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Meshless Local Petrov-Galerkin Collocation Method for Two-dimensional
Heat Conduction Problems

WU XueHong1, SHEN ShengPing2 and TAO WenQuan1,3

Abstract: Meshless local Petrov-Galerkin col-
location method is applied to compute two-
dimensional heat conduction problems in irregu-
lar domain. By taking the Dirac’s Delta function
as the test function, the local domain integration
is avoided. The essential boundary conditions can
be implemented easily in this method. A case that
has analytical solution shows the present method
can obtain desired accuracy and efficient. Two
cases in engineering are computed to validate the
approach by comparing the present method with
the finite volume method (FVM) solutions ob-
tained from a commercial CFD package FLUENT
6.3. The results show that the present method is
in good agreement with the FLUENT 6.3, and has
very high computational precision. The proposed
method, which is a truly meshless method, can
describe the boundaries of irregular domain more
accurately, and be very easy to be implemented in
engineering.

Keyword: meshless method; local Petrov-
Galerkin collocation method, least-square ap-
proach, heat conduction

1 Introduction

In the past three decades, the finite volume
method (FVM) and finite element method (FEM)
have been widely applied to compute fluid flow
and heat transfer problems. However, these meth-
ods depend strongly on the mesh properties. The
generation of the good quality meshes is a far
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more time-consuming and burdensome task, par-
ticularly in 3D. At the same time, they have also
some drawbacks to solve the problems with shear-
band formation, large deformations etc. Owing
to these reasons, meshless methods have received
much more attention in recent years as a new tool
to overcome the above difficulties. In principle,
meshless methods rely only on a group of arbitrar-
ily distributed scatter points in the problem com-
putational domain, which can not only alleviate
the burdensome to generate mesh, but also de-
scribe more accurately the irregular geometries.

In the early stage of the development of the mesh-
less methods, they were usually used in the solid
mechanics. In recent years, some authors used the
meshless method to solve heat conduction prob-
lem. Cleary and Monaghan (1999) applied the
smooth particle hydrodynamics (SPH) to solve
unsteady-state heat conduction problems. Chen
et al. (1999) solved unsteady-state heat con-
duction problems with a corrective SPH method;
Singh and his colleagues (2002, 2003a, 2003b,
2004, 2006) used element-free Galerkin (EFG)
method to solve heat conduction problems, and
their investigated results shows EFG method re-
sults are more accurate than the FEM results.
Liu and Yang (2002) applied the EFG method
and the EFG-FEM to solve the heat conduction
problems. Sladek et al. (2004a) applied MLPG
method to solve the heat conduction problem in an
anisotropic medium. Liu et al. (2005) uses mesh-
less weighted least-squares (MWLS) method to
solve steady- and unsteady-state heat conduction
problems. Tan et al. (2006) applied least-squares
collocation meshless method to solve coupled ra-
diative and heat conduction problems. Sadat et
al. (2006) used DAM to solve a two-dimensional
heterogeneous heat conduction problem.
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Previous researchers have focused mainly on us-
ing EFG method and SPH method to solve the
heat conduction problems. However these meth-
ods need numerical integration to compute partial
differential equations (PDEs), they are more time-
consuming. Meanwhile, almost all of the previ-
ous works limit to heat conduction problems of
regular domain. However, many problems in en-
gineering are in irregular domain, and FVM and
FEM are difficult to describe accurately bound-
aries of the irregular domain unless the mesh is
very fine, or special grid generation method is
adopted which is usually time-consuming. Mesh-
less methods can overcome this difficulty because
they do not need mesh. Meshless methods dis-
tribute arbitrarily scattering points in the problem
domain, so they will have more advantage in solv-
ing problems with irregular domain than FVM
and FEM. The MLPG method, a truly meshless
method developed by Atluri and his colleagues, is
a simple and less-costly alternative to the FEM
and FVM [Atluri and Zhu (1998), Atluri and
Shen (2002a, b)]. Remarkable successes of the
MLPG method have been reported [Sladek, et al..
(2004b); Han and Atluri (2004a, b); Atluri and
Shen (2005); Han, et al.. (2005, 2006); Atluri, et
al.. (2004, 2006a, b); Liu, et al.. (2006)]. Al-
though meshless methods possess several advan-
tages, one of its major difficulties is the numeri-
cal integration. To avoid this difficulty, Alturi and
Shen (2002a, b) and Atluri (2004) choose the col-
location Dirac’s Delta function to be the test func-
tion in MLPG methods. This kind of meshless lo-
cal Petrov-Galerkin method uses a local asymmet-
ric weak-form for which no numerical integration
is needed and the solution is independent of the
size of the support of the test function. The com-
putational effort of this method is less than those
of the EFG, SPH and other MLPG methods.

In this paper, we apply meshless local Petrov-
Galerkin (MLPG) collocation method to solve
two steady-state heat conduction problems with
irregular domain in engineering. The moving
least-squares approximation is used to construct
the shape functions. A case that has analytical
solution is employed to verify efficiency and ac-
curacy of the present method, and the results of

two problems with irregular domain are compared
with FVM solutions generated by FLUENT 6.3.

2 The Moving Least-Square (MLS) Approxi-
mation Scheme

In order to preserve the local character of the nu-
merical implementation, the MLPG collocation
method needs some kind of interpolation schemes
and discretization methods to generate the al-
gebraic equations, which can be solved numer-
ically. There are a number of local interpola-
tion schemes, such as MLS, Partition of Unity
Method (PUM), Shepard function, Reproducing
Kernel Particle Method (RKPM), etc. In the
present paper, we utilize MLS method as inter-
polation scheme. The characteristic of MLS has
been widely discussed in literatures [Alturi and
Zhu (1998), Jin et al. (2001)], and will not be
restated here.

Consider a function T h(x) defined in a sub-
domain ΩX , which is discretized by a set of field
nodes xI (I = 1, . . .N) (see Fig.1). The moving
least squares approximate T h(x) by T (x), can be
defined by

T (x) ≈ T h(x) =
m

∑
i=1

pi(x)ai(x) = pT(x)a(x) (1)

where pi(x) is a complete monomial basis in the
space that co-ordinate XT = [x,y], m is the number
of terms in the basis; ai(x) is the corresponding
coefficient. The coefficient vector a(x) is deter-
mined by minimizing the difference between the
local approximation and the function, which is de-
fined as:

J(a(x)) =
N

∑
I=1

wI(x)
[
T h(xI)− T̂ I

]2

=
N

∑
I=1

wI(x)
[
pT(xI)a(x)− T̂ I]2

(2)

where: xI denotes the position vector of node I;
wI(x) is the weight function associated with the
node xI ; N is the number of node in Ωx, and T̂ I =
T (xI) is the fictitious nodal value. It is not the
nodal value of trial functions denoted by T h(x).
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Figure 1: Schematics of the MLS approximation

To find the coefficient a(x), we obtain the ex-
tremum by

∂J(a(x))
∂ (a(x))

= 2
N

∑
I=1

wI(x)

[
m

∑
i=1

pi(xI)a(x)−T̂ I

]
pi(xI)

= 0

(3)

This leads to the following set of linear relations.

A(x)a(x) = B(x)T̂ (4)

where the matrices A(x) and B(x) are defined by:

A(x) = PTWP = B(x)P

=
N

∑
I=1

wI(x)p(xI)pT(xI)
(5)

B(x) = pTw

= [w1(x)p(x2),w2(x)p(x2), . . .w3(x)p(x3)]
(6)

T̂ T =
[
T̂ 1, T̂2, . . ., T̂ N]

(7)

Solving a(x) from Eq. (4), and substituting it into
Eq. (1), we can obtain the final form of the MLS
approximation as:

T h(x) = ΦΦΦT(x) · T̂ =
N

∑
I=1

φ (x)T̂ I x ∈ Ωx (8)

where ΦΦΦT(x) = pT(x)A−1(x)B(x) is the shape
function. The partial derivatives of such shape
function can be obtained from literature [Liu and
Gu (2005)], and will be omitted here for simplic-
ity.

The smoothness of the nodal shape function φ I(x)
is determined by the basis and the weight func-
tion. The quadratic basis is selected. The weight
function wI(x) is generally nonzero over the small
neighborhood points of xI , called the domain of
influence of node I (see Fig. 1). The choice
of weight function wI(x) affects the resulting ap-
proximation T h(x); therefore its selection is of
essential importance. Numerical practices have
shown [Atluri and Zhu (1998), Singh (2004)] that
a quadratic spline weight function works well.
Hence in this article, the quadratic spline weight
function is used. Thus we have:

wI(x) =

{
1−6D2

I +8D3
I −3D4

I 0 ≤ DI ≤ 1

0 DI > 1

(9)

where D =
√

(x−xI)2 +(y−yI)2/r, and r is the
size of support for the weight functions.

3 Numerical Implementation of the MLPG
Collocation Method

The steady-state heat conduction with inner
source and the related boundary conditions can be
written as:
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Poisson equation:

λ ·∇2T = Φ̇ in Ω (10)

The Dirichlet boundary condition:

T = T1 on Γ1 (11)

The Neumann boundary condition:

−λ ∇T ·n j = q on Γ2 (12)

The Robbin boundary condition:

λ ∇T ·n j = h(Tf −T ) on Γ3 (13)

where, T represents the temperature, λ is thermal
conductivity, n j is the outward unit vector to Γ, q
is given heat flux, h is the convection heat transfer
coefficient, t f is the environmental temperature,
Φ̇ is the heat source per unit mass, Γ1, Γ2 and
Γ3 denote the boundaries at which the three kinds
of boundary conditions (Dirichlet, Neumann and
Robin conditions )are applied, respectively.

The weighted integral form of Eq. (10) is given as∫
Ωx

[
λ ∇2T − Φ̇

]
vdΩx = 0 (14)

We use the collocation Dirac’s Delta function
δ (x − xI) as the test function in each Ωx. Sub-
stituting the Dirac’s Delta function δ (x− xI) into
the above equation, we can obtain:

λ ∇2T (xI)− Φ̇(xI) = 0, (I = 1, . . .,M) (15)

Substituting the interpolation (8) into Eq. (15) for
the internal nodes, and boundary conditions (11-
13), leads to the following discretized system of
linear equations:

M

∑
J=1

φ J
,ii(xI)T̂ I = Φ̇(xI) for interior nodes

(16a)
M

∑
J=1

φ J(xI)T̂ J = T1(xI) on Γ1 (16b)

−
M

∑
J=1

∂φ J(xI)
∂n

T̂ J = q(xI) on Γ2 (16c)

M

∑
J=1

∂φ J(xI)
∂n

T̂ J = h
(
Tf (xI)−φ J(xI)T̂ J) on Γ3

(16d)

where I = 1, . . . ,M. Eq. (16) can be rewritten as

K · T̂ = F (17)

where, M is the total number of nodes in the entire
domain Ω, T̂ is the vector for the unknown ficti-
tious nodal values, T̂ = [T̂ 1, T̂2 · · · T̂ M], and K and
F are the global stiffness matrix and the global
vector, respectively, which are defined as:

KIJ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ J
,ii(xI) xI ∈ Ω

φ J(xI) xI ∈ Γ1

−φ J
,n(xI) xI ∈ Γ2

φ J
,n(xI)+h ·φ J(xI) xI ∈ Γ3

(18)

and

fI =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ̇(xI) xI ∈ Ω
T1(xI) xI ∈ Γ1

q(xI) xI ∈ Γ2

hTf (xI) xI ∈ Γ3

(19)

here I,J = 1, . . .,M. M is the total nodes .

4 Numerical Examples

In this section, we apply the above method to
solve a problem that has analytical solution to
illustrate the accuracy and efficiency. Then we
apply the present method to compute two prob-
lems of heat conduction in irregular domain in
engineering. Two examples are employed to val-
idate the formulation by comparing the meshless
results to finite volume method (FVM) solutions
provided by the commercial CFD package FLU-
ENT 6.3.

4.1 Patch Test

A square domain in the dimension 1m×1m is
shown in Figure 2. Its right boundary is given
heat transfer coefficient h = 5W/(m2·oC) and the
surrounding temperature Tf = 0oC. The upper
boundary and left boundary are adiabatic, and
the bottom boundary is maintained at the tem-
perature Tw = 1oC. There is no heat source in
the domain. The thermal conductivity is λ =
1W/(moC). The analytical solution is given by
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Figure 2: Problem description for patch test

Necatiözisik (1980):

T (x,y) = 2T0h
∞

∑
m=1

1
(β 2

m +h2)+h
coshβm(1−y)

coshβm

· cosβmx
cosβm

(20)

where, βm is the positive solution of the equation
βm tanβm = h.

The relative error of the numerical solution is de-
fined as

Er =
‖T num −T a‖

‖T a‖ (21)

where the superscripts num denotes the numeri-
cal results of MLPG collocation method or FVM,
a denotes analytical solutions, and N is the total
node.

The relative error is shown in Figure 3, where D
is node distance. It can be seen that MLPG col-
location method is more accurate than the finite
volume method (FVM). In this patch test, we use
a uniform node of 21×21(441) collocation point.
The influence of the sizes of local support domain
is shown in Figure 4; when a support domain is
too small or too large, the relative error will be-
come unacceptably large; r = 2.5−3.0 is an eco-
nomical choice that gives good results. In this
patch test and following two cases, we select a
support size of 2.5 times of the nodal distance (Liu
and Gu (2005)), and the quadratic basis is used
in the MLPG collocation method. To compare

the computational effort required for the MLPG
collocation method with FVM, the problem is re-
computed for cases of different nodes in an AMD
3800+ computer. The computational time re-
quired is listed in Tables 1 and 2. From Table 1 it
can be seen that this method need two times com-
putational cost than the FVM at the same nodal
distance (D = 0.05). However, for the same ac-
curacy (Table 2), this method need less nodes
than the FVM, and the CPU time of this method
is the same as that of the FVM. Some discus-
sion on the comparison of computational time is
added here. Theoretically speaking, the solution
of meshless method should need less computa-
tional time than that from FVM or FEM, because
the saving in CPU time for grid generation. And
this advantage of meshless method will become
more and more appreciable with the increase in
the complexity of solution domain. However,
for the present case solution domain is the sim-
plest one. In addition, meshless method is still
in its early development stage, while FVM can
be regarded as well developed. Commercial code
such as FLUENT has been used for many years,
and its code structure and algorithm are well or-
ganized and even optimized, while our program
of meshless method has just been coded without
further improvement in code design. Consider-
ing the above-mentioned aspects, it should be ac-
ceptable at the present stage when comparison re-
sults of computational time of meshless method
to the conventional method do not show apprecia-
ble saving in time or even more time-consuming
in some extent.

Figure 5 gives predicted temperature fields and
Figure 6 gives predicted temperature distributions
along the two centerlines (x = 0.5 and y = 0.5).
From Figures 5 and 6, we can see that the result
from MLPG collocation method and FVM agree
very well with the results of analytical solution. It
also shows that the MLPG collocation method is
an efficient and accurate numerical method.

4.2 Heat Conduction in Insulation Layer of
Tube Transporting Vapor

The pipe for transporting vapor with a diame-
ter 200mm is covered by thermal insulation layer
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Table 1: Computational time required (s) in D =
0.05 and relative error
Scheme CPU time (s) Relative error (%)
MLPG
collocation
method

0.14 0.06

FVM 0.06 0.1

Table 2: The node numbers and CPU times for the
same accuracy

Scheme Node numbers CPU time (s)
MLPG
collocation
method

16×16 0.06

FVM 22×22 0.06
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Figure 3: Relative errors for patch test
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Figure 4: Influence of the sizes of local support
domain for patch test
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Figure 5: Comparison temperature fields for patch
test (oC)
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(b) Temperature distribution along x = 0.5

Figure 6: Comparison temperature distribution
for patch test (oC)

with a square structure of 400mm×400mm, as
shown in Figure 7. Inter surface and outer surface
temperature of heat insulation layer is maintained
at the temperature T1 = 200o and T2 = 60o, respec-
tively. Thermal conductivity of thermal insulation
layer is λ = 0.1W/(moC). Due to symmetry, only
the shadow region is selected as the computational
domain.

Node discretization of MLPG collocation method
and mesh of FVM are shown in Figure 8. Node in-
dependency test of the present method is shown in
Figure 9 by comparing the temperature distribu-
tion along the line 1 in Figure 8 (b), and it can be
seen that the number of 336(21×16) collocation
points can obtain very good results. The computa-
tional method and boundary conditions treatment

1T

2T

Figure 7: Physical model and computational do-
main for heat conduction in insulation layer of
tube transporting vapor

(a) MLPG collocation
method

(b) FVM

Figure 8: Node or mesh distribution for heat con-
duction in insulation layer of tube transporting va-
por
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are the same as the above case. Figure 10 and Fig-
ure 11 give the predicted temperature fields and
temperature distributions along line 1 and line 2
(see Fig.8 (b)) from the present method and FVM,
respectively. The results of the present method
are in very good agreement with those obtained
using FVM. The CPU time of this method and
FVM are give in the Table 3 for the same node
numbers; It can be seen that for the problem stud-
ied this method require a bit more computational
time. The possible reasons have been discussed
above.

Table 3: Computational time required (s) for heat
conduction in insulation layer of tube transporting
vapor

Scheme CPU time (s)
MLPG collocation method 0.09
FVM 0.07

4.3 Heat Conduction in Conduction Mud

In the petrochemical engineering, in order
to transport high viscosity material such as
petroleum, it often adopts vapor heating system to
keep the tube side bitumen at certain temperature,
which can efficiently decrease the its viscosity .
In recent years, a kind of new material (conduc-
tion mud) which has higher thermal conductivity
is employed. It is filled between a heating pipe
and a heated pipe (see Figure 12), and can signifi-
cantly enhance heat transfer between them (Chen
et al. (2001)). The heat conduction within the
conduction mud is now simulated by the present
meshless method. The thermal conductivity of the
conduction mud is λ = 10W/(moC), the outer sur-
faces of the two pipes are maintained at the tem-
perature 150oC and 100oC, respectively. Due to
symmetry, only the right half of shadow domain
is modeled.

Node discretization of MLPG collocation method
and mesh of FVM are shown in Figure 13. Node
independency test of the present method is shown
in Figure 14 by comparing the temperature distri-
bution along the line 1 in Figure 13(b). It can be
seen that the number of 336(21×16) collocation
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Figure 9: Node independency test for heat con-
duction in insulation layer of tube transporting va-
por
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Figure 10: Comparison temperature fields for heat
conduction in insulation layer of tube transporting
vapor (oC)
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Figure 11: Comparison temperature distributions
for heat conduction in insulation layer of tube
transporting vapor (oC)

Figure 12: Physical model and computational do-
main for heat conduction in conduction mud
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Figure 13: Node or mesh distribution for heat
conduction in conduction mud
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Figure 14: Node independency test for heat con-
duction in conduction mud
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points can obtain very good results. The computa-
tional method and boundary conditions treatment
are the same as the above case. Figure 15 and
Figure 16 give predicted temperature fields and
temperature distributions in line 1 and line 2 (see
Fig.13 (b)) of the present method and FVM, re-
spectively. Comparisons of the two results show
that they are quite close to each other. The CPU
time of this method and FVM are give in Table 4
for the same node numbers; it can be seen that this
method need less CPU time than that of FVM.

Table 4: Computational time required (s) for heat
conduction in conduction mud

Scheme CPU time (s)
MLPG collocation method 0.12
FVM 0.15
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Figure 15: Comparison temperature fields for heat
conduction in conduction mud (oC)
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Figure 16: Comparison temperature distributions
for heat conduction in conduction mud

5 Discussion and Conclusions

In this paper, the MLPG collocation method
has been extended to solve the two-dimensional
steady-state heat conduction problems in irregu-
lar domain. This method does not need numer-
ical integration; hence it spends less computa-
tional time. Moreover, it can describe the bound-
ary of irregular domain more accurately. The nu-
merical results demonstrate the high accuracy of
the present method. The results from the present
method are in very good agreement with the re-
sults from FVM using FLUENT. It is easy to
be implemented and has high computational ef-
ficiency. Thus the present meshless method sheds
light on effectively handling the problems with ir-
regular domain.
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