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Abstract In this paper, a direct numerical simulation

of a fully developed turbulent flow and heat transfer are

studied in a square duct with an imposed temperature

difference between the vertical walls and the perfectly

insulated horizontal walls. The natural convection is

considered on the cross section in the duct. The

numerical scheme employs a time-splitting method to

integrate the three dimensional incompressible Navier-

Stokes equation. The unsteady flow field was simulated

at a Reynolds number of 400 based on the Mean friction

velocity and the hydraulic diameter (Rem = 6200), while

the Prandtl number (Pr) is assumed 0.71. Four different

Grashof numbers (Gr = 104, 105, 106 and 107) are con-

sidered. The results show that the secondary flow and

turbulent characteristics are not affected obviously at

lower Grashof number (Gr £ 105) cases, while for the

higher Grashof number cases, natural convection has an

important effect, but the mean flow and mean temper-

ature at the cross section are also affected strongly by

Reynolds stresses. Compared with the laminar heat

transfer at the same Grashof number, the intensity of

the combined heat transfer is somewhat decreased.

List of symbols

cp specific heat at constant pressure (kJ/kg/K)

Gr Grashof number, gbðTh � TcÞH3
�
m2

g gravitational acceleration (m/s2)

H width of duct (m)

ix unit vector in the streamwise direction

iy unit vector in the y-direction

Nu Nusselt number, Nu ¼ qwH=ðkDTÞ
Ny number of grid points in the y-direction

Pr molecular Prandtl number

qw the total heat transfer at the warm wall (W/

m2)

Ra Rayleigh number, GrPr

Rem bulk mean Reynolds number, Rem ¼ umH=v

Res Reynolds number,Res ¼ usH=v

Tc the temperature on the cold wall (K)

Th the temperature on the warm wall (K)

T0 reference temperature (K)

u, v, w the velocity components in x-, y- and z-

directions (m/s)

us friction velocity,
ffiffiffiffiffiffiffiffiffiffi
sw=q

p

p fluctuating pressure, p ¼ P
�

qu2
s

� �

p̂ dimensional fluctuating pressure (N/m2)

x, y, z Cartesian coordinates (m)

Greek

b volumetric expansion coefficient (1/K)

DT temperature difference, Th – Tc (K)

Qs friction temperature

h dimensionless temperature

k thermal conductivity (W/m/K)

m kinematic viscosity (m2/s)

q density (kg/m3)

sw wall shear stress (N/m2)

< > ensemble average in the x-direction and in time

Subscripts

m mean

max maximum
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rms root-mean-square

w wall

~ instantaneous variable

¢ fluctuating value

Superscripts
* intermediate value

1 Introduction

Noncircular ducts are frequently occurring in the heat

transfer equipment, for example, flow ducts in com-

pact heat exchangers, cooling channels in gas tur-

bines, and the ducts of ventilation and air condition

systems. The turbulent flow field in the vicinity of a

smooth corner in these ducts will be subject to a

remarkable flow structure change because there have

two inhomogeneous directions and exist the so-called

secondary flows of second kind created by the tur-

bulent motion, as first defined by Prandtl in 1926 [1].

These secondary flows convect momentum and scalar

quantities from the center region of the duct to the

wall along the corner dissectors, and away from the

corners to the center along the bounding walls. The

secondary flow of second kind is relatively weak,

whose velocity is usually only about 2–3% of

the streamwise bulk velocity in magnitude, however,

their influence on wall stress distribution, heat

transfer rate and transfer of passive tracers are quite

significant [1].

A considerable number of experimental investiga-

tions have been carried on the turbulent flow in

straight non-circular ducts. Nikuradse was perhaps the

first one to observe the secondary motion in non-cir-

cular duct by flow-visualization studies [2]. The other

measurements of the various aspects of the developing

and fully development turbulent flow through noncir-

cular ducts were reported by several investigators over

last four decades [3–5]. A review of experimental work

on turbulent flow has been given by Demuren and

Rodi [2].

Several numerical calculations simulating turbulent

flows in noncircular ducts have been reported in the

literature. It is commonly known that the isotropic

eddy-viscosity model can not predict turbulent-driven

secondary flow. An algebraic stress model developed

by Launder and Ying [6] and Rodi [2] was applied to

the turbulent flow in a square duct. The non-linear

forms of k-e equations developed by Speziale [7] are

able to predict the existence of secondary flows. Naji

et.al. [8] used two explicit algebraic Reynolds stress

models to accurately predict the fully turbulent flow in

a straight square duct. Their predictions and DNS re-

sults obtained for a Reynolds number of 4,800 agree

well, and their results show that the equilibrium

assumption for the anisotropy tensor is found to be

correct. Pettersson and Andersson [9] employed the

elliptic relaxation approach in conjunction with sec-

ond-moment closure to the fully developed turbulent

flow inside a straight square duct. The results are

compared favourably with the reference DNS data,

except that the strength of the turbulence-induced

secondary flows is significantly underpredicted. Gen-

erally speaking, all these models can predict the sec-

ondary flow on the cross-section in the square duct, but

the comparison of predicted turbulent quantities with

experimental data is not completely satisfactory, be-

cause the origin of the secondary motion in these

models depends on the empirical models. Recently, in

order to reveal the physical mechanisms and explain

the origin of secondary flow in non-circular duct, the

large eddy simulation (LES) and direct numerical

simulation are used to predict the turbulent flow in the

square duct. Kajishima and Miyake [10], Madabhushi

and Vanka [11], Su and Friedrich [12] performed the

LES for studying the turbulent flow. These simulations

correctly predicted the existence of secondary flows

and their effects on the mean flow and the turbulence

statistics. In reference [13], a priori tests of two dy-

namic subgrid-scale turbulence models have been

performed for the case of turbulent incompressible

flow in a straight duct of square cross-section. The grid

requirements are very demanding in LES. Especially,

the resolution in the boundary layer has to be fine and

increases with Reynolds number. To limit the number

of grid points in boundary layer, detached eddy simu-

lation (DES) is used. Viswanathan and Tafti [14] em-

ployed DES to investigate turbulent flow and heat

transfer in a two-pass internal cooling duct. Compared

with the LES, the DNS is able to predict the secondary

flow in a straight duct with square cross section better

because it does not need any turbulence models and

can reveal valuable information on the turbulence

structures. Gavrilakis [15] carried on the direct

numerical simulation of the fully developed turbulent

flow thorough a straight duct of square cross-section,

and the Reynolds number based on the bulk velocity

and hydraulic diameter was 4,410, providing a detailed

description of the mean flow in the transverse plane

and turbulence statistics along the wall bisector. Lat-

terly, Huser and Biringen [16] also performed a DNS

of the square duct flow, providing detailed turbulence
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statistics, the characteristics of the Reynolds-averaged

flow field, and detailed description of the corner

influence on turbulence statistics and on the origin of

the secondary flows of the second kind in the fully

developed turbulent flow. To the multiphase flow,

Sharma and Phares [17] empolyed DNS to investigate

the role of the secondary flows in the transport and

dispersion of particles suspended in a turbulent square

duct flow. These researches were focused upon the

fluid dynamic features and the heat transfer was not

considered. Piller and Nobile [1] adopt DNS for

studying both the turbulent velocity and the tempera-

ture fields in a square duct with an imposed tempera-

ture difference between the horizontal walls and the

vertical walls are assumed perfectly insulated. Buoy-

ancy forces are neglected in study, so that the tem-

perature field behaves like a passive scalar in that the

fluid temperature does not affect the flow field at all.

The results show that the secondary flow does not af-

fect dramatically the friction factor and the Nusselt

number with respect to the plane channel flow but the

distributions of local heat flux and shear-stress at the

walls are highly non-uniform. It is also shown that the

eddy-diffusivity approach is capable to reproduce well

the turbulent heat flux.

The objective of this work is to perform a DNS of

the square duct flow with the natural convection.

Direct numerical simulation was adopted to study

both the velocity and the temperature field in the

fully developed turbulent square duct. A constant

temperature difference is imposed between the ver-

tical walls, while the horizontal walls are assumed

perfectly insulated. The Reynolds number based on

the friction velocity and hydraulic diameter is 400,

and the Prandtl number is 0.71. Four different

Grashof numbers (Gr = 104, 105, 106 and 107) are

considered, so that, the flow and temperature field

are controlled by both the Reynolds stresses and

buoyancy body force on the cross section in the

square duct. The MPI parallel programming language

was used to speed-up the calculations. Maximal CPU

number is up to eight in the DNS, obtaining satis-

factory performances. The simulation results provide

a database in which turbulence statistics and the

characteristics of the Reynolds-averaged flow field

are included, and a detailed description of the Rey-

nolds stresses’ spatial distribution. By analyzing the

spatial distribution of the all terms of streamwise

momentum and energy equation, it is found that the

Reynolds stresses gradient is dominant for lower Gr

number (Gr £ 105), while the contribution from

mean convection becomes significant for higher Gr

number.

2 Problem definition and scales

The geometry and coordinate system are shown in

Fig. 1. In the present calculations the Boussinesq

approximation is adopted, so the physical properties of

the fluid (Pr = 0.7) are assumed to be constant. Only

the density in the buoyancy term of the vertical

direction momentum equation is a variable of tem-

perature and the Boussinesq assumption is adopted to

relate the density and temperature [18]. The governing

equations are the three-dimensional, time-dependent

Navier–Stokes equations, the continuity equation and

energy equation. They are expressed in the following

dimensionless form in the Cartesian coordinates [18]

D~u

Dt
¼ � @~p

@x
þ 1

Res
r2~uþ 4 ð1Þ

D~v

Dt
¼ � @

@y
~pþ gy

u2
s

� �
þ 1

Res
r2~vþ Gr

Re2
s

~hþ Tc � T0

DT

� �

ð2Þ

D~w

Dt
¼ � @~p

@z
þ 1

Res
r2 ~w ð3Þ

@~u

@x
þ @~v

@y
þ @ ~w

@z
¼ 0 ð4Þ

D~h
Dt
¼ 1

PrRes
r2~h ð5Þ

where the mean friction velocity, us, the duct width, H,

and the temperature difference, DT (= Th–Tc), are used

as the velocity, length and temperature scales,

respectively. T0 is the reference temperature, here,

T0 = Tc, i.e., the temperature of the cold wall. And ~u; ~v

and ~w are instantaneous dimensionless velocity in the

L

H

H

x

z

v

u

w

Adiabatic

Adiabatic

Th Tc

Fig. 1 Flow geometry and coordinate system
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x, y and z direction, respectively. The dimensionless

temperature ~h is defined as

~h ¼ T � Tc

Th � Tc
ð6Þ

And the Reynolds number is defined as

Res ¼
usH

v
ð7Þ

where m is the fluid kinematic viscosity. The mean

pressure gradient is –4 in the streanmwise direction.

The fluctuating pressure is given by p ¼ p̂
�

qu2
s

� �
;

where p̂ is the dimensional fluctuating pressure and q is

the density. The Grashof number, Gr, is based on the

temperature difference between the two vertical walls

DT and the duct width H. In the present simulation, the

maximum Gr of 107 has been chosen to meet the

requirement of adopting the Boussinesq approxima-

tion in small ducts (H = 0.14 m) using air as heat

transfer medium (Pr = 0.7) at 30degrC temperature

difference. In these conditions, if the reference tem-

perature T0 is 293 K, this difference in temperature

induces maximum variation in density of 9.2%.

No-slip boundary conditions are imposed for the

velocity components at the walls, the two vertical walls

are assumed to be at the constant but different tem-

peratures, and the horizontal walls are assumed ther-

mally adiabatic. The periodic boundary conditions are

adopted in the x-direction for velocities, dimensionless

temperature and the fluctuating pressure. And it is

these periodic conditions at the domain inlet and outlet

that make the fluid flow and heat transfer fully devel-

oped, indicating that the velocity and temperature

distribution at each cross section is identical in the

streamwise direction.

The detailed computational parameters for the

present work are given in Table 1. A rectangular re-

gion of size H · H · 6.4H in the y, z and x-direction,

respectively is taken as the computational domain, and

the grid system adopted has points of 128 · 128 · 256

(4.1943 · 106) nodes in the three dimensions, respec-

tively. The grid points are positioned in a non-uniform

manner by the algebraic stretching technique along the

wall-normal direction [16]. Take the direction normal

to the bottom wall as an example, the grid in the y-

coordinate is determined by

yj ¼
1

2
ðb� 1Þ a2j=Ny � 1

a2j=Ny�1 � 1

" #

j ¼ 0; 1; . . . ;Ny ð8Þ

where a = (b + 1)/(b–1), Ny is the number of grid

points in the y-direction and b = 1.05 is the stretching

parameter.

3 Numerical method

There are two methods available for DNS studies, i.e.,

spectral method and finite difference/volume method.

Spectral method is known to be capable of providing

high resolution solution. Recently, the high order finite

difference schemes have been widely used for the DNS

studies [19–22]. For the same grid points, high order

finite difference scheme can provide high resolution

solution for velocity fluctuation which is similar to the

resolution provided by the spectral method [23].

Generally speaking, the finite difference scheme can be

carried out much easier than the spectral method. In

the present DNS study the finite difference method is

adopted, and a maximum of seven grids point are used

in the evaluation of the convective and viscous deriv-

atives. With a seven-point stencil, the convective and

viscous terms are approximated to fifth- and sixth order

accuracy, respectively [23]. And MAC type grid is

employed to prevent checkerboard pressure fields.

The governing equations are integrated in time

using the fractional step method. The Adams–Bash-

forth scheme is used for time advancement except that

the implicit method is adopted for the time advance-

ment of the pressure. The numerical procedures are as

follows. A two-step time advancement scheme is

implemented starting with the calculation of an inter-

mediate velocity field,

u�i � ~un
i

Dt
þ 3

2
~uj
@~ui

@xj

� �n

� 1

2
~uj
@~ui

@xj

� �n�1
" #

¼ 1

Res

"
3

2

@

@xj

@~uj

@xj

� �� �n

þ jy
Gr~h
Res

 !n !

�1

2

@

@xj

@~uj

@xj

� �� �n�1

þ jy
Gr~h
Res

 !n�1
0

@

1

A

3

5þ 4ix ð9Þ

Table 1 Computational parameters

Reynolds number Res 400
Grid 256 · 128 · 128
Computational environment ShuGuang4000A/Shanghai

Supercomputer Center
Computation domains 6.4H · H · H
Grid spacing
x-direction 0.025H
y, z-direction 0.0015~0.0127H

Integrated time period
for averaging

40 H/us

Time increment 5 · 10–5H/us
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where the ix represents the unit vector in the stream-

wise direction and jy represents the unit vector in the

normal wall direction (y-direction) as shown in Fig. 1.

The index n symbolizes the current time step, n–1

stands for the previous time-step and * represents the

intermediate step. The velocity for next time-step n + 1

is related to the intermediate values through

unþ1
i � u�i

Dt
¼ � @p

@xi

� �nþ1

ð10Þ

Substituting the new velocity field ui
n+1 into the

continuity equation, following Poisson equation for

pressure can be obtained:

@2pnþ1

@x2
i

¼ 1

Dt

@u�i
@xi

ð11Þ

By using Adams–Bashforth scheme for time

advancement the energy equation can be discretized

as:

~hnþ1 � ~hn

Dt
þ 3

2
~uj
@~h
@xj

 !n

� 1

2
~uj
@~h
@xj

 !n�1
2

4

3
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¼ 1

PrRes

3

2

@

@xj

@~h
@xj

 ! !n

� 1

2

@

@xj

@~h
@xj

 ! !n�1
0

@

1

A

2

4

3

5

ð12Þ

Once pn+1 is solved from Eq. 11 the velocity field for

the next time-step can be evaluated by Eq. 10, then the

energy equation can be solved from Eq. 12. Such kind

of advancement is executed step by step, until the re-

quired solutions are obtained.

4 Code validation and initial fields effect

Because there is no benchmark solution for the fully

developed turbulent and heat transfer in the square

duct with natural convection at the cross section as

presented in this paper, we can only validate our code

through comparing the result of Gr = 0, that is, the

case for which the buoyancy forces is neglected, with

available solutions from the previous DNS studies for

time-average velocity and temperature field and other

turbulence statistics. Two kinds of point-stencil are

used for the spatial derivatives of the Poisson equa-

tion, Eq. 11, for pressure. That is, the fourth order

accurate scheme with a stencil of four grids [23] and

second order central difference are used. Because the

MPI parallel programming language is used to speed-

up the calculations in the present study, super-relax-

ation method (SOR) to solve Eq. 11 in a parallel

manner is suitable. It is well known that fourth order

accurate finite difference is expensive for the SOR

method because a great deal of data needs to be ex-

changed between the areas. On the other hand,

compared with the fourth order accurate finite dif-

ference, second order central difference is most eco-

nomical and convenient for the data change. Our

preliminary computational results show that the sec-

ond order central difference for the spatial term in

the Poisson equation does not affect the accuracy of

numerical solution. Thus it is used in this paper in the

subsequent computations. Detailed comparisons will

be provided in the later discussion. Table 2 gives the

computational condition for the example. In the table

‘‘2nd order’’ represents the second order central dif-

ference for all spatial derivatives in the governing

Eqs. (1)–(5), ‘‘higher order’’ represents the convective

and viscous terms being approximated to fifth- and

sixth order accuracy, respectively, and fourth order

accuracy difference for Poisson equation 11, and

‘‘higher order-2p’’ is similar to the higher order, but

the Poisson equation 11 is discretized by second order

central difference. In the following comparisons be-

tween our numerical predictions and those available

in the literatures will be conducted in six aspects for

the fully developed fluid flow and heat transfer in a

square duct.

Table 2 Computational conditions for example

Case 2nd order 2nd order Higher order Higher order-2p

Res 400
Computational domains 6.4H · H · H (x · y · z)
Grid number 128 · 128 · 128 256 · 256 · 256 128 · 128 · 128 128 · 128 · 128
Grid spacing
x direction x+ 20 10 20 20
y and z direction y+ and z+ 0.6~5.0 0.21~2.7 0.6~5.0 0.6~5.0

Integrated times for averaging 450 H/um

Time increment 5 · 10–5H/us

Computational environment ShuGuang4000A/Shanghai Supercomputer Center
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The simulated mean steamwise velocity profile

along the wall bisector (z = 0.5) is shown in Fig. 2 in

wall coordination and compared with the law of wall,

which reads

uþh i ¼ 2:5 ln yþ þ 5:5 ð13Þ

where y+ = yRes. It can be observed that the present

mean velocity profile varies linearly with y+ in the

viscous sublayer, agreeing well with u+ = y+. However,

beyond the viscous sublayer the predicted mean

velocities are higher than determined by Eq. 13. It can

be seen in Fig. 2 that the mean velocities of the 2nd

order with finer gird and higher order are agreeable

well with the solution of Huser and Bringen [16], while

the solution of the second order with coarse gird is less

than that of Huser and Biringen but closer to Eq. 13.

Figure 3 shows that the predicted distribution of

Reynolds stress –Æu¢ v¢æ along the wall bisector agrees

with that reported by Kajishima and Miyake [10]. The

ensemble-averaged skin friction variation as function

of the distance along the wall is shown in Fig. 4. The

results obtained from present simulation are in accor-

dance with the data from Huser and Biringen [16]. It is

observed in Fig. 4 that the local maximum value in sw

is at the wall bisector and the corner.

The rms velocity fluctuations near the wall are

shown in Fig. 5. The present results provide excellent

agreement with the other data (Kajishima and Miyake

[10], Huser and Biringen [16]) in the viscous sub-layer.

And in the central region of duct, the result of LES is a

bit larger than the present simulation for urms and is a

bit less than the present one for vrms and wrms. It can be

seen in Fig. 5 that the results of the two higher order

difference methods are closer to the numerical data of

[10] and [16] than the second order difference solu-

tions. The differences in rms velocity fluctuations vs. y+

distributions between our predictions and those of

Huser and Biringen’s may be attributed to Reynolds

number difference.

The predicted mean temperature profile at the wall

bisector along the z direction is shown in Fig. 6. The

present results are in good agreement with that of

Piller and Nobile [1]. As can be expected, the tem-

perature gradient is steeper near the wall than that of

the central. Fig. 7 gives the distribution of mean tem-

perature normalized by the Qs, where Qs is defined as

Hs ¼
qw

qcpus
ð14Þ

where qw is the heat flux, and cp is he specific heat. It is

observed in Fig. 7 that the Hþð¼ h=HsÞ is linear near

the wall for y+ < 8, where the distribution of present
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Fig. 2 Comparing mean streamwise velocity along the wall
bisector with the law of the wall
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Fig. 3 Comparison of Reynolds stress – Æu¢v¢æ along the corner
bisector

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

τ w
/ρ

u τ2

y+

2nd order(128x128x128)
 2 ndorder(256x256x256)
 Higher-order-2p(128x128x128)
 Higher-order(128x128x128)
 Huser and Biringen, DNS,Reτ=600
 Mean value

Fig. 4 Comparison of ensemble-averaged wall stress variation
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simulation provides the excellent agreement with the

Q+ = Pr y+. And the distributions of the two higher

order methods are consistent in the central region of

duct, which are slightly higher than that of the solu-

tions of second order difference.

Figure 8 presents the comparison of the local Nus-

selt number at the hot wall between the present results

and that of Piller and Nobile [1]. The Nusselt number is

defined as

Nu ¼ qwH

kDT
ð15Þ

It can be seen from Fig. 8 that the local Nusselt num-

ber from the second order difference with coarse grid is

larger than the solutions of the two higher order

schemes and second order difference with finer grid.

The differences between present simulation and that of

Piller and Nobile is owing to the different in Reynolds

number.

Table 3 presents the comparison of streamwise

characteristic velocity, friction coefficient and mean

Nusselt number. It can be seen in Table 3 that the

mean velocity and the velocity in the central line (that

is maximum velocity) from the solution of the second

order difference with coarse grid are less than the re-

sults of reference [10], while the results of second order

difference with finer grid and the two higher order

difference methods are quite consistent, and are in

accordance with the results of reference [10]. Table 3

gives also the friction coefficient correlation from

experimental work [24]. Compared with the correla-

tion, the predicted friction coefficient from the higher

order-2p scheme has the least relative deviation.

From the above comprehensive comparisons, it can

be concluded that the present DNS simulation is

comparable with the solutions available in the litera-
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Fig. 5 Comparison of rms
fluctuations along the wall
bisector normalized by the
local friction
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Fig. 6 Comparison of mean temperature profile at the wall
bisector along the z direction
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ture, and the combination with second order central

difference for the pressure Poisson equation and higher

order difference for the other terms can result in sat-

isfactory solutions, which is still economical for the

MPI parallel programming language environment.

In our numerical simulation, two kinds of initial

fields practice are adopted in simulations. In one

practice the computational results of lower Gr number

are used as the initial fields of next higher Gr number,

in the other practice the solutions for laminar duct flow

at the same Gr in conjunction with a fluctuation

velocity field derived from a random number generator

are adopted as the initial ones. The results show that

the choice of initial conditions does not influence the

final solutions, although it has an influence on the

integration time required to reach a statistically sta-

tionary state. So the solutions that have been obtained

are in fact unique in the present simulation with stable

natural convection on the cross section.

5 Results and discussion

Before the presentation of the predicted results, some

numerical aspects of our simulation are described.

It should be noted that, theoretically, the ensemble

averaged flow and temperature field should have

symmetric distributions on the cross section and the

contour of which should be smooth. Computationally,

the complete symmetry can only be obtained if the flow

and temperature are integrated for a long-enough time

period and large sample sizes are used for averaging.

Otherwise, the results of averaging may be affected by

some instantaneous fields, leading to certain asymme-

try in the fields. With such understanding in mind, in

our numerical practice the discretized equations were

integrated for a sufficiently long time period (80 non-

dimensional time units) to ensure statistically steady

state of the turbulence flow and symmetrical character.

The steady state was identified when the mean value of

the total kinetic energy approaches a constant. The

averaging process was performed both in time and in

the streamwise direction because the fully developed

flow is obtained, i.e., the velocities and the dimen-

sionless temperature distribution on the cross section is

identical in the streamwise direction and the heat

transfer is independent on the inlet temperature. The

mean velocities were obtained by averaging for the 40
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Table 3 Comparison of streamwise characteristic velocity, friction coefficient and mean Nusselt number for the example

Case 2nd order 2nd order Higher order-2p Higher order reference [10]

Grid number 1283 2563 1283 1283 –
uc 18.94 20.04 19.90 19.77 20.0
umean 14.59 15.24 15.50 15.35 15.5
Rem 5838 6096 6199 6138 6200
Cf,cal 9.39 · 10–3 8.61 · 10–3 8.32 · 10–3 8.64 · 10–3 –
Cf,exp = 0.073 Re– 0.25[24] 8.38 · 10–3 8.26 · 10–3 8.23 · 10–3 8.24 · 10–3 8.23 · 10–3

Relative deviation of friction coefficient,e 12% 4.2% 1.2% 2.9% –
Mean Nusselt number, Nu 7.48 7.11 6.81 6.77 –
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non-dimensionless time units, as shown in Table 1.

This averaged time period corresponds to the time that

a fluid particle would take which is at the duct cen-

terline and travels through a distance equal to about

800 H. This distance is much longer than the entrance

length which is about 80 H [16]. In order to calculate

the fluctuating component of velocity (u¢, v¢ w¢) at any

time, the obtained ensemble mean velocity (Æuæ, Ævæ,
Æwæ) were subtracted from the resolved instantaneous

velocity at each node. These fluctuating components of

the velocity field were then uses to calculate the dif-

ferent statistics of the turbulent field at that time in-

stant. For example, they were averaged in time and

space to obtain the ensemble average (Æu¢ u¢æ, Æu¢ v¢æ,
etc.). Owing to the explicit treatment of the advection

term, the CFL number must be less than a certain

value. The time step Dt was restricted to a value sat-

isfying following condition [15]

CFLmax ¼ Dtmax
uj j
Dx
þ vj j

Dy
þ wj j

Dz

� �
� 0:3 ð16Þ

which resulted in the choice Dt = 5 · 10–5H/us. The

MPI parallel programming language was used to

speed-up the calculations. Maximal CPU number is up

to eight in the DNS, obtaining satisfactory perfor-

mances.

In the following simulated results will be presented

in the aspects of mean flow and temperature, spatial

Reynolds stress, streamwise momentum equation

budget and energy budget.

5.1 Mean flow and temperature characteristics

The mean secondary and streamwise velocity distri-

butions at different Grashof numbers are presented in

Fig. 9, where the contours represent the steamwise

velocity component and the vector fields represent the

cross-stream vector. All velocities shown there are

normalized by friction velocity and the distances are

normalized with the duct width. In the figure both the

contours of the mean steamwise velocity and the sec-

ondary velocity vectors in the cross section are shown.

Figure 9a shows the secondary flow velocity vectors at

Gr = 0. It can be observed that in each corner there are

two streamwise and counter-rotating vortices that are

symmetrical about the corner bisector. In the present

simulation Res = 400, the vortex centers are close to

the corner and the secondary flows are quite weak near

the wall bisector, and such numerical findings are

consistent with the results in literature [16]. The vor-

tices have no visible change in the vector field for Gr =

104, see Fig. 9b, indicating that for Gr £ 104 the

transport process at the cross section is dominated by

diffusion. However, with the further increase in Gras-

hof number, the vortices of secondary flow are changed

by buoyancy body force. It can be clearly observed that

the symmetry of two streamwise and counter-rotating

vortices is destroyed at Gr = 105. The vortex near the

vertical wall at the down left quadrant of the duct cross

section is larger than that near the horizontal wall, see

Fig. 9c. For the case of Gr = 106 a large vortex domi-

nants the flow in the centre of the cross section, and the

streamline contour shapes change from approximately

square to rhombus-like. Only one small vortex can be

observed in each corner, which exists near the hori-

zontal wall at the down left quadrant (Fig. 9d). When

Gr is up to 107, the flow field on the cross section is

dominants by only one large vortex, and the streamline

contour shape like slightly-tilted horizontal rectangles.

And there exists an updraft near the hot wall. The

cross-section flow in the centre region is weaker than

that near the surrounding walls along which boundary

layer flow occurs.

Here, the reason why the vortices pattern of cross-

stream is changed with the increase of Gr number is

discussed. We consider now the balance of forces

which contribute to the generation of cross flow. The

Reynolds-averaged equations for the cross flow are

presented by

vh i @ vh i
@y
þ wh i @ vh i

@z
¼ � @ ph i

@y
þ 1

Res

@2 vh i
@y2

þ @
2 vh i
@z2

� �

� @ v0v0h i
@y

� @ v0w0h i
@z

þ Gr

Re2
s
h ð17Þ

vh i @ wh i
@y
þ wh i @ wh i

@z
¼ � @ ph i

@z
þ 1

Res

@2 wh i
@y2

þ @
2 wh i
@z2

� �

� @ v0w0h i
@y

� @ w0w0h i
@z

ð18Þ

Equations 17 and 18 show that the turbulence stress

gradient vector, DR, can be presented as

� @ v0w0h i
@y �

@ w0w0h i
@z ;� @ v0v0h i

@y �
@ v0w0h i
@z

	 

in y–z plane, pres-

sure gradient (Dp) and thermal buoyancy force (DT)

vectors can be wrote as � @ ph i
@z ;�

@ ph i
@y

	 

and 0; Gr

Re2
s
h

	 

;

respectively, Figs. 10 and 11 show the distributions of

DR, DP, DR + DP and DR + DP + DT at the cases of

Gr = 104 and 107, respectively. It is observed from

Fig. 10 that the gradient of turbulence stress seems to

be the major driving force of the flow toward corner

(see Fig. 10a), whose direction is opposite to that of

pressure gradient. The pressure profiles have the gra-

dient along the wall, and the imbalance between the
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gradient of the turbulence stress field and that of the

corresponding pressure field near wall, which is shown

in Fig. 10c, is the origin of the secondary vortices, be-

cause the distribution of DR + DP is agreeable well

with Fig. 9a at the corner. The result is consistent with

that of Kajishima and Miyake [10] for the case of

Gr = 104. And it can be seen from Fig. 10d that dis-

tribution of DR + DP + DT is well in accordance with

that of DR + DP, which show that the thermal buoy-

ancy force is very small at Gr = 104, as shown in

Fig. 12a. The contour presents the distribution of

temperature that will be discussed in the following

section. The thermal buoyancy force can be neglect

compared with the terms of turbulence stress gradient

and pressure. So the turbulence stresses have an

important effect on the generation of secondary flow at
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low Gr number. But with the increase of Gr number, it

can be seen from Fig. 11 that the thermal buoyancy

force is important on the cross-stream. The distribution

of turbulence stress gradient vector at Gr = 107 is the

same as Gr = 104 (see Fig. 11a). Figure 11c shows that

the distribution of DR + DP is almost agreeable with

that of DP on the cross section except the regions near

the down-left corner, indicating that the contribution

of pressure gradient (see Fig. 11b) increases obviously

compared with turbulence stress gradient, and the

distribution of DR + DP + DT (see Fig. 11d) reflects

the cross-stream pattern, as shown in Fig. 9e, but the

turbulence stress will weaken the effect of the thermal

buoyancy force near the down-left corner. Figure 11

shows that the thermal buoyancy force is the main

reason why the cross-stream pattern is changed with

the increase of Gr number, and it is somewhat de-

creased owing to the turbulence stress. It can be seen

from Fig. 12 that the thermal buoyancy force greatly

increases at Gr = 107 compared with Gr = 104.

It is observed from the mean steamwise velocity

contour at Gr = 0 in Fig. 9a that the isotachs are bent

toward the corner, indicating an appreciable increase

in Æuæ in the corner region. With the increase of Gr, the

bulging of the steamwise velocity contours toward the

corners is more and more stronger. For Gr = 0, the

local maximum for Æuæ exists at the wall bisector, the

occurrence of a local Æuæ maximum at the wall bisector

is a low-Reynolds number effect [16]. However, the

local maximum position for Æuæ is displaced from the

wall bisector to the lower end of the hot wall and

contrary for the cold wall. Figure 13 plots the ensem-

ble-averaged skin friction variation as a function of the

distance along the wall. It is observed that the local

maximum value in Æuæ also yields a maximum in sw for

all Gr. The distribution of sw/(q us
2) obtained from the

present simulations is agreeable with the data from

Gavrilakis [15] and Huser and Biringen [16] for Gr = 0,

see Fig. 4. The maximum value of sw increases with the

increase of Gr. And it is observed also from Fig. 13

that the gradient of sw/(q us
2) with respect to y towards

the corner is steeper for the higher Grashof number

near the lower end of hot wall.

Figure 14 shows the mean temperature distribution

in the cross section at various Grashof number. For the

case of Gr = 0 the isotherm lines are parallel to the
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vertical walls except the corner region where each line

is bent towards the center direction, indicating an

appreciable increase in the mean temperature in the

corner near the hot wall and decrease in the corner

near the cold wall. With the increase in Gr, the global

position of the isotherms in the center part of the

enclosure gradually changes from vertical to horizon-

tal. And when Gr is up to 107 the isotherms in the

center region of cross section are almost horizontal and

parallel to each other. Comparison of local Nusselt

number at the hot wall at various Grashof number is

given in Fig. 15. It is observed that when Gr is less than

105 the difference of local Nusselt numbers along the

hot wall at different Gr is small and their distributions

are more and less uniform in the major central part of

the wall, however, the difference becomes larger for

Gr = 106 and 107. And the local Nusselt number along

the hot wall decreases with the increase in y except

very near the lower corner where there is a sharp

increase in a short distance.

Table 4 gives the comparison of the mean Nusselt

number at the hot wall at the various Gr for Res =

400. Following features may be noted from Table 2.

First the mean Nusselt number of the turbulent flow

is almost constant when Gr number is less than 105.

Second, the Nusselt number of the laminar flow is less

than that of turbulent flow when Gr number is less

than 106. Third, for Gr = 107 the Nusselt number of

the laminar flow is appreciably larger than that of the

turbulent flow. Such variation trend can be under-
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stood as follows. In the laminar flow, the flow is

controlled by natural convection in the cross section,

so mean Nusselt number is increase with the increase

of Gr number. However, for the turbulent flow, the

flow is dominated by the interaction between buoy-

ancy body force and Reynolds stresses due to the

turbulent motion and the anisotropy of the normal

component of turbulence stress in the cross section.

When Gr number is less than 105 the Reynolds

stresses are stronger than the buoyancy force, so the

flow state represents basically the secondary flow

characteristics. But it is contrary for the higher Gr

number cases, and due to the negative effect of the

Reynolds stresses, the mean Nusselt number de-

creases with the increase of Gr compared with that of

laminar flow of the same Gr number.

In order to analyze the effect of Reynolds stresses

on the Nusselt number, Fig. 16 shows the comparison

of local Nusselt number at the hot wall between the

laminar and turbulent flow at various Grashof number.

It is observed that within the Grashof number studied

the local Nusselt number of the laminar flow is basi-

cally decreased along y direction, and its values are

well below that of the turbulent flow for Gr £ 105

because of the secondary flow effect. For the turbulent

flow the maximum Nusselt number exists near the

corner while the local Nusselt number distribution is

more or less uniform when Gr is less than 105. How-

ever, with increase in Gr, the increase in Nu of tur-

bulent flow is not so fast as that of the laminar flow and

when Gr number is up to 107, the local Nusselt number

of the turbulent flow is less than that of laminar flow

where coordinate value y is less 0.6 and they are almost

equally between 0.6 and 1.0, as shown in Fig. 16d. This

variation characteristics show that the natural convec-

tion is subject to suppressing by the Reynolds stresses

with the increase in Gr.

5.2 Reynolds stress’ spatial distributions

The Reynolds stress components in the square duct can

be analyzed by examining the generation term (Mij
*) in

the turbulent stresses transport equation. Generation

terms include the mean shear (Pij
*) and buoyancy force

production (Tij
*), as shown in Eq. 19. These terms

presented in Eqs. 20 and 21 are scaled with bulk

velocity

M�
ij ¼ P�ij þ T�ij ð19Þ

P�ij ¼ � u0iu
0
j

D E� @u�j
@xk
þ u0ju

0
k

D E� @u�i
@xk

� �
ð20Þ

0.039 0.031 0.027 0.019
0.047

0.016

z

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gr=10 4

46.807
42.907

39.006

35.106

31.205

27.304

23.404

19.503

15.602 11.702

z

y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 Gr=107

(b)

(a) 

Fig. 12 The contours of thermal buoyancy force at different
Grashof number a Gr = 104; b Gr = 107

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

τ w
/ ρ

u τ
2

y

 Gr=0

Gr=104

Gr=105

Gr=106

Gr=107

Fig. 13 Comparison of ensemble-averaged wall stress variation
with Grashof- number along y direction at the hot wall

Heat Mass Transfer (2007) 44:229–250 241

123



T�ij ¼ �
Gri

Re2
s

u0jh
0

D E�
þ Grj

Re2
s

u0ih
0� ��

� �
ð21Þ

where Pi,j
* represents the production of the Reynolds

stresses from the mean flow, which is result from

mean flow velocity gradient together with the

Reynolds stresses. It is the main contribution for

the production of Reynolds stresses. The Tij
* term

represents the production of the Reynolds stresses

from the buoyancy, which has important contribution

at the high value of Gr. The terms of Pij
* and Tij

* are

given in the following for the full developed square

duct flow. The terms underlined appearing in Eqs. 22

and 23 represent the dominants terms in the

different components of Pij
* and Tij

* for the low

value of Gr.
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A simplified picture of the complex relationships

between the Reynolds stress components through the

generation terms 22 and 23 is presented in Fig. 17. It

can be seen from the figure that the values of Æu¢ u¢æ*,

Æu¢ v¢æ* and Æu¢ w¢æ* components depend on the gener-

ation P11
* , P12

* and P13
* , respectively, owing to the con-

tribution of the main strain velocity gradient @u�=@y

and @u�=@z: The distributions of Æv¢ v¢æ* and Æw¢ w¢æ* are

more influenced by the velocity pressure-gradient

term, which act as the source term for them. The role

of the pressure-strain interaction in the transport

equations for the normal Reynolds stresses is associ-

ated with a redistribution of turbulent energy among

the normal stresses, transferring energy from Æu¢ u¢æ* to

the other normal components, Æv¢ v¢æ* and Æw¢ w¢æ* [25].

Figure 17 shows also that Æv¢ v¢æ* and Æu¢ v¢æ* are influ-

enced by T22ð2Gr
�

Re2
s v0h0h iÞ and T12ðGr

�
Re2

s u0h0h i at

the highest Gr number considered, respectively.

Figures 18 and 19 show the cross-stream spatial

distribution of the averaged normal and shear Rey-

nolds stresses at Gr = 0, 104, 106, and Gr = 107,

respectively. The Reynolds stresses shown in these

figures have been scaled with the bulk velocity

u0iu
0
j

D E�
¼ 100 u0iu

0
j

D E.
U2

b ð24Þ

where Ub is the average velocity on the cross section.

This scaling has been used to take into account the

variability of the average streamwise velocity at dif-

ferent values of Gr number [25]. Contours of the

Reynolds stresses at Gr = 0 and Gr = 0.6 (continuous

lines) are plotted together with ones corresponding to

Gr = 104 and 107 (discontinuous lines).

Figure 18 shows that the contribution of Tij
* is small

at the low Gr number. Slightly changes appear in the

contours of the Reynolds stress, but with increase of Gr

number, the distribution of Reynolds stresses is chan-

ged obviously. The peak value of the primary normal

stress Æu¢ u¢æ* for Gr number less than 104 (see

Fig 18(a)) appears near the wall. Considering the ver-

tical wall, the maximum value of Æu¢ u¢æ* is at z = 0.4

and z = 0.6, which is consistent with the study of DNS

in reference [16]. The contour lines are bent toward the
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Fig. 15 Comparison of local Nusselt number at the hot wall at
various Grashof number

Table 4 Comparison of mean Nusslet number at the hot wall
with various Grashof number for Res = 400

Grashof
number (Gr)

Laminar
flow (Nu)

Turbulent
flow (Nu)

0 – 6.81
104 2.01 7.01
105 4.10 7.10
106 8.13 9.00
107 15.77 13.90
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center of the duct indicating an appreciable increase

for Æu¢ u¢æ* at Gr = 104. The distribution of Æu¢ u¢æ*

disappears symmetric behavior about the wall bisector

with increase of Gr number. The maximum point of Æu¢
u¢æ* is removed upwards near the hot wall, (Fig 19(a))

and the situation is contrary at the cold wall. For

Gr = 107, the maximum point of Æu¢ u¢æ* is located near

the horizontal wall in the region of down-left corner.

The normal stress, Æv¢ v¢æ*, attains maximum value

near the vertical wall, where high value of the corre-

sponding vertical pressure-gradient terms occurs for

the lower Gr number. Because the energy transfer

from Æu¢ u¢æ* to Æv¢ v¢æ* near the horizontal wall is

inhibited by the damping effect of the wall, where the

values of Æv¢ v¢æ* are less than that of vertical wall. At

higher Gr number, the maximum value of Æv¢ v¢æ* is no

Fig. 17 Main relationships
between the Reynolds
stresses components through
the generation terms Mij
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longer near the vertical wall, but is at the horizontal

wall close to the down-left corner, where the thermally-

generated secondary currents occur, as seen in Fig 9(d)

and (e). Æv¢ v¢æ* is influenced by Æv¢ h¢æ* at higher Gr

number, whose magnitude of buoyancy force produc-

tion term is 2Gr
�

Re2
s v0h0h i�: The maximum value of the

normal stress Æv¢ v¢æ* is increased by the effect on

buoyancy force. The distribution of Reynolds stress Æw¢
w¢æ* is obtained by a 90� rotation of Æv¢ v¢æ* distribution

because of flow field symmetry for lower Gr number.

But the symmetric behavior of flow field disappears

with the increase of Gr, along the horizontal wall

bisector the Æw¢ w¢æ* increases where the horizontal

advection occurs and decreases along the vertical wall

bisector because thermally-generated ascending cur-

rent occurs.

Figures 18d and 19d show the distribution of Rey-

nolds stress Æu¢ v¢æ*, which is mainly affected by the

term - v0v0h i�@u�=@y in production term P12
* and

T�12ðGr
�

Re2
s u0h0h iÞ at high Gr number. It should be

noted that the region where Æu¢ v¢æ* is positive/negative

is corresponding to the region where main velocity

gradient @u�=@y is negative/positive. It can be seen

from Fig. 18d that the value of Æu¢ v¢æ* reduces at the

wall bisector (z = 0.5) compared to its value at z = 0.4.

The Reynolds stress Æu¢ v¢æ* increases and reaches a

maximum value near the vertical wall for

0.03 < y < 0.3 when this is approached horizontally

from z = 0.5, which is consistent with reference [16].

Because Æu¢ v¢æ* is influenced by T12
* at higher Gr

number, the Æu¢ v¢æ* distribution is changed obviously at

Gr = 107. The region where the value of Æu¢ v¢æ* is less
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than zero is expanded to y = 0.8 near the high tem-

perature wall. The value of | Æu¢ v¢æ* | is increased and

its maximum is displaced toward the high temperature

wall horizontally according to the change in the dis-

tributions of Æv¢ v¢æ* in this region.

It can be seen from Fig. 18e that Æu¢ w¢æ* is similar to

the distribution of Æu¢ v¢æ* so that the contour plot of Æu¢
w¢æ* can be obtained by a 90� rotation of Æu¢ v¢æ* con-

tour plot in the (y, z)-plane for the lower Gr number.

Distribution of Æu¢ w¢æ* disappears the symmetric

behavior about y = 0.5 because of the effect of buoy-

ancy body force (see Fig. 19e). The region where the

value of Æu¢ w¢æ* is more than zero is decreased and is

displaced towards the vertical wall at the down-left

corner region, but at the top-left corner, the region is

enlarged to z = 0.5. And the maximum value of |Æu¢
w¢æ*| is displaced towards the top wall near the vertical

wall.

5.3 Mean streamwise momentum equation budget

Analysis of the mechanisms that affect the streamwise

velocity distributions is made by examining the terms

of the Reynolds-averaged streamwise momentum

equation for a fully developed square duct flow, which

can be written as

vh i @ uh i
@y
þ wh i @ uh i

@z
¼ � @ u0v0h i

@y
� @ u0w0h i

@z
� d ph i

dx

þ 1

Res

@2 uh i
@y2

þ @
2 uh i
@z2

� �
ð25Þ

The terms on the left hand-side of Eq. 25 represent

contribution of convection, and the terms on the right

hand-side of Eq. 25 are responsible from left to right,

for turbulent transport, pressure gradient and viscous

diffusion, respectively. In this non-dimensional equa-
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tion, us and H are used as the velocity and length scales

respectively. Equation 25 is averaged in both the

homogeneous x-direction and in time, so all the x- and

t-derivatives terms vanish except for pressure gradient,

which is the constant driving pressure gradient.

The spatial distributions of the different terms in

Fig. 20a and b for Gr = 104 are qualitatively the same

as that reported by Huser and Bringen [16] at the wall

bisector for the non-thermally-generated turbulent

duct flow. All the budget terms were calculated directly

as they appear in Eq. 25. At Gr = 104, along the wall

bisector, the sum of the primary Reynolds shear

stresses gradient balances the imposed streamwise

pressure gradient in the central region of the square

duct. Close to the bottom wall (Fig. 20a) and vertical

wall (Fig. 20b), the primary Reynolds shears gradient

(�@ u0v0h i=@y near the bottom wall and �@ u0w0h i=@z

near the vertical wall) balances the viscous diffusion

term. And diffusion effects contribute to the loss of

momentum while the Reynolds stress term acts as a

source in Eq. 25 favoring the transport of high

momentum fluid in the central part of the duct to the

wall [25]. It can be seen from Fig. 20 that, along the

wall bisector, the contribution from the convection is

very small, which is characterized by a relatively weak

v- and w-velocity in this region.

Figure 21 shows the spatial distributions of the dif-

ferent terms of momentum Eq. 25 at Gr = 107. It can

be seen from Fig. 21 that the Reynolds stress gradient

�@ u0v0h i=@y has important contribution in the central

of square duct, which is balanced by the pressure gra-

dient in this region. And the contribution from the

convection increases compared to the Gr = 104. Its

magnitude is 40 percent of that of Reynolds stress

gradient, which is characterized by a relatively strong

v- and w-velocity in this region. Figure 21b shows also

that the Reynolds stress gradient and diffusion terms

decrease closing to the vertical wall bisector. Toward
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the corner where the secondary velocity is stronger

for Gr = 104, mean convection becomes significant.

Figure 22a indicates that near the corner, mean con-

vection balances both the viscous diffusion and the

Reynolds shear stress gradient along the corner bisec-

tor. This negative convection represents a loss of u-

momentum equation. The spatial distributions of the all

terms for Gr = 107 are consistent with those of Gr = 104,

as can be seen from Fig. 22b. Compared to the Fig. 22a,

it can be seen from Fig. 22b that the contribution of

convection becomes more significant at Gr = 107.

5.4 Thermal energy budget

The mechanisms that affect the averaged thermal en-

ergy distribution of the flow can be determined by

examining the terms of its budget. For a fully thermally

developed flow in the square duct, the thermal energy

equation can be written as

vh i @ hh i
@y
þ wh i @ hh i

@z
¼ � @ v0h0h i

@y
� @ w0h0h i

@z

þ 1

PrRes

@2 hh i
@y2

þ @
2 hh i
@z2

� �
ð26Þ

The terms on the left-hand side of Eq. 26 is convection

transport, and the first and second terms on the right-

hand side are turbulent transport and the third is

thermal conduction. Figures 23 and 24 show the spatial

distribution of the terms of the thermal budget as they

appear in Eq. 26 along the vertical wall bisector and

corner bisector, respectively.

It can be seen in Fig. 23a that near the vertical wall,

turbulent transport is significant which balances the

thermal conduction. Convection contributes a little to

the overall average thermal transport at Gr = 104.

Figure 23b shows that the contribution from convec-

tion becomes significant in thermal transport Eq. 26,

and in the vicinity of the vertical wall convection bal-

ances both turbulent transport and thermal conduc-
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tion. At Gr = 107, the turbulent transport decreases

compared to the Gr = 104. As can be seen from

Fig. 23a and b that the dimensionless value of turbu-

lent transport is more than 0.5 at Gr = 104, but less

than 0.5 at Gr = 107, because the turbulent intensity

decreases in this region. Heat conduction contributes

as a source in Eq. 26 near the high temperature wall

because the temperature is higher at the wall than in

the fluid. On the contrary, it acts as a sink near the cold

wall.

Near the corner, it can be seen in Fig. 24 that the

turbulent transport and convection help to decrease

the corner temperature because the secondary velocity

is strong along the corner bisector [26]. And the

advection is dominant compared with the turbulent

transport, whose contribution in the energy Eq. 26 is

only 25 percent that of convection at Gr = 104, and is

10 percent at Gr = 107. In the central region of duct,

turbulent transport acts as a transport term between

hot fluid close to the corner and cold fluid in the center

of the duct. In this region, the turbulent transport is

similar to the thermal conduction in that it decreases

the temperature gradient. With the increase of Gr

number, convection and turbulent transport increase

near the corner.

6 Conclusion

In view of the lack of DNS results for the flow and

temperature fields for the combined the forced con-

vection and natural convection, in this work, DNS of

the fully developed turbulent flow and heat transfer for

Res = 400 with natural convection in the square duct

has been performed. Based on our results, following

observations can be obtained:

1. The high order difference scheme can obtain sat-

isfactory accuracy in the coarse mesh, and second

order central difference for the pressure Poisson

equation can be used, which is economical for

solving it in MPI parallel programming language

environment.

2. For the lower Gr number (Gr £ 104) the vortices

structure has no visible change in the vector con-

tour in the cross section, indicating Reynolds

stresses owing to turbulent motion are strong

compared with buoyancy force. With the increase

of the Gr number, the buoyancy force enlarges,

and the flow in the cross section gradually exhibit

natural convection characteristics. However, the

development of natural convection is suppressed

strongly by the Reynolds stresses at Gr = 107.

3. When Gr number is less than 105 the mean heat

transfer coefficient is almost constant because the

secondary flow owing to the turbulent motion is

dominant. For the higher Gr number, the mean

heat flux increases with the increase of Gr, but it is

less than that of the laminar flow with the same Gr

number because natural convection is somewhat

depressed by the Reynolds stresses.

4. The turbulent transport is important for the mean

streamwise momentum and equations for the

lower Gr number (105). With the increase of Gr

number, the contribution from convection trans-

port in the equations become significant near the

wall or near the corner in the duct.
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