼ 10, D/Din ¼ 2. Re ¼ 150
(Re ¼ UD/v). The grid system used is 102 £ 22. Table II shows the CPU time under
different values of g and n. It can be observed that the saving in CPU time is
70.0 percent with the appropriate value of g and n compares to au ¼ 0.5. As shown in
Figure 2 and 4, shows that the variation of the under-relaxation factor becomes acute
when the value of g becomes larger and n ¼ 5. Additionally, we also find that
the under-relaxation factor was over the given range in this example and it fell into the
third category described in the second section. So the under-relaxation factor was
re-adjusted. It is finally found that a larger value of g can accelerate the iteration
convergence. Thus, for this open system, g can be larger than 1, and n can be given by
a relative small value.

3.3 Flow over a backward-facing step
The schematic of flow over a backward-facing step is shown in Figure 5. The sizes in
computational region are Lx/H1 ¼ 60, Lin/H1 ¼ 10, H2/H1 ¼ 2. Re ¼ 100 (Re ¼ UD/v).
The grid system used is 102 £ 32. Table III shows the CPU time under different values
of g and n. It can be observed that the saving in CPU time is 74.3 percent with the
appropriate value of g and n compared to au ¼ 0.5. Figure 6 shows the relationship
between iteration times and under-relaxation factor with n ¼ 5. The computational
results of this example are similar to the computational results of flow in a 2D
axisymmetric sudden expansion.

3.4 Flow in annulus with the inner wall rotating about the axis
The schematic of flow in annulus with the inner wall rotating about the axis is shown in
Figure 7. Re ¼ Uri/v ¼ 100. The grid system used is 52 £ 52. Table IV shows the CPU
time under different values of g and n. It can be observed that the saving in CPU time is

Figure 3.
Schematic of flow in a 2D

axisymmetric sudden
expansion (Re ¼ 150)

x

r

Din

LRLin

Lx

D

n 1 2 3 4 5 10 15 20 30 50 au ¼ 0.5

g ¼ 0.5 0.309 0.325 0.362 0.382 0.395 0.403 0.409 0.405 0.428 0.429 1
g ¼ 0.8 0.314 0.307 0.332 0.353 0.361 0.392 0.402 0.397 0.397 0.409
g ¼ 1.0 DIV 0.306 0.320 0.330 0.341 0.391 0.397 0.394 0.384 0.426
g ¼ 1.2 DIV 0.300 0.307 0.312 0.325 0.383 0.399 0.367 0.387 0.396
g ¼ 1.5 DIV DIV DIV 0.310 0.321 0.372 0.351 0.342 0.391 0.407

Note: DIV – divergence

Table II.
CPU time of flow in a 2D

axisymmetric sudden
expansion (s)
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43.9 percent with the appropriate value ofg andn compares toau ¼ 0.5. A smaller value of
g is good for accelerating the iteration convergence. Figure 8 shows the relationship
between iteration times and under-relaxation factor with n ¼ 10. When the value of g is
larger than 1, the variation of the value of the under-relaxation factor is acute. So, for this
closed system, the value of g should be less than 1, and n should be given by a relative
large value.

Figure 4.
The relationship between
iteration times and
under-relaxation factor
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3.5 Natural convection in a square cavity
The schematic of natural convection in a square cavity is shown in Figure 9.
Computation is conducted for Ra ¼ 104 (Ra ¼ r2gbDTD 3Pr/m2), and the grid system
used is 42 £ 42. Table V shows the CPU time under different values of g and n. It can
be observed that the saving in CPU time is 53.4 percent with the appropriate value of g
and n compares to au ¼ 0.5. A smaller value of g is good for accelerating the iteration
convergence. Figure 10 shows the relationship between iteration times and
under-relaxation factor with n ¼ 10. It can be found that when the value of g is
small, the value of under-relaxation factor changes from small to large, and when the
value of g becomes larger, the value of the under-relaxation factor becomes larger too.
So, for this closed system, the value of g should be less than 1, and n should be given by
a relative large value.

4. Application results and discussion
As discussed above, if the two residual modules of the momentum equations are in the
same order namely the value of b is nearly to be 1, the iteration will be easy to be
converged. Then the key issue is whether we can propose some values of g and n which
can make b around 1 and, more important, are the proposed values common to a series
of flow problems, so that one can directly adopt them in the flow computation without
any preliminary test. We choose the lid-driven cavity flow and flow in a 2D
axisymmetric sudden expansion as the representatives of an open system and a closed
system, respectively. The results of the effects of g on b for the two selected
representative problems are shown in Figures 11 and 12, respectively. It can be
observed that for the two systems, the value of b is easy to be 1 when the value of g is
small, while with increasing g the approach of 1 for the value of b gradually

Figure 5.
Schematic of flow over a

backward-facing step
(Re ¼ 100)

Lx

Lin LR

H2

H1 x

y

n 1 2 3 4 5 10 15 20 30 50 au ¼ 0.5

g ¼ 0.5 DIV 0.257 0.278 0.295 0.303 0.324 0.335 0.334 0.347 0.342 1
g ¼ 0.8 DIV DIV 0.262 0.262 0.279 0.304 0.325 0.314 0.331 0.317
g ¼ 1.0 DIV DIV DIV 0.257 0.262 0.295 0.311 0.310 0.317 0.334
g ¼ 1.2 DIV DIV DIV DIV 0.257 0.289 0.307 0.304 0.305 0.317
g ¼ 1.5 DIV DIV DIV DIV 0.257 0.282 0.282 0.278 0.281 0.318

Note: DIV – divergence

Table III.
CPU time of flow over a
backward-facing step (s)
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becomes difficult. For lid-driven cavity, for example, the value of b is oscillating when
g is equal to 1.5. It elucidates that the small value of g is good for iteration convergence.
On the other hand, the large value of g can accelerate the convergence for an open
system. Combined the results above, we can draw the conclusions that the value of

Figure 6.
The relationship between
iteration times and
under-relaxation factor
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g can be larger than 1 and of n can be less than 5 for an open system, and the value of g
should be less than 1 and of n should be larger than 10 for a closed system.

The method proposed by Chatwani and Turan (1991) accompanied with equation
(13) is also adopted for the above five examples. It is found that by using this method
both pressure under-relaxation and velocity under-relaxation are very unstable, which
may even results in the iteration divergence. Thus, it seems that the method is not
common for most other cases although it has a good character for some special cases
presented in that paper.

In order to evaluate the feasibility of the proposed method, another five examples,
such as natural convection in an annual cavity ðRa ¼ r 2gbDTðro 2 riÞ

3Pr =m 2 ¼ 104Þ;
natural convection in a vertical annual pipe ðRa ¼ r 2gbDTðro 2 riÞ

3Pr =m 2 ¼ 104Þ;
isolated island problem ðRa ¼ r 2gbDTD 3Pr =m 2 ¼ 105Þ; flow in a 2D axisymmetric
finned tube (Re ¼ UD/v ¼ 200, where D is the diameter of the tube) and flow over a
parallel finned channel (Re ¼ UD/v ¼ 200, where D is the distance between the two
plate) are used to validate the method under the values ofg andnbasically obtained from
the preliminary tests, and are fixed at 1.2 and 5, respectively, for the open system, and 1.0
and 10, respectively, for closed system. The schematics of the five examples are shown in
Figure 13 and the computational results are shown in Table VI. In the table, the CUP
times required when au ¼ 0.5 are also shown.

Figure 7.
Schematic of flow in

annulus with the inner
wall rotating about the

axis (Re ¼ 100)

U=1.0

ri

n 1 2 3 4 5 10 15 20 30 50 au ¼ 0.5

g ¼ 0.5 0.810 0.635 0.596 0.594 0.586 0.611 0.629 0.657 0.874 0.816 1
g ¼ 0.8 1.702 0.696 0.626 0.619 0.589 0.579 0.609 0.609 0.853 0.756 0
g ¼ 1.0 4.613 0.737 0.678 0.632 0.628 0.561 0.617 0.585 0.858 0.734 0
g ¼ 1.2 DIV 0.972 0.696 0.671 0.670 0.637 0.591 0.599 0.880 0.692 0
g ¼ 1.5 1.203 1.488 0.792 0.688 0.773 0.682 0.577 0.667 0.903 0.663 0

Note: DIV – divergence

Table IV.
CPU time of flow in

annulus with the inner
wall rotating about the

axis (s)
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Table VI also shows the good performance of proposed method for the
under-relaxation factor control. Based on the above examples it may be
recommended that for the proposed method the values of g and n are 1.2 and 5,
respectively, for an open system and 1.0 and 10, respectively, for a closed system.

Figure 8.
The relationship between
iteration times and
under-relaxation factor
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Finally, the implementation of the proposed control methods is described here. In the
program, the initial value of the velocity under-relaxation factor is 0.5, the given upper
limit of velocity under-relaxation factor is 0.98, and the given range of b is 0.2 to 5.0.
After 200 levels from the beginning of the computation with SIMPLEC algorithm, it
computes the value of b, and one of the relations (17) and (18) is adopted first to update
the velocity under-relaxation factor. If the velocity under-relaxation factor is over
the given upper limit, the other relation is automatically used at the next update. In the
subsequent computation the velocity under-relaxation factor is updated for every n
iterations until the convergence is reached.

Finally, we would like to make some further discussion related to the initial field
assumption and the application of the present method to 3D cases. First, it is
well-known that the initial fields strongly affect the iteration convergence (Patankar,
1980; Tao, 2001). A good initial field can improve the iteration convergence. In the
present work, the inlet condition is used as initial field for open systems, and for closed
systems the zero velocities in the computational domain are adopted as the initial
fields. To the authors’ knowledge, such initial fields can be simply carried out and
adopted easily by all researchers and no any specific techniques are required. And for

Figure 9.
Schematic of natural

convection in a square
cavity (Ra ¼ 104)

x

y

D

D

TH TC

adiabatic

adiabatic

n 1 2 3 4 5 10 15 20 30 50 au ¼ 0.5

g ¼ 0.5 DIV 0.475 0.466 0.472 0.485 0.571 0.614 0.687 0.660 0.846 1
g ¼ 0.8 DIV DIV DIV 0.468 0.474 0.527 0.547 0.627 0.550 0.775
g ¼ 1.0 DIV DIV DIV 0.471 0.481 0.527 0.543 0.581 0.531 0.756
g ¼ 1.2 DIV DIV 0.513 DIV 0.474 0.493 0.523 0.550 0.535 0.718
g ¼ 1.5 DIV DIV 0.514 0.833 DIV 0.466 0.535 0.528 0.510 0.685

Note: DIV – divergence

Table V.
CPU time of natural

convection in a square
cavity (s)
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such initial fields, our method works well. Thus, we believe that our method is useful
since it can effectively converge the iteration by the very simple and straightforward
initial field assumptions. As far as the three dimensional cases are concerned, there are
three global residual norms for 3D case. Whether the convergence will be accelerated if
the residual norms of the three momentum equations are more or less equal and how to

Figure 10.
The relationship between
iteration times and
under-relaxation factor

200 250 300 350 400 450 500 550
0.4

0.5

0.6

0.7

0.8

0.9

1.0

iteration number

a u

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a u

(a) g = 0.5

200 250 300 350 400 450 500 550
0.4

0.5

0.6

0.7

0.8

0.9

1.0

iteration number

a u

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a u

(c) g = 1

200 250 300 350 400 450

iteration number

(d) g = 1.2

200 250 300 350 400 450

iteration number

(e) g = 1.5

200 250 300 350 400 450 500 550

iteration number

(b) g = 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a u

EC
24,8

808



apply the method for high Re or Ra cases, more research work is needed. And the work
is underway in the authors’ group.

5. Conclusions
An under-relaxation factor control method is developed to accelerate iteration
convergence of flow field computation. The good performance of this method is

Figure 11.
The value of b in
lid-driven cavity
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validated by ten typical 2D flow and heat transfer examples. The following conclusions
are drawn:

. For 2D recirculating flows when the residuals of the two momentum equations
are nearly the same, the iteration will soon converge. The ratio of the two
residuals, b, is the indication of the consistency of the two residuals.

Figure 12.
The value of b in flow in a
2D axisymmetric sudden
expansion
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. In order to make b being around 1, different relations are given for adjusting the
velocity under-relaxation factor. Two parameters g and b, are introduced in
the re-determination of the under-relaxation factor by equations (15) and (16).
The adjustment of au should be conducted every n iterations.

. Preliminary tests show that the value of g can be larger than 1 and of n can be
less than 5 for an open system, and the value of g should be less than 1 and of n
should be larger than 10 for a closed system. The two pairs of recommended
values are: g and n equal 1.2 and 5, respectively, for an open system and 1.0 and
10, respectively, for a closed system.

. Five flow and heat transfer problems are used to validate the proposed method.
When the proposed values of the two parameters are used, compared with

Figure 13.
Schematic of another five

examples

Th
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z

r
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Th

(a) natural convection in
an annual cavity

(b) natural convection in a
vertical annual pipe

(c) isolated island problem

x

r

x

y

(d) flow in a 2D axisymmetric finned tube (e) flow over a parallel finned channel

Example g n

CPU time
of the proposed

method au ¼ 0.5

CPU
time saved
(percent)

Natural convection in an annual cavity 1.0 10 0.362 1 63.8
Natural convection in a vertical annual tube 1.0 10 0.435 1 56.5
Isolated island problem 1.0 10 0.455 1 54.5
Flow in a 2D axisymmetric finned tube 1.2 5 0.186 1 81.4
Flow over a parallel finned channel 1.2 5 0.146 1 85.4

Table VI.
CPU time of the five

examples (s)
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au ¼ 0.5, the CPU time can be saved from 67.5 to 85.4 percent and from 43.9 to
79.9 percent for an open system and for a closed system, respectively.

Finally, it should be noted that the proposed under-relaxation factor control method
can be used for the elliptic problems, but not for the parabolic problems. And more
research work is needed in order to apply the method for high Re and Ra cases and 3D
situations.
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