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DISCUSSION ON NUMERICAL TREATMENT OF PERIODIC
BOUNDARY CONDITION FOR TEMPERATURE

Liang Gong, Zeng-Yao Li, Ya-Ling He, and Wen-Quan Tao
State Key Laboratory of Multiphase Flow in Power Engineering,
School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an,
People’s Republic of China

For periodic fully developed fluid flow and heat transfer problems, it is sufficient to confine

attention to a single cycle. The temperature periodic conditions at the computational

domain inlet/exit for fluid temperature can be implemented by two methods: either by

extending the computational domain by several control volumes and replacing the field data

at the domain inlet and outlet by each other, or by using linear interpolation while restrict-

ing the computation within one module. By carefully examining the numerical solutions of

the fluid streamwise bulk temperature obtained from the two methods, it is found that at the

fluid bulk temperature varies abruptly at the domain exit. A comprehensive analysis reveals

that this abnormal phenomenon is caused by the fact that the domain exit fluid bulk tem-

perature is actually not updated with iteration. A remedy is proposed: The domain exit bulk

temperature is updated by an upwind-based interpolation method. Numerical examples

show that the second-order interpolation method is feasible and reliable.

INTRODUCTION

Channels whose geometric shapes are periodic are widely used in compact heat
exchangers to enhance heat transfer. Usually the streamwise cycle (module) number
is large enough such that in the major part of such channels the fluid flow and heat
transfer can be regarded as periodically fully developed. The concept of periodically
fully developed flow and heat transfer was first developed by Patankar et al. [1].
Under the periodically fully developed condition, the velocity components vary
periodically in the main flow direction and the pressure can be transformed to a per-
iodic function after subtraction of a linear term which is related to the global mass
flow rate. For the case of uniform wall temperature boundary condition, the dimen-
sional fluid temperature approaches more and more closely the wall temperature,
therefore the dimensional fluid temperature field is not periodic. However, an
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appropriately defined nondimensional temperature varies streamwisely in a periodic
manner. Thus, to reveal the flow and heat transfer characteristics in the periodic fully
developed region, it is sufficient to confine attention to a single cycle (module).
Because of the inherent characteristics, i.e., the streamwise periodicity in velocities,
nondimensional temperature, etc., the solution of the resulting algebraic equations
needs some special treatment. Broadly speaking, there are two types of solution
methodologies. One methodology was proposed in [1], where the discretized
algebraic equations were solved by a cyclic tridiagonal matrix algorithm (CTDMA)
and the energy equation in nondimensional temperature form was solved in conjunc-
tion with the solution of an eigenvalue which represents a streamwise nondimen-
sional temperature gradient. This solution procedure is somewhat complicated.
Later, in [2, 3], a different solution methodology, an iterative method, was suggested,
in which the dimensional governing equations were solved and the periodic bound-
ary conditions were implemented by extending the computational domain and
replacing the field data at the inlet by the computed solutions at the outlet of one
module. For the outlet boundary, the so-called continuing outflow boundary con-
dition (i.e., derivatives of the physical variables with respect to the streamwise direc-
tion were zero) was used in [2]. As indicated in [4], since all the variables change
along the streamwise direction, this treatment for the outflow boundary might lead
to some inaccuracy. In addition, it should be noted that in order to apply the per-
iodic boundary conditions by the proposed method, extension of the solution
domain was necessary even through our interest was in only one module. Subse-
quently, in [4, 5], the periodically fully developed fluid flow and heat transfer in wavy
channels were simulated, and the iterative method was extended to mutual replace-
ments of the inlet and outlet data for accelerating convergence, by which the periodic
boundary condition was implemented not only by replacing the field data at the
domain inlet by the computed solutions at the module outlet but also by replacing
the field data at the domain outlet by those at the position within the domain cor-
responding to the domain outlet. As indicated above for the execution of the mutual
replacement method, the computational domain was composed of one module and
several additional control volumes in the streamwise direction. The energy equation
was solved via the dimensional temperature. However, it is the dimensionless tem-
perature that possesses periodic variation. The dimensional temperature at the
domain inlet and outlet were then calculated using the dimensionless temperature
at these locations. In [4, 5], the resulting algebraic equations were solved by the
successive line underrelaxation method (SLUR) incorporated by the conventional

NOMENCLATURE

Cp specific heat at constant pressure

L translation vector

p pressure

Pr Prandtl number

Re Reynolds number

T temperature

Tb local bulk temperature

Tw wall temperature

u velocity in the x direction

U velocity vector

v velocity in the y direction

H dimensionless temperature

g fluid dynamic viscosity

q fluid density

430 L. GONG ET AL.



D
ow

nl
oa

de
d 

B
y:

 [X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] A
t: 

08
:1

0 
27

 M
ar

ch
 2

00
8 tridiagonal matrix algorithm (TDMA). Being aware of the complexity for solving the

eigenvalue problem for the nondimensional temperature, Kelkar and Patankar [6]
solved the dimensional temperature equation and determined the domain inlet=
outlet dimensional temperature through the nondimensional temperature in the
solution domain by using the periodicity of the nondimensional temperature.
The CTDMA was used and the solution domain was only half of a module, using
the symmetric character pertinent to the problem solved. In order to restrict the
computational domain exactly within one model and use the conventional TDMA,
in [7–9] another mutual replacement method of linear interpolation was suggested to
treat the temperature periodic boundary condition. This method implemented the
periodic boundary condition for temperature at the inlet=outlet by linear interp-
olation between the field data on the first interior point near the inlet and those near
the outlet.

Recently, in [10], the stream–vorticity function method with periodic boundary
conditions was used to solve a mixed-convection heat transfer problem. In [11], the
periodic boundary condition was used to solve the convective heat transfer in a pipe
with periodically arranged surface vortex generators. In both reports, the details of
implementing the periodic boundary conditions were not presented clearly. In [12],
the commercial software CFX was used to solve for laminar flow and heat transfer
in a periodic serpentine channel. The mutual replacement method was adopted to
treat the periodic boundary condition at the inlet and outlet. In order to guarantee
the periodic condition, the computational domain was pre-extended such that in the
fluid flow and heat transfer reach the periodic state. For the geometry studied in [12]
(serpentine tube), the authors found that three units (modules) were enough to reach
the periodic condition. They picked up the data in the central unit as the boundary
conditions. This practice for the implementation of periodic boundary condition
does not restrict the computational domain mainly to one module. In addition, if
three units are required to reach the periodic state, then the fluid flow and heat trans-
fer in the central (i.e., second) unit have not reached the periodic state. Hence the
data picked up from this unit are questionable for use as the periodic boundary
condition.

From the authors’ numerical experiences, the boundary condition treatment is
one of the major concerns of numerical simulation, and in some cases a globally cor-
rect numerical solution may contain some undesirable features just because of some
inappropriate treatment of the related boundary conditions. This article provides
some examples.

The rest of the article is organized as follows. First the basic concepts of the
periodic fully developed fluid flow=heat transfer and the numerical method, includ-
ing the numerical techniques of mutual replacements, are briefly reviewed. Two
numerical examples in which the periodic temperature boundary condition is
treated by linear interpolation are presented, and an undesirable feature of the tem-
perature distribution is presented. A detailed analysis is presented to reveal the rea-
son and a corrected treatment technique is proposed. The proposed method is then
adopted in the computations of three examples, including flow and heat transfer in
periodically converging-diverging channels, followed by presentation of numerical
results showing the feasibility of the proposed method. Finally, some conclusions
are drawn.

TREATMENT OF PERIODIC BOUNDARY CONDITION 431
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8 2. BRIEF REVIEW OF PERIODICALLY FULLY DEVELOPED FLUID FLOW/

HEAT TRANSFER AND ITS BOUNDARY CONDITIONS

2.1. Basic Concepts of Periodically Fully Developed
Fluid Flow/Heat Transfer

Consider a 2-D duct of geometric periodic shape with uniform wall tempera-
ture Tw separated by a translation vector L within which a fluid with constant
properties is moving. One such module is presented schematically in Figure 1. If
the fluid flow and heat transfer are periodically fully developed, the fluid velocity
U(r), the pressure p(r), and the dimensionless temperature HðrÞ in successive modules
have following relationships.
Velocity:

UðrÞ ¼ Uðrþ LÞ ¼ Uðrþ 2LÞ . . . ð1Þ

Pressure:

pðrÞ � pðrþ LÞ ¼ pðrþ LÞ � pðrþ 2LÞ . . . ð2Þ

Dimensionless temperature:

HðrÞ ¼ Hðrþ LÞ ¼ Hðrþ 2LÞ . . . ð3Þ

which is defined as

HðrÞ ¼ TðrÞ � TW

TbðrÞ � TW
ð4Þ

Here Tb is the local bulk temperature and is defined as

Tb ¼
R

A uT dAR
A u dA

ð5Þ

The task of numerical simulations is to find the fluid velocity and temperature
distributions and the related friction factor and Nusselt number of the module. The
major issue in the numerical solution is the numerical treatment of the periodic

Figure 1. Schematic of a geometric periodic domain.

432 L. GONG ET AL.
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8 boundary conditions, especially for the fluid temperature. In this article, attention is

focused on the methods proposed and developed in [4–9], where the energy equation
is solved via a dimensional temperature and the inlet=outlet periodic boundary con-
ditions are treated via replacement or interpolation techniques, so that the computa-
tional domain can be restricted in one unit.

2.2. Numerical Implementation for Temperature Periodic
Boundary Condition

In this section, the replacement method and the linear interpolation method for
the inlet=outlet temperatures are described. For execution of the replacement
method, an extended computational domain is required; while for the linear interp-
olation, computation is restricted within exactly one module. For simplicity of pres-
entation the methods will be called simply the domain extension method (DEM) and
the linear interpolation method (LIM), respectively. In the following, the two meth-
ods will be introduced briefly, taking the periodically fully developed fluid flow=heat
transfer in a converging-diverging channel (Figure 2) as an example.

2.2.1. Domain extension method (replacement method). One module
of the converging-diverging channel is represented by the geometry A–B–C–D in
Figure 2. To implement the replacement method, the computational domain is
extended in the streamwise direction by at least one control volume. This is shown
schematically by the region A–B–G–H, where the dashed line EF within the module
is the counterpart of GH.

When the flow and heat transfer are fully developed along the flow direction,
the velocity and the dimensionless temperature on lines AB and EF should be equal
to ones on lines DC and HG, respectively. So the periodicity of the velocity and non-
dimensional temperature can be expressed as follows:

uðAB; yÞ ¼ uðDC; yÞ vðAB; yÞ ¼ vðDC; yÞ ð6Þ

uðGH; yÞ ¼ uðEF; yÞ vðGH; yÞ ¼ vðEF; yÞ ð7Þ

HðAB; yÞ ¼ HðDC; yÞ HðHG; yÞ ¼ HðEF; yÞ ð8Þ

Figure 2. Geometric model of a 2-D periodically converging-diverging channel.

TREATMENT OF PERIODIC BOUNDARY CONDITION 433
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8 Equations (6) and (7) can be used directly as the periodic boundary conditions for

velocity components at the computational domain inlet and outlet, while Eq. (8)
should be transformed into dimensional form via definition (4):

TðAB; yÞ ¼ TW þHðDC; yÞ½TbðABÞ � TW � ð9Þ

TðHG; yÞ ¼ TW þHðEF; yÞ½TbðHGÞ � TW � ð10Þ

where the local bulk temperature TbðABÞ is a prespecified value (different from Tw)
and the local bulk temperature TbðHGÞ is updated from iteration to iteration during
the solution procedure. It should be noted that in Eq. (9) the replacement method is
implemented in that HðAB; yÞ is replaced by its counterpart HðDC; yÞ. Similar
understanding can be applied to Eq. (10). From Figure 2 it can be clearly observed
that only when the domain is extended at least by one control volume can we update
both the inlet (line AB) and outlet (line HG) boundary conditions using the replace-
ment method. Cartesian coordinates are used in this article. However, if the inlet and
the outlet boundary grids are everywhere one-to-one corresponding, then the
replacement method can also be used for unstructured grids.

2.2.2. Linear interpolation method. The linear interpolation method is used
when the computational domain is strictly limited within one module, such as A–B–
C–D in Figure 2. When the flow and heat transfer are periodically fully developed
along the flow direction, the velocity and the dimensionless temperature on line
EF should be equal to ones on line HG. To update the velocity components at
the outlet of the module, linear interpolation between the values at lines JI and
GH may be used. By adopting periodicity, the variables at HG may be replaced
by those at EF. Thus we have

uðAB; yÞ ¼ uðDC; yÞ ¼ uðEF; yÞ þ uðJI; yÞ
2

ð11Þ

vðAB; yÞ ¼ vðDC; yÞ ¼ vðEF; yÞ þ vðJI; yÞ
2

ð12Þ

HðAB; yÞ ¼ HðDC; yÞ ¼ HðEF; yÞ þHðJI; yÞ
2

ð13Þ

Then the module inlet and outlet dimensional temperatures can be described as

TðAB; yÞ ¼ Tw þ
1

2
HðEF; yÞ þHðJI; yÞ½ � TbðABÞ � Tw½ � ð14Þ

TðDC; yÞ ¼ Tw þ
1

2
HðEF; yÞ þHðJI; yÞ½ � TbðDCÞ � Tw½ � ð15Þ

where the local bulk temperatures TbðABÞ and TbðDCÞ are updated from iteration to
iteration. This LIM was adopted in [7–9]. To the authors’ knowledge, in [6] a similar

434 L. GONG ET AL.
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8 method was used, although those authors did not explicitly use the term ‘‘linear

interpolation.’’ In the finite-volume method, the interface interpolation method
implies a scheme of discretization, and the linear interpolation corresponds to the
central difference [13]. Hence, mathematically, this interpolation has second-order
accuracy. When a rather complicated variation pattern of the dependent variable
exists near the domain inlet and outlet, a finer grid distribution should be located
around the two boundaries in order to maintain the accuracy.

3. AN UNDESIRABLE FEATURE CONCEALED IN THE DEM AND LIM

Using the DEM and LIM, we can solve the energy equation with dimensional
temperature in quite a simple and straightforward manner. However, in a series study
of periodically fully developed fluid flow and heat transfer, we gradually became aware
of an undesirable feature caused by using these techniques. In this section, we illustrate
this undesirable feature by solving the laminar flow and heat transfer in the converg-
ing-diverging channel shown in Figure 2. Since the channel is symmetrical about the
centerline, the actual solution domain is only the upper part of one module.

The governing conservation equations in the Cartesian coordinates are the
following.
Mass conservation:

qu

qx
þ qv

qy
¼ 0 ð16Þ

x-Direction momentum:

q divðuUÞ ¼ g divðgraduÞ � qp

qx
ð17Þ

y-Direction momentum:

q divðvUÞ ¼ g divðgradvÞ � qp

qy
ð18Þ

Energy conservation:

divðTUÞ ¼ k
qCp

divðgrad TÞ ð19Þ

The boundary conditions are as follows.
At the top wall:

u ¼ v ¼ 0 T ¼ Tw ð20Þ

At the centerline:

qu

qy
¼ 0 v ¼ 0

qT

qy
¼ 0 ð21Þ

TREATMENT OF PERIODIC BOUNDARY CONDITION 435
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8 The inlet and outlet boundary conditions for velocity and temperature are repre-

sented by Eqs. (6), (7) and (9), (10) for the domain extension method, and by
Eqs. (11), (12) and Eqs. (14), (15) for the linear interpolation method.

Computations were conducted for the following conditions. The channel
dimensions are L ¼ 0.02 m, Hmin ¼ 0.005 m, and a ¼ 20� (see Figure 2). The fluids,
with Re ¼ 100, Pr ¼ 0.7, and Tb, in ¼ 400 K are cooled with Tw ¼ 300 K. The finite-
volume method is adopted to discretize the governing equations [13, 14], and the
CLEAR algorithm [15, 16] is adopted to deal with the coupling between velocity
and pressure. The SGSD scheme [17] is used to discretize the convective term, and
the stepwise approximation technique is used for the irregular boundaries. The grid
system is 170 (in x)� 52 (in y) in each module. The convergence conditions are
expressed as

Rscv ¼MAX
CV

qu�Að Þw� qu�Að Þeþ qv�Að Þs� qv�Að Þn
flowch

� �
� 5:0� 10�8 ð22Þ

DT ¼MAX
Tn � Tn�1

Tn
� 1:0� 10�8 ð23Þ

where Rscv is the maximum relative mass flow rate unbalance of all the control
volumes in the computational domain [15] and DT is the maximum relative tempera-
ture variation in successive two iterations of all the nodes in the computation
domain.

The predicted results of the stream functions, isotherms, and bulk temperature
distributions using the LIM are shown in Figure 3. It can be seen that while the
streamlines and the major part of the isotherms and the bulk temperature distribu-
tions show reasonable variation patterns, the isotherms and the bulk temperature
distributions have an unreasonable feature at the domain exit: The local values
increase very quickly to the prespecified bulk temperature. The solutions using the
domain extension method are presented in Figure 4, where two modules constitute
a computational domain. It can be seen from Figure 4 that the same feature exists.

Why did this phenomenon appear? Did the stepwise approximation technique
cause the fallacious phenomenon? The periodic boundary condition was then
applied to solve the periodic fully developed fluid flow=heat transfer problem in a
parallel-plate channel, which is the simplest periodic channel where the Cartesian
coordinates can fit the geometric boundary perfectly.

Theoretically, for fully developed fluid flow and heat transfer in a parallel-plate
channel, the results should be periodic alone the flow direction with an arbitrary dis-
tance as a computational module. The linear interpolation method is applied to solve
this problem. The fluid with Tb, in ¼ 400 K and Re ¼ 100 is cooled with Tw ¼ 300 K.
The results are presented in Figure 5.

From Figure 5a it can be seen that the velocity distribution is consistent with
the theoretical result, which reflects the validity of the periodic velocity boundary
treatment. But the results of temperature distributions exhibit the same abnormal
phenomenon at the channel outlet, as shown in Figures 5b and 5c. This implies
that it is not the stepwise approximation technique that causes the inconsistent

436 L. GONG ET AL.
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temperature distribution at the domain exit. At the same time, this gives us a hint that
probably the numerical techniques adopted to deal with the periodic temperature
boundary condition cause the error. After a detailed analysis an inadvertent assump-
tion in the DEM and LIM has been revealed, and this analysis is presented below.

4. ANALYSIS AND REMEDIES

4.1. Analysis of the Abnormal Phenomenon

The analysis is conducted for the DEM, and it can be shown that the
conclusion is also valid for the LIM. The following analysis shows that in the

Figure 3. Results of applying linear interpolation method in converging-diverging channel.

TREATMENT OF PERIODIC BOUNDARY CONDITION 437
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implementation of the LIM or DEM, the domain exit fluid bulk temperature actu-
ally remains unchanged during the solution procedure, leading to the above-
mentioned abnormal phenomenon.

Referring to the module A–B–G–H in Figure 2, from the periodicity we
have

HðHGÞ ¼ HðEFÞ ð24Þ

At the (nþ 1)th iteration, the dimensionless temperature can be expressed by:

Hðnþ1ÞðHG; yÞ ¼ T ðnþ1ÞðHG; yÞ � TW

T
ðnþ1Þ
b ðHGÞ � TW

¼ Hðnþ1ÞðEF; yÞ ð25Þ

From Eq. (25) it can be obtained

T ðnþ1ÞðHG; yÞ ¼ Tw þHðnþ1ÞðHG; yÞ T
ðnþ1Þ
b ðHGÞ � Tw

h i
ð26Þ

Figure 4. Results of applying extending one module method in converging-diverging channel.

438 L. GONG ET AL.
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In the iterative computational process, T
ðnþ1Þ
b ðHGÞ is actually replaced

by T
ðnÞ
b ðHGÞ, and H(nþ 1) (HG, y) is replaced by H(nþ 1) (EF, y). Thus we have

T ðnþ1ÞðHG; yÞ ¼ Tw þHðnþ1ÞðEF; yÞ T
ðnÞ
b ðHGÞ � Tw

h i
ð27Þ

Figure 5. Results of applying periodic boundary condition in flat channel.

TREATMENT OF PERIODIC BOUNDARY CONDITION 439
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8 By substituting T(nþ 1) (HG, y) into the expression of Tb ¼

R
ÂA

uT dA=
R
ÂA

u dA,
we get

T
ðnþ1Þ
b ðHGÞ ¼

R
ÂA TwuðEF; yÞ dAþ

R
ÂA Hðnþ1ÞðEF; yÞuðHG; yÞ T

ðnÞ
b ðHGÞ � Tw

h i
dAR

A uðHG; yÞ dA

¼ Tw þ
T
ðnÞ
b ðHGÞ � Tw

h i R
A

T ðnþ1ÞðEF;yÞ�Tw

T
ðnþ1Þ
b
ðEFÞ�Tw

uðHG; yÞ dA

R
A uðHG; yÞ dA

¼ Tw þ
T
ðnÞ
b ðHGÞ � Tw

h i R
A T ðnþ1ÞðEF; yÞ � Tw

� �
uðEF; yÞ dA

T
ðnþ1Þ
b ðEFÞ � Tw

h i R
A uðEF; yÞ dA

¼ Tw þ
T
ðnÞ
b ðHGÞ � Tw

h i
T
ðnþ1Þ
b ðEFÞ � Tw

h i

T
ðnþ1Þ
b ðEFÞ � Tw

h i ¼ T
ðnÞ
b ðHGÞ ð28Þ

The above analysis reveals the fundamental reason for the above-mentioned fal-
lacious temperature variation at the module outlet: The local bulk temperature at the
module outlet is not updated with the iteration. It is interesting to note that even
though in the right-hand side of Eq. (27) the present value of Tnþ1

b ðHGÞ is replaced
by its previous value in the iteration calculation, without the above-mentioned deri-
vation, we cannot get directly the conclusion that Tnþ1

b ðHGÞ ¼ Tn
b ðHGÞ. This is

because in Eq. (27), the value of Hnþ 1 (EF) is updated. If this practice is correct,
Eq. (27) should lead finally to the updated value of Tnþ1

b ðHGÞ.
The higher exit fluid temperature will cause fluid heat conduction from the exit

to the inner region of the domain. Even though the fluid conduction is can often be
neglected when the fluid Peclet number is greater than 100 [18], and hence the major
results of heat transfer presented in [4, 5, 7–9] are right when either the DEM or the
LIM is used to treat the temperature periodic boundary condition, the abrupt change
of the exit bulk temperature is surely unreasonable and undesirable. The present arti-
cle proposes following two techniques to overcome this undesirable feature.

4.2. Remedies for Correction

It is proposed that during the iteration the local bulk temperature at the mod-
ule (domain) outlet boundary be updated by upwind interpolation from the local
fluid bulk temperatures within the domain.

To be specific, we propose the following two upwind interpolation schemes:

TbðL1Þ ¼ TbðL2Þ ð29Þ

TbðL1Þ ¼ 1:5TbðL2Þ � 0:5TbðL3Þ ð30Þ

where L1, L2, and L3 are the last, last but one, and last but two grids in the steam-
wise direction, respectively, Equations (29) and (30) are similar to the first-order
upwind scheme (FUD) and second-order upwind scheme (SUS) of the discretization
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8 of convection term. For convenience, Eqs. (29) and (30) are denoted by FUSET

(first-order upwind scheme for exit temperature) and SUSET (second-order upwind
scheme for exit temperature). Numerically, the above upwind interpolation method
is incorporated into the iterative solution procedure as follows. Within each iter-
ation, the periodic condition for the nondimensional temperature is implemented
by either the DEM or LIM, and at the end of each outer iteration the module exit
bulk temperature is updated by Eq. (29) or (30). For simplicity of later presentation,
the original DEM or LIM will be called simply DEM or LIM, and that incorporat-
ing the upwind interpolation of the exit bulk temperature will be called corrected
DEM (LIM).

Figure 6. Comparison of predicted temperatures with different treatments of periodic temperature

condition for heat transfer in a parallel-plate channel.
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4.3. Results after Correction

The two corrections of the local bulk temperature Tb (L1) were applied to solve
flow and heat transfer in flat channels, and the results are shown in Figure 6.

The results of heat transfer by two different corrections are more reasonable
than the one without corrections. To compare the FUSET and SUSET, the mean
Nusselt number and the local Nusselt number are calculated; the results are shown
in Table 1 and Figure 7.

From Table 1 and Figure 7, it can be seen that the results by applying FUSET
and SUSET are both better than the results without correction. And the results
applying SUSET are better than the ones applying FUSET. The relative error of
mean Nusselt number for FUSET is 0.02652%, and that for SUSET is only
0.01326%, which reflects the validity of the interpolative prediction method. The
present authors thus recommend the adoption of the interpolative method of SUSET
in conjunction with the LIM or DEM for implementation of the periodically fully
developed fluid flow and heat transfer.

At this point a question may be raised as follows: In the domain extension
method (simple DEM), if the extended control volumes are large enough, can the
abnormal phenomenon be eliminated in the first module?

Numerical results with different numbers of extended control volumes for the
heat transfer in a parallel channel are presented in Table 2 and Figure 8. It can be

Table 1. Comparison of mean Nusselt numbers

Numerical method Nu Analytic solution Relative error (%)

Without correction LIM 7.767 2.997

Corrected FUSET 7.543 7.541 0.02652

SUSET 7.540 0.01326

Figure 7. Comparison of local Nusselt number from corrected and uncorrected methods.
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observed that with an increase in the extended control volumes, the mean Nusselt
number gradually approaches the exact solution. And with 10 extended control
volumes, the error involved in the mean Nusselt number is of the same order as that
by applying the FUSET (see Table 1). This comparison gives strong support to the
application of the two proposed corrected methods.

5. APPLICATION EXAMPLES

In this section the SUSET method is applied to solve three periodic fully
developed fluid flow and heat transfer problems. For comparison purposes, the
results from FUSET are also provided.

Problem 1: Flow and Heat Transfer in a Periodic Converging-Diverging
Channel

The channel dimensions are L ¼ 0.02 m, Hmin ¼ 0.005 m, and a ¼ 20�. A uni-
form grid of 170� 52 is used with stepwise approximation. Fluid with Re ¼ 100

Table 2. Mean Nusselt numbers for different extensions

Numerical method Nu Analytic solution Relative error (%)

Not extended 7.767 2.997

Extending 1 C. V. 7.658 1.552

Extending 5 C. V. 7.559 7.541 0.2387

Extending 10 C. V. 7.543 0.02652

Extending 1 module 7.540 0.01326

Figure 8. Comparison of local Nusselt number by applying expanding different numbers of control

volumes.
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8 and Pr ¼ 0.7 is cooled with Tb, in ¼ 400 K and Tw ¼ 300 K. All the numerical aspects

are the same as presented in Section 3. Computations were conducted for two kinds
of domain: one composed of one module and another of two modules. For the one-
module domain, both the simple LIM and the corrected LIM were used to treat the
periodic boundary condition, while for the two-module domain, only the simple
DEM was used and the converged solution of the first module was presented. The
simulated results are presented in Figure 9. It can be seen from the figure that the
local distribution of isotherms from SUSET are quite reasonable and the abrupt
change of fluid temperature at the exit is totally discarded. The fluid bulk tempera-
ture distribution from the corrected LIM agrees well with that in the first module of
the two-module results (shown by simple DEM in Fig. 9).

Figure 9. Results of flow and heat transfer in a periodical converging-diverging channel.
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8 Problem 2: Flow and Heat Transfer in a Parallel-Plate Channel with

Staggered Fins [6]

The channel dimensions are L ¼ 0.04 m, H ¼ 0.02 m. A uniform grid of
102� 52 is adopted. Fluid with Re ¼ 30, Pr ¼ 0.7, and Tb, in ¼ 400 K is cooled with
Tw ¼ 300 K. The computational results are shown in Figure 10. It can be observed

Figure 10. Results of fluid flow and heat transfer in a parallel-plate channel with staggered fins.

TREATMENT OF PERIODIC BOUNDARY CONDITION 445



D
ow

nl
oa

de
d 

B
y:

 [X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] A
t: 

08
:1

0 
27

 M
ar

ch
 2

00
8 that in the first half-compartment the isotherms from the simple and corrected LIM

methods are quite similar, while in the second half-compartment the difference
between the two solutions is appreciable. Figure 10e shows the big difference
between the streamwise bulk temperature distributions, among which the curves
from the corrected LIM and two-module domain agreewell. In addition, the present
flow field distributions agree well with those in [6].

Figure 11. Results of fluid flow and heat transfer in a channel with periodic square roughness elements.
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8 Problem 3: Flow and Heat Transfer in a Channel with Periodic

Square Roughness Elements

The channel dimensions are L ¼ 0.04 m, H ¼ 0.04 m. A uniform grid of
102� 52 is used. Fluid with Re ¼ 100 and Pr ¼ 0.7 is cooled with Tb, in ¼ 400 K
and Tw ¼ 300 K. The predicted results are presented in Figure 11. The same dis-
cussion can be conducted as for Problem 2.

6. CONCLUSIONS

In this article a qualitatively important feature concealed in the implemen-
tation of temperature periodic fully developed condition by the domain extension
method or the linear interpolation is discussed. A remedy is proposed, and three
application examples are provided. The following conclusions may be drawn.

1. When the simple DEM or LIM is used to deal with the temperature periodic fully
developed condition, the module (domain) exit fluid bulk temperature remains
unchanged during iteration, leading to an abrupt change of fluid temperature
at the module (domain) exit.

2. Two upwind-based interpolations, FUSET and SUSET, are proposed to update
the module (domain) exit fluid bulk temperature within the iteration. Numerical
examples show that the unreasonable abrupt temperature change at the module
(domain) exit has been discarded in the predicted fluid isotherms from the two
corrected methods, with the results from SUSET being better.
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