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DESIGN OF HIGH-ORDER DIFFERENCE SCHEME AND
ANALYSIS OF SOLUTION CHARACTERISTICS—PART I:
GENERAL FORMULATION OF HIGH-ORDER DIFFERENCE
SCHEMES AND ANALYSIS OF CONVECTIVE STABILITY

W. W. Jin and W. Q. Tao
State Key Laboratory of Multiphase Flow in Power Engineering, School of
Energy & Power Engineering, Xi’ an Jiaotong University, Xi’ an, People’s
Republic of China

In this article, a general design method of second-order difference schemes is presented. By

this method, we can easily design any second-order or higher-order difference scheme

instead of using complex Lagrange interpolation methods or spline functions. Moreover,

it is proved that all existing second-order difference schemes in numerical heat transfer

fit this general design style. In addition, based on this general style of second-order scheme,

the general style of a second-order absolutely stable scheme is deduced, and the stability

definitions are shown in a normalized variable diagram. Finally, through studying the sol-

ution characteristics of 14 second-order difference schemes, it is found that, to second order

precise, absolutely stable schemes obtained from the general method can achieve good con-

vergence even when the grid Pelect number reaches 100,000. However, at the same time, the

false diffusion of the scheme tends to increase along with the increasing value of ai

(coefficient in the interface variable definition).

1. INTRODUCTION

In the numerical solution of convective-diffusive equations, the discretization
of the convective terms is one of the most challenging and interesting tasks, since
the discretization schemes for the convective terms in the Navier-Stokes equations
and scalar transport equations are connected directly to the solution accuracy,
efficiency, and convergency. A large number of studies have been conducted in con-
nection with the discretization schemes for the convection terms. Here we focus our
attention mainly on the numerical simulation of conventional fluid flow and heat
transfer problems. By ‘‘convectional’’ we mean those problems in which no sharp
gradient (such as sharp gradients of density in a shock) exists in the computational
domain. Most incompressible fluid flow and heat transfer problems in engineering
are of this category. Previous studies on the convective term discretization focused
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mainly on two respects. One is the comparison analysis of different schemes with
respect to false diffusion, stability, and accuracy. The comparison studies [1–6] indi-
cated that the requirements for numerical stability and computational accuracy are
often contradictory for most existing schemes used in computational fluid dyna-
mics=numerical heat transfer (CFD=NHT). Lower-order schemes such as first-order
upwind are stable but often lead to severe false diffusion. Second-order schemes,
such as central difference (CD) and QUICK, eliminate false diffusion but may pro-
duce wiggles and often fail to converge [7]. With respect to the central difference
schemes, it is well known that the CD is prone to oscillation when a grid Peclet
(or Reynolds) number is beyond a certain value. Even though a recent study [9]
has shown that the one-dimensional stability analysis methods (such as in [8]) give
only the most severe critical Pelect number, for practical multidimensional cases
CD may work well even if the local grid Pelect number is as large as 180 [9]; the pres-
ence of the Pelect number limit beyond which oscillation will occur is still an unde-
sirable feature of the scheme. Therefore, a significant amount of research effort has
been directed toward the convective discretization schemes, and many remedies have
been proposed [5, 10–12]. For example, in [5] it is shown that, compared with CD,
the second-order upwind difference scheme (SUD) performs better, and its
implementation is recommended. From stability considerations, the SUD is perfect
since it is absolutely stable; however, numerical studies have shown that it is some-
what diffusive [13].

The other aspect is the design of a new scheme in order to overcome the
shortcomings of existing schemes. For example, some researchers have discussed
the essence of discretization of the convective term. Inspection of the discretization
process of the convective term, written in a nonconservative form ðuq/=qxÞi, shows
that we actually encounter two kinds of quantities, i.e., convective flow

NOMENCLATURE

ai0 critical value of ‘‘narrow sense’’

absolutely stable scheme

ap; aN;E;W ;S coefficient in discretization

equation

D diffusive conductance

E time-step multiple

Er channel expansion ratio

F flow rate at the interface

PDx; PDy grid Peclet number in the x and y

directions

R residual of discretization equation

Re Reynolds number

S nominal source term

u; v velocity components in the x and

y directions

U ; V nondimensional Velocity

components in the x and y

directions

U0 sliding velocity of the lid

x coordinate

a underrelaxation factor

b parameter indicating the

percentage of central difference

C nominal diffusion coefficient

dx; dy distance between two neighboring

grid points in the x and y

directions

Dx; Dy distance between two neighboring

interface in the x and y directions

n fluid kinetic viscosity

/ general dependent variable

Subscripts

e; n; s;w interfaces

E;N;S;W near neighboring grid points

EE;NN far neighboring grid points

SS; WW far neighboring grid points

232 W. W. JIN AND W. Q. TAO



D
ow

nl
oa

de
d 

B
y:

 [S
ha

ng
ha

i J
ia

o 
To

ng
 U

ni
ve

rs
ity

] A
t: 

11
:4

5 
18

 M
ay

 2
00

8 

(represented by velocity u) and first-order derivative. The convective flow is totally
directional in that only the information upstream can be transferred downstream,
and not vice versa. In this regard it is better to adopt directional discretization
schemes such as first-order upwind or second-order upstream schemes. However,
from the first-order derivative itself, approximations with equal points at the two
sides of position i are better than bias approximations in that the information at
the two sides may be equally taken into account, especially when diffusion is the
dominant mechanism. Thus it is expected that an approximation combining sym-
metry and nonsymmetry structures of difference formulations with their percentage
being adjusted automatically will give better performance. This is the basic consider-
ation in constructing a new discretization scheme for the convection term. Starting
from this point, some schemes, which are combinations of several existing schemes,
have been designed. These include second-order hybrid (SHYBRID) [12] and stab-
ility-controllable second-order difference (SCSD) schemes [14]. In [12], CD, QUICK,
and SUD are organized in a general form from SHYBRID. In [14], CD and SUD
are combined to generate the SCSD scheme. Based on the SCSD scheme, a new
scheme whose stability is guaranteed with at least second-order accuracy is formu-
lated. It is named stability-guaranteed second-order difference (SGSD) [15]. These
previous research results have greatly advanced the development of difference
scheme construction, but, as concluded in [7], the matter is far from being solved,
and the need for further study of the formulation of the discretized convection
and diffusion scheme still remains. Moreover, it can be easily found that the pre-
vious researches improved the schemes from different points of view and lack some
general fundamental considerations. It is the present authors’ consideration that all
kinds of schemes designed through different ways should be subjected to the same
general formulation in mathematics, and possess some general characteristics for
the resulting algebraic equations during the solution process. In this article, we
propose a general design formulation for different discretized schemes and try to
analyze the solution characteristics of all kinds of schemes in order to find some gen-
eral features. In addition, based on this general formulation of discretized schemes,
we analyze the stability character of the scheme in detail.

In the following, the details of construction of the general formulation for dif-
ferent schemes, and a performance comparison for the simulation of lid-driven cav-
ity flow and flow over a back-facing step will be presented. In the numerical
simulation presented here, the diffusion term is always discretized by the second-
order CD scheme, hence the difference behavior in numerical solutions arises mainly
from the different discretizations of the convection term.

It may be interesting to note that even though Godnov et al. had shown that
for the pure convection equation only the first-order upwind scheme is bounded
and absolutely stable with constant coefficient [16], the major concern shown in this
article is on convective-diffusive problems. And the stability character of the discre-
tized schemes is actually the combined results from pure convection and diffusion,
which differs greatly from that of the pure convection case. Since all the trouble
in the discretization of the convection-diffusion equation is caused by the convection
term [6, 7], and the central difference will always be used for the diffusion term, for
simplicity of presentation, terms such as convective stability will be used instead of
convection-diffusion stability.

DESIGN OF HIGH-ORDER DIFFERENCE SCHEME—M PART I 233



D
ow

nl
oa

de
d 

B
y:

 [S
ha

ng
ha

i J
ia

o 
To

ng
 U

ni
ve

rs
ity

] A
t: 

11
:4

5 
18

 M
ay

 2
00

8 

2. GENERAL DESIGN FORMULATION OF HIGH-ORDER DIFFERENCE
SCHEME FOR CONVECTIVE TERM

The general differential equations for a steady-state convection-diffusion prob-
lem of a general variable / can be written in a conservative form as

qðquj/Þ
qxj

¼ q
qxj

C/
q/
qxj

� �
þ S/ ð1Þ

where q is the density of the fluid, uj is the jth component of the velocity, C/ is the
diffusion coefficient, and S/ is the source term for the variable /.

For discretization of the above equation, the finite-volume method is adopted.
For simplicity of presentation, the multidimensional problem is represented by a 2-D
case. A typical 2-D control volume is shown in Figure 1. For two-dimensional pro-
blems, after integration over the control volume, the discretized equation can be
obtained as follows:

Fe/e � Fw/w þ Fn/n � Fs/s ¼ S/ Dx DyþDeð/E � /PÞ �Dwð/W � /PÞ
þDnð/N � /PÞ �Dsð/S � /PÞ ð2Þ

The variables /n; e; w; s at control-volume interfaces can be determined by
means of an interpolation or extrapolation involving the values of the neighboring

Figure 1. Schematic of the control volume.

234 W. W. JIN AND W. Q. TAO
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grid points. In the finite-volume method, it is the choice of interpolation or extrapol-
ation method for the interfacial value that determines the scheme.

2.1. Derivation of General Formulation of Second-Order and
Higher-Order Difference Schemes

In order to complete the discretization of terms shown in Eq. (2), the interface
values of / should be interpolated by the proposed scheme. Here interpolation is dis-
cussed for a uniform grid system. Figure 2 shows a 1-D uniform grid system. For
example, when u > 0, the values of variable / on the east, e, and west, w, interfaces
are interpolated as

/e ¼ ai�1/i�1 þ ai/i þ aiþ1/iþ1

/w ¼ ai�1/i�2 þ ai/i�1 þ aiþ1/i

�
ð3Þ

Schemes defined by the above formulation can automatically fit for the scheme
conservativeness condition [6], that is, at any interface, the expressions for the inter-
face values written from its two side grids can fit the following condition (Figure 3):

ð/iÞe ¼ ð/iþ1Þw ð4aÞ

And since we take the central difference scheme for the conduction term, we have

q/i

qx

� �
e

¼ q/iþ1

qx

� �
w

ð4bÞ

Figure 2. 1-D uniform grid system.

Figure 3. Diagram showing interface continuity of variables.

DESIGN OF HIGH-ORDER DIFFERENCE SCHEME—M PART I 235
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where the i, iþ 1 grids and e;w interface positions are shown in Figure 3. As demon-
strated in [6], once Eqs. (4a) and (4b) are valid, the proposed scheme possesses the
conservation character.

In order to analyze the order of accuracy of the discretized convection term, we
adopt the Taylor series expansion method, as this has been done by Leonard in [17].
Then the scheme issue is related to how to discretize the first derivative in the con-
vective term at grid point i, ðq/=qxÞi. In the finite-volume method, after integration
of the convective-diffusive equation on the 1-D grid system shown in Figure 2, the
first derivative included in the convective term can be expressed as

q/
qx

����
i

¼ /e � /w

Dx
ð5Þ

By substitution of Eq. (3) into the above expression, we get

q/
qx

����
i

¼ /e � /w

Dx
¼ ðai � aiþ1Þ/i þ ðai�1 � aiÞ/i�1 þ aiþ1/iþ1 � ai�1/i�2

Dx
ð6Þ

The terms in the right-hand side of Eq. (6) are then expressed by the Taylor
series expansion at the point i, and the following expression is obtained:

q/
qx

����
i

¼ ðai þ ai�1 þ aiþ1Þ
q/
qx

����
i

þ ð�3ai�1 � ai þ aiþ1Þ
q2/
qx2

����
i

� Dx

2!

þ ð7ai�1 þ ai þ aiþ1Þ
q3/
qx3

����
i

� Dx2

3!
. . . ð7Þ

By neglecting terms with derivatives higher than third order in Eq. (7), we can
obtain the following results:

ai�1 þ ai þ aiþ1 ¼ 1
�3ai�1 � ai þ aiþ1 ¼ 0
7ai�1 þ ai þ aiþ1 ¼ 0

8<: �!
ai ¼ 5

6

ai�1 ¼ � 1
6

aiþ1 ¼ 1
3

8<: ð8Þ

Then, if we substitute the above values of ai�1, ai, and aiþ1 into Eq. (3), we can
uniquely attain the third-order upwind scheme (TUD) expressed by

/e ¼ � 1
6 /i�1 þ 5

6 /i þ 1
3 /iþ1

/w ¼ � 1
6 /i�2 þ 5

6 /i�1 þ 1
3 /i

�

If we just retain the term with the second-order derivative on the right-hand
side of Eq. (7), we can obtain the ai�1; ai, and aiþ1 values as follows:

ai�1 þ ai þ aiþ1 ¼ 1
�3ai�1 � ai þ aiþ1 ¼ 0
7ai�1 þ ai þ aiþ1 6¼ 0

8<: �!
ai 6¼ 5

6

ai�1 ¼ 1
4�

ai

2
aiþ1 ¼ 3

4�
ai

2

8<:

236 W. W. JIN AND W. Q. TAO
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Then we can easily find the general formulation of second-order difference schemes
as follows:

/e ¼ ai/i þ 1
4�

ai

2

� �
/i�1 þ 3

4�
ai

2

� �
/iþ1

/w ¼ ai/i�1 þ 1
4�

ai

2

� �
/i�2 þ 3

4�
ai

2

� �
/i

ai 6¼ 5
6

8<: ð9Þ

where ai can be any value except 5=6.
In order to further prove the second-order accuracy of the schemes defined by

Eq. (9), we adopt the normalized variable method [18, 19].
Defining the normalized variable,

~// ¼ /� /i�1

/iþ1 � /i�1

ð10Þ

we can rewrite Eq. (9) via the normalized interface variable:

f/f/f ¼
3

4
� ai

2

� �
þ ai

f/c/c ¼ ai
f/c/c �

1

2

� �
þ 3

4
ð11Þ

Equation (11) shows that the general formulation of Eq. (9) proposed in this article
goes through the grid point (0.5, 0.75) in the normalized variable diagram under any
ai value (except 5=6), which has been proved to be both the sufficient and necessary
conditions for a scheme to possesses second-order accuracy [19].

In fact, this derivation method can be extended to the design of any higher-
order difference scheme by means of different grid points. For example, when
u > 0, the values of variable / on the east, e, and west, w, interfaces may be
interpolated as

/e ¼ . . . ai�2/i�2 þ ai�1/i�1 þ ai/i þ aiþ1/iþ1 þ aiþ2/iþ2 . . .
/w ¼ . . . ai�2/i�3 þ ai�1/i�2 þ ai/i�1 þ aiþ1/i þ aiþ2/iþ1 . . .

�
ð12Þ

The coefficients in Eq. (12) can also be deduced through the same process as pre-
sented above. A companion article will analyze higher-order schemes [20]. In this
article our focus is concentrated to the second-order schemes only.

2.2. Derivation of Absolutely Stable Second-Order Difference Scheme

In order to analyze the stability of the above schemes, we analyze them in the
explicit scheme of the one-dimensional unsteady convection-diffusion equation in
the way similar to that presented in [8]:

q
q/
qt
þ qu

q/
qx
¼ C

q2/

qx2
ð13Þ

DESIGN OF HIGH-ORDER DIFFERENCE SCHEME—M PART I 237
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By substitution of Eq. (9) for the convective term and the central expression for the
diffusion term, the discretized form of Eq. (13) can be expressed as follows:

/nþ1
i � /n

i

Dt
þ u
ð6ai � 3Þ/n

i þ ð1� 6aiÞ/n
i�1 þ ð3� 2aiÞ/n

iþ1 � ð1� 2aiÞ/n
i�2

4 Dx

¼ C
/n

iþ1 � 2/n
i þ /n

i�1

qDx2
ð14Þ

To analyze the scheme stability, the discrete disturbance method is adopted [8].
It is assumed that the original field is uniform and, for simplicity of analysis and
without losing generality, the field values are assumed to be everywhere zero. At
the point i and time instant n there is a disturbance, designated by en

i , and at any
other points and at any subsequent time no disturbances act on the field. Then
Eq. (14) is used to predict the effects of this disturbance on the values at point
i � 1 and at instant nþ 1. Since the diffusion term is discretized by the central differ-
ence, and its behavior for transport disturbance is well documented in the literature
[6, 8], only the effect of the convective term is analyzed. By writing the above equa-
tion without the diffusion term for the points ði þ 1Þ and ði � 1Þ, we can obtain

/nþ1
iþ1 � /n

iþ1

Dt
¼ �u

ð6ai � 3Þ/n
iþ1 þ ð1� 6aiÞ/n

i þ ð3� 2aiÞ/n
iþ2 � ð1� 2aiÞ/n

i�1

4 Dx

/nþ1
i�1 � /n

i�1

Dt
¼ �u

ð6ai � 3Þ/n
i�1 þ ð1� 6aiÞ/n

i�2 þ ð3� 2aiÞ/n
i � ð1� 2aiÞ/n

i�3

4 Dx

ð14aÞ

Then the effects of the disturbance en
i transported by the convective terms are

/nþ1
iþ1 ¼

ð6ai�1Þ
4

u Dt
Dx

� �
en

i

/nþ1
i�1 ¼

ð2ai�3Þ
4

u Dt
Dx

� �
en

i

(
ð14bÞ

According to the sign preservation rule [8], it is required that for the scheme to
be stable the following condition must be satisfied:

ð6ai�1Þ
4

u Dt
Dx

� �
en

i þ C Dt
q Dx2

� �
en

i

en
i

� 0

ð2ai�3Þ
4

u Dt
Dx

� �
en

i þ C Dt
q Dx2

� �
en

i

en
i

� 0

8>>>>><>>>>>:
ð15Þ

where the second term in the numerator is the effect transported by the diffusion
term. Taking the case for u > 0 into consideration, in order to simultaneously satisfy
the above two equalities, the following condition must be met:

6ai � 1 � 0
2ai � 3 � 0

�
! ai �

3

2
ð16Þ

238 W. W. JIN AND W. Q. TAO
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Thus, for the case of u > 0, we can obtain an absolutely stable scheme of
second-order accuracy by the following interfacial interpolation formulation consist-
ing of three grid points:

/e ¼ ai/i þ 1
4�

ai

2

� �
/i�1 þ 3

4�
ai

2

� �
/iþ1

ai � 3
2

�
ð17Þ

The same derivation can be conducted for the case of u < 0, and the corre-
sponding expressions can be obtained. Once again, it is noted here that the condition
of Eq. (17) for the absolutely stable scheme is the combined actions of convection
and diffusion, rather than convection only.

The results of Eq. (17) can be expressed by the normalized variable, and the
correspondent expression is

~//e ¼ 3
4�

ai

2

� �
þ ai

~//i

ai � 3
2

�
ð18Þ

Equation (18) is presented in Figure 4, where the shadow region is its represen-
tation. According to the above analysis, it can be stated that if the defining line of a
second-order scheme in the normalized variable diagram goes through the grid point
Q (0.5, 0.75) and the line is located within the shadow region shown in Figure 4, the
scheme must be absolutely stable with a second-order accuracy. In addition, when
ai ¼ 3=2, the corresponding scheme is the second-order upwind scheme (SUD) which

Figure 4. Region of absolutely stable schemes in NVD.

DESIGN OF HIGH-ORDER DIFFERENCE SCHEME—M PART I 239
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lies at the left boundary of this shadow region and goes through the coordinate
origin.

It is well known that the defining line (or characteristic line) of the first-order
upwind scheme (FUD) is the diagonal of the normalized variable diagram (NVD),
which is absolutely stable, too. This implies that the condition for a scheme to be
absolutely stable shown by the shadow region is only sufficient, but not necessary.
However, the FUD is only of first-order accuracy. Thus, we can state that any
characteristic line going through the grid point Q and located within the shadow
region of Figure 4 represents a kind of scheme with absolute stability and second-
order accuracy. The critical value of ai for this absolute stability is designated by ai0.

In addition, we can also give a general discussion of the scheme stability as fol-
lows. From Eq. (15), we can deduce the following results:

PD � 4
1�6ai

; PDc ¼ 4
1�6ai

PD � 4
3�2ai

;PDc ¼ 4
3�2ai

(
ð19Þ

where PDc is the critical Peclet number beyond which the numerical solution of the
1-D convective-diffusive problem will have an oscillating solution.

The variation of the above critical PDc number with the value of ai is analyzed
as follows.

1. When ai < �1=2, Eq. (19) can be further transformed into

0 � PD �
4

1� 6ai
; PDC ¼

4

1� 6ai
> 0 ð19aÞ

When the value of ai tends to equal �1=2, the critical PDc of the above
expression can approach its maximal value of 1.

2. When �1=2 � ai < 3=2, Eq. (19) can be further reduced into

0 � PD �
4

3� 2ai
; PDC ¼

4

3� 2ai
> 0 ð19bÞ

With increase in ai, the value of PDc in Eq. (19b) increases from 1 to 1.
3. When ai � 3=2, Eq. (19) leads to the following result:

PDc � 0 ð19cÞ

In this region, whatever the value of ai, the corresponding scheme of second-
order accuracy is absolutely stable, as indicated before.

From the above analysis we can conclude that, with increase in the coefficient
ai, the corresponding critical PDc also increases up to infinity. Therefore, when
designing a second-order scheme, in order to extend the stability range, a larger value
of ai is preferred.
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2.3. Relationship of the General Formulation of Second-Order
Difference Scheme to Existing Schemes

In the following, the relationship between the general formulation of the
second-order scheme with the existing schemes is analyzed.

When ai ¼ 1=2, the general formulation scheme, Eq. (9), leads to the central
difference scheme (CD):

/e ¼
1

2
/i þ

1

2
/iþ1 ð19dÞ

When ai ¼ 3=4, the QUICK scheme is obtained:

/e ¼
3

4
/i �

1

8
/i�1 þ

3

8
/iþ1 ð19eÞ

When ai ¼ 5=6, the TUD scheme is reached:

/e ¼
3

4
/i �

1

8
/i�1 þ

3

8
/iþ1 ð19f Þ

When ai ¼ 1, the Fromm scheme is obtained [21]:

/e ¼ /i �
1

4
/i�1 þ

1

4
/iþ1 ð19dÞ

When ai ¼ 3=2, the absolutely stable SUD scheme results:

/e ¼
3

2
/i �

1

2
/i�1 ð19gÞ

It can be seen that all the existing schemes with second-order accuracy can be
deduced from the general formulations with some specific value of ai.

As the matter of fact, some combined schemes designed by the flux blending
method can also be deduced from the present general formulation. Consider the
SCSD scheme [14] as an example, which is defined by

/e ¼ b/CD
e þ ð1� bÞ/SUD

e ð0 � b � 1Þ ð20aÞ

where the superscripts CD and SUD designate the central difference and the second-
order upwind difference, and the weighting coefficient b is a prespecified parameter.
By substituting Eqs. (19d) and (19g) into Eq. (20a), we get

/e ¼ b/CD
e þ 1� bð Þ/SUD

e ¼ 3

2
� b

� �
/i �

1� bð Þ
2

/i�1 þ
b
2

/iþ1 ð20bÞ

In the above expression, we let

3

2
� b

� �
¼ ai ð20cÞ
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and we get

b ¼ 3

2
� ai

� �
ð20dÞ

By back substitution into Eq. (20b), we have

/e ¼ ai/i þ
1

4
� ai

2

� �
/i�1 þ

3

4
� ai

2

� �
/iþ1 ð20eÞ

It can be easily found that Eq. (20e) is identical to Eq. (9). In the SCSD the
range of b varies from 0 to 1; the corresponding variation range of ai is from 0.5
to 1.5. Then the SCSD scheme can be stated as follows:

/e ¼ ai/i þ 1
4�

ai

2

� �
/i�1 þ 3

4�
ai

2

� �
/iþ1

1
2 � ai � 3

2

�
ð20f Þ

Based on this scheme, a further development was made in [15], in which the so-
called stability-guaranteed second-order difference scheme (SGSD) was proposed. In
the SGSD an expression for b was proposed:

b ¼ 2

2þ jPDjð Þ 0 � b � 1 ð20gÞ

According to the relationship of Eq. (20d), the corresponding variation range
of the coefficient ai is

1

2
� ai �

3

2
and ai ¼

3

2
� 2

ð2þ jPDjÞ
ð20hÞ

It is worth noting that, superficially, Eq. (20h) is in contradiction to the absol-
ute stability of the SGSD. Actually, the infinitely large critical Peclet number of the
SGSD is obtained when it takes the form of the second-order upwind scheme corre-
sponding to ai ¼ 3=2. Thus it is the value of ai ¼ 3=2 at which the conditional stab-
ility and the absolute stability merge.

It is worth noting here that the stability issue studied in this article is the con-
vective stability, i.e., it is related to the discretization of the convective term and has
nothing to do with the transient term. Thus, in our above analysis, only the steady
governing equation, Eq. (1), is used. As analyzed in [6], in the discretization of the
transient governing equation, another type of stability may be involved if the explicit
scheme is used, which is related to the time step. Whether the explicit or the implicit
scheme is used for the discretization transient governing equation, the convective
stability issue is the same. And the results obtained in this article can be used for
both the explicit and implicit schemes.
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3. ANALYSIS OF SOLUTION CHARACTERISTICS OF SECOND-ORDER
DIFFERENCE SCHEMES

3.1. NVD Divisions of Second-Order Difference Schemes with
Variation of ai

In is found that with different sign and values of ai, the signs of ai�1 and aiþ1 of
Eq. (3) are different, leading to different solution characteristics of the coefficient
matrix with different convective schemes. Accordingly, 14 schemes with different
sign and value of ai are designed and divided into four regions as shown in
Table 1 and illustrated in Figure 5, with the normalized variable defined in Eq.
(10). Moreover, their solution characteristics are analyzed through computation
examples as follows.

3.2. Test Calculations for Two Benchmark Problems

In this section, the numerical solutions of two benchmark problems using the
14 convective schemes are presented and compared. First, numerical calculations are
performed for lid-driven cavity flow, for which Ghia et al. [22] provided detail sol-
ution results using a multigrid method. The Reynolds number is defined as
Re ¼ U0L=n, where L is the length of the square-enclosure side wall, U0 is the speed
of the sliding lid, and n is the fluid kinetic viscosity. Second, numerical computations
are conducted for the flow over a backward-facing step for Reynolds numbers 50
and 150, and its reattachment length is calculated by two kinds of grids under
Reynolds number 100.

Table 1. Fourteen second-order difference schemes (ue > 0)

Region and scheme

characteristics No. Origin definition

Normalized variable

definition

0 /e ¼ /i ðFUDÞ e//e ¼ e//i

I

ai < 0

ai�1; aiþ1 > 0

1 /e ¼ �2/i þ 5
4 /i�1 þ 7

4 /iþ1 ðai ¼ �2Þ e//e ¼ �2e//i þ 7
4 ðai ¼ �2Þ

2 /e ¼ �/i þ 3
4 /i�1 þ 5

4 /iþ1 ðai ¼ �1Þ ~//e ¼ �~//i þ 5
4 ðai ¼ �1Þ

3 /e ¼ � 1
4 /i þ 3

8 /i�1 þ 7
8 /iþ1 ai ¼ � 1

4

� �
~//e ¼ � 1

4
~//i þ 7

8 ðai ¼ � 1
4Þ

II

0 � ai < 0:5

ai�1; aiþ1 > 0

4 /e ¼ 1
4 /i�1 þ 3

4 /iþ1 ðai ¼ 0Þ f/e/e ¼ 3
4 ðai ¼ 0Þ

5 /e ¼ 0:2/i þ 0:15/i�1 þ 0:65/iþ1 ðai ¼ 0:2Þ ~//e ¼ 0:2~//i þ 0:65 ðai ¼ 0:2Þ
6 /e ¼ 0:4/i þ 0:05/i�1 þ 0:55/iþ1 ðai ¼ 0:4Þ ~//e ¼ 0:4~//i þ 0:55 ðai ¼ 0:4Þ

III

0:5 � ai < 1:5

ai�1 � 0; aiþ1 > 0

7 /e ¼ 0:5/i þ 0:5/iþ1 ðai ¼ 0:5 CDÞ ~//e ¼ 0:5~//i þ 0:5 ðai ¼ 0:5Þ
8 /e ¼ 3

4 /i � 1
8 /i�1 þ 3

8 /iþ1 ai ¼ 3
4 QUICK

� �
~//e ¼ 3

4
~//i þ 3

8 ðai ¼ 3
4Þ

9 /e ¼ 5
6 /i � 1

6 /i�1 þ 1
3 /iþ1 ai ¼ 5

6 TUD
� �

~//e ¼ 5
6

~//i þ 1
3 ðai ¼ 5

6Þ
10 /e ¼ /i � 1

4 /i�1 þ 1
4 /iþ1 ðai ¼ 1 FrommÞ ~//e ¼ ~//i þ 1

4 ðai ¼ 1Þ
IV

ai � 1:5

ai�1 < 0; aiþ1 � 0

11 /e ¼ 3
2 /i � 1

2 /i�1 ai ¼ 3
2 SUD

� �
~//e ¼ 3

2
~//i ðai ¼ 3

2Þ
12 /e ¼ 2/i � 3

4 /i�1 � 1
4 /iþ1 ðai ¼ 2Þ ~//e ¼ 2~//i � 1

4 ðai ¼ 2Þ
13 /e ¼ 4/i � 1:75/i�1 � 1:25/iþ1 ðai ¼ 4Þ ~//e ¼ 4~//i � 5

4 ðai ¼ 4Þ
14 /e ¼ 10/i � 4:75/i�1 � 4:25/iþ1 ðai ¼ 10Þ ~//e ¼ 10~//i � 4:25 ðai ¼ 10Þ
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The resulting discretization equations are solved by the SIMPLER algorithm,
in which the internal iterative method is the alternative direction implicit (ADI)
method without the block-correction technique [23]. In order to thoroughly analyze
the solution characteristics of the 14 schemes, we calculate the CPU time under dif-
ferent underrelaxation factors a. For convenience of presentation, the time-step mul-
tiple E is used in the following presentation, which is related to the underrelaxation
factor a by Eq. (21) [24]:

E ¼ a
1� a

ð0 < a < 1Þ ð21Þ

In calculating the two benchmark problems, we mainly examine three aspects
of the solution characteristics for the above 14 schemes, namely, convergence, false
diffusion, and stability.

The introduction of the time-step multiple E (ETIME) is just for presentation
purpose. It can be easily found from its definition in Eq. (21) that its variation range
is much wider than that of the underrelaxation factor, 0 to 1 versus 0 to 1. When
graphic presentation is used, the adoption of E as the abscissa is much more con-
venient than the adoption of a as the abscissa.

3.2.1. Lid-driven cavity flow. Three uniform grids consisting of 42� 42,
72� 72, and 102� 102 nodes and two Re numbers of 50 and 1,000 are adopted. Each
calculation is terminated when the relative control-volume maximum residual of the
discretized continuity equations becomes less than 3� 10�8.

The comparison of the convergence characteristics and CPU time (second) for
the 14 schemes is shown in Table 2. From the table, the following two features may

Figure 5. Region division of different schemes in NVD.
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Table 2. Comparisons of convergence characteristics and CPU time for 14 schemes adopted in lid-driven

cavity flow

a 0.1 0.3 0.5 0.7 0.9

ETIME 0.1111 0.4286 1 2.3333 9

Re ¼ 50

Grid 42� 42

0 12 6.3 3.34 1.8 1.1

I

1 — — — — —

2 — — — — —

3 12.6 6.5 3.52 1.86 1.14

II

4 12.6 6.5 3.5 1.8 1.1

5 12.7 6.6 3.7 1.9 1.1

6 12.8 6.5 3.6 1.9 1.1

III

7 12.8 6.7 3.6 1.8 1.1

8 12.9 6.5 3.6 1.9 1.1

9 12.8 6.5 3.6 1.9 1.2

10 12.9 6.6 3.6 1.9 1.2

IV

11 13 6.7 3.6 1.9 1.1

12 13 6.6 3.7 1.9 1.2

13 13.4 6.8 3.7 2 —

14 14.3 — — — —

Grid 72� 72

0 73.1 50 30.5 16.3 10

I

1 — — — — —

2 74.3 51.7 31.2 16.7 10.3

3 74.1 52 31.3 16.8 10.3

II

4 73 50.9 30.8 16.8 10

5 74.4 51.9 31.2 17 10.1

6 74.4 51.9 31.5 17.1 10.3

III

7 74.8 52 31.4 17.1 10.2

8 74.3 52.2 31.4 17.1 10.3

9 75.3 52.2 31.6 17.2 10.2

10 75 52 31.6 17 10.2

IV

11 75 52.1 31.7 17.1 10.2

12 75.1 52.4 31.7 17.2 10.2

13 75.4 52.7 31.7 17 10.3

14 79.1 54 — — —

Grid 102� 102

0 211.2 153.7 108.5 62.7 36.8

I

1 218.8 164 113.3 63.5 37

2 222.3 163 114 65 37.8

3 224.2 165.8 114.2 65.4 38.2

(Continued)
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Table 2. Continued

a 0.1 0.3 0.5 0.7 0.9

ETIME 0.1111 0.4286 1 2.3333 9

II

4 221 163.6 112.7 64.6 37.2

5 224 166.2 114.6 65.2 37.9

6 224.5 165.8 114.8 65.4 37.9

III

7 224 166.2 114.4 65.2 37.7

8 224.5 166.1 115.5 65.3 37.9

9 224.1 166 115.2 65.6 37.9

10 224.8 166.2 115.6 65.5 38

IV

11 224.7 165.7 115.5 65.2 37.8

12 225 166.4 115.9 65.7 37.9

13 226 168 116.1 67.8 37.9

14 228.6 171.5 120 — —

Re ¼ 1,000

Grid 42� 42

0 21 7.8 3.9 2 0.95

I

1 — — — — —

2 — — — — —

3 — — — — —

II

4 — — — — —

5 — — — — —

6 39.9 16.6 8.8 4.9 2.5

III

7 41.1 17.4 9 5 2.7

8 39 16.8 9 5 2.8

9 37.8 16.6 8.8 5 2.8

10 34.1 15.6 8.6 4.9 3

IV

11 35 13.7 7.6 4.3 3.2

12 41.5 18.6 9.7 — —

13 — — — — —

14 — — — — —

Grid 72� 72

0 173.3 70.3 37 19.2 10.3

I

1 — — — — —

2 — — — — —

3 — — — — —

II

4 — — — — —

5 — — — — —

6 243.8 125 68.8 37.1 17

III

7 238.8 124.3 68.5 37 17.1

8 234 121.9 67.4 36.4 17.3

(Continued)
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be noted. First, the CPU time for different schemes under the same grids and Re
number is almost the same, which is especially evident at lower Re number. Second,
the schemes with smaller value of ai can well achieve convergence under lower Re
number and fine grids. However, when the Re number is increased and the grid num-
ber is decreased, the convergence of these schemes gradually becomes worse. This is
consistent with the above analysis. As indicated above, the schemes with smaller
values of ai have smaller critical grid Pelect number, so they easily become divergent
with increase of Re number and the distance between neighboring grids.

Tables 3 and 4 list the relative errors of the present numerical results for seven
schemes (schemes 6–12; results for the rest of the schemes cannot be obtained for this
problem) compared with the results of Ghia et al. for the centerline velocities of
u (x direction) and v (y direction) by 42� 42 grids under Re ¼ 1,000. Generally speaking,
the numerical accuracy of the second-order scheme becomes worse with the increase of
ai of the scheme; in another words, false diffusion will become more serious with
increasing ai. As indicated in Section 2.2, scheme stability is enhanced with an increase
of ai. It may be that for the nominal second-order schemes defined by Eq. (9), there is a
contradiction between the scheme numerical accuracy and the scheme stability.

Table 2. Continued

a 0.1 0.3 0.5 0.7 0.9

ETIME 0.1111 0.4286 1 2.3333 9

9 232.7 121.2 67 36.3 17.2

10 230.5 119.3 66.2 35.9 17.3

IV

11 225.9 110.3 62.3 34.2 17.3

12 228.6 90.2 53.8 31 —

13 292 — — — —

14 — — — — —

Grid 102� 102

0 620.3 272.9 149.2 78 45.4

I

1 — — — — —

2 — — — — —

3 — — — — —

II

4 — — — — —

5 — — — — —

6 751.5 410.3 234.2 127.3 55.4

III

7 752.4 407.7 233.8 127.2 55.6

8 756.4 405.3 232.4 126.3 55.3

9 756.3 404.4 231.5 126 55.3

10 758.4 400.3 230.9 125.7 55.3

IV

11 762 386.5 225.5 122.9 54.9

12 771.6 367.1 218.1 119.6 —

13 816.8 — — — —

14 — — — — —

Missing numbers correspond to cases that did not converge.
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Table 3. Relative error of centerline u velocity obtained using uniform grid (42� 42), %

x 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0

0.0625 4.0512 3.3908 2.3987 2.1275 1.6828 1.1943 2.2771

0.0703 4.4368 3.7459 2.7056 2.4176 1.9382 1.3363 2.2946

0.0781 4.6365 3.915 2.8266 2.5217 2.0076 1.2923 2.1262

0.0938 4.8926 4.1133 2.9282 2.5876 1.9974 1.0191 1.5488

0.1563 5.2201 4.3385 2.9306 2.4804 1.6228 �0.4937 �1.5729

0.2266 3.5358 2.8623 1.7765 1.3909 0.5978 �1.8473 �4.1654

0.2344 3.2853 2.6462 1.6201 1.251 0.4849 �1.9298 �4.3138

0.5 �0.20459 �0.09201 0.23241 0.32164 0.4732 0.732 0.68641

0.8047 �3.2018 �2.4109 �1.0137 �0.5221 0.5079 4.0627 8.1091

0.8594 �4.3771 �3.3033 �1.1739 �0.4037 1.1683 5.3967 7.899

0.9063 �6.359 �5.4338 �4.5361 �4.3884 �4.3201 �5.4522 �7.8811

0.9453 �2.8008 �3.2769 �5.6231 �6.3696 �7.7609 �11.1828 �14.1097

0.9531 �2.1201 �2.8888 �5.4695 �6.2078 �7.5177 �10.5284 �13.0213

0.9609 �0.8685 �1.9298 �4.745 �5.475 �6.7035 �9.3029 �11.362

0.9688 �0.8394 �1.7188 �3.9454 �4.5105 �5.4492 �7.3972 �8.9501

1 0 0 0 0 0 0 0

Mean error 9.203955 8.277747 8.5134441 8.6149595 8.6953069 8.564648 9.0498876

Table 4. Relative error of centerline v velocity obtained using uniform grid (42� 42), %

y 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0

0.0547 �2.0614 �2.4511 �4.2767 �4.9678 �6.4337 �11.22667 �16.03585

0.0625 �2.3395 �2.7227 �4.6029 �5.3193 �6.8489 �11.95314 �17.26247

0.0703 �2.8157 �3.1274 �4.8872 �5.5715 �7.0543 �12.1868 �17.8325

0.1016 �4.4745 �4.4399 �5.5296 �6.0175 �7.1705 �11.9729 �18.5872

0.1719 �5.6533 �4.7869 �3.5758 �3.2382 �2.7156 �2.8394 �6.6217

0.2813 �2.4604 �1.6531 0.199 0.9178 2.4945 8.164 14.6027

0.4531 �0.85912 �0.5017 0.3801 0.7152 1.4439 4.144 7.8353

0.5 �0.33959 �0.1097 0.53376 0.78105 1.32425 3.39763 6.3646

0.6172 0.92921 0.83032 0.85627 0.87715 0.94177 1.38994 2.45543

0.7344 2.2419 1.7969 1.1615 0.9423 0.502 �0.7467 �1.6506

0.8516 4.203 3.3243 1.8382 1.3213 0.2707 �2.9188 �5.994

0.9531 5.2228 2.4054 0.9021 0.3819 �0.6762 �3.9633 �7.4293

0.9609 6.5751 3.5632 2.2715 1.8173 0.8849 �2.0727 �5.2756

0.9688 3.1419 1.8768 0.905 0.5591 �0.1558 �2.4626 �5.0295

0.9766 0.237 1.1843 0.5547 0.3261 �0.1514 �1.7362 �3.5825

1 0 0 0 0 0 0 0

Mean error 9.3378763 7.7837948 8.0217888 8.2704733 8.9081041 11.9684868 16.9691564

Table 5. Predicted reattachment lengths

Scheme 8 9 10 11 12

Grid 62� 32 6.197 6.213 6.244 6.342 6.438

Grid 92� 47 6.205 6.212 6.224 6.265 6.307
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Table 6. Comparisons of convergence characteristics and CPU time for flow over a backward-facing step

a 0.1 0.3 0.5 0.7 0.9

ETIME 0.1111 0.4286 1 2.3333 9

Re ¼ 10

Grid 62� 32

0 6.3 4.8 4.1 3.1 —

I

1 — — — — —

2 — — — — —

3 — — — — —

II

4 — — — — —

5 — — — — —

6 6.6 4.7 4 3.2 —

III

7 6.6 4.8 4.1 3.1 —

8 6.7 4.8 4.1 3.2 —

9 6.7 4.8 4 3.1 —

10 6.6 4.7 4.2 3.2 —

IV

11 6.7 4.8 4 3.2 —

12 6.7 4.8 4.1 3.1 —

13 6.6 4.8 4 3.1 —

14 6.5 4.6 4.1 — —

Grid 102� 52

0 46.9 36.6 30.4 22.3 —

I

1 — — — — —

2 — — — — —

3 — — — — —

II

4 — — — — —

5 — — — — —

6 47.2 36.8 29.8 22.4 —

III

7 47.3 36.7 29.8 22.5 —

8 47.3 36.8 29.8 22.3 —

9 47.3 36.8 30 22.5 —

10 47.2 36.7 29.8 22.3 —

IV

11 47.3 36.8 29.7 22.4 —

12 48.3 36.8 29.8 22.4 —

13 48.2 36.9 29.8 22.4 —

14 49.3 36.9 30.7 — —

Re ¼ 150

Grid 62� 32

0 8.3 4.4 3.9 3 1.7

I

1 — — — — —

2 — — — — —

3 — — — — —

(Continued)
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3.2.2. Flow over a backward-facing step. There are two important para-
meters that exert great influence on the fluid mechanics in the two-dimensional
backward-facing step geometry, i.e., the Reynolds number Re and the channel
expansion ratio ER (the ratio of the channel widths downstream and upstream)
[25]. Here the case of Re ¼ 100, ER ¼ 1.5 is taken as the test example. Under these
conditions, the predicted reattachment length calculated by Kondoh et al. is 6.3
[25], which is slightly longer than the experimental value of 6.0. In the present
study, the grids used are uniform and consist of 62� 32 and 92� 47 nodes. The
predicted reattachment lengths obtained by various schemes and grids are listed
in Table 5.

Table 6. Continued

a 0.1 0.3 0.5 0.7 0.9

ETIME 0.1111 0.4286 1 2.3333 9

II

4 — — — — —

5 — — — — —

6 — — — — —

III

7 — — — — —

8 33.8 15.6 13.4 30.7 —

9 12.3 6 4.2 3 2.3

10 12.2 5.9 4 3.1 1.8

IV

11 11.6 5.7 3.8 3 1.7

12 11.3 5.5 4 3 —

13 11.3 5.2 — — —

14 13.7 — — — —

Grid 102� 52

0 62.1 36.3 28.9 21.8 —

I

1 — — — — —

2 — — — — —

3 — — — — —

II

4 — — — — —

5 — — — — —

6 — — — — —

III

7 — — — — —

8 99.1 46.6 35.3 22 —

9 76.3 45 34.6 21.9 —

10 77 40.3 33.8 22 —

IV

11 64.5 41.2 29.1 22 —

12 62.7 40.2 30.7 21.9 —

13 64.9 39.4 — — —

14 61 — — — —

Missing numbers correspond to cases that did not converge.
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In addition, in order to analyze the solution characteristics of the 14 schemes,
in Table 6 we present the CPU time for different values of a for two uniform grids
consisting of 62� 32 and 102� 52 nodes and two Re numbers, 10 and 100. From this
table we obtain similar conclusions as those from the lid-driven cavity flow problem.
For simplicity of presentation, these features will not be restated here.

From the above analysis, it can be clearly observed that for the 14 nominal
second-order schemes, the false diffusion of the scheme will become serious
with increasing ai. In order to enhance the numerical accuracy, we need to
design a scheme using a smaller ai; in contrast, in order to increase the critical
grid Pelect number, i.e., to enhance the scheme stability, we have to design a

Figure 6. Stability examination of difference schemes.
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scheme using a bigger ai. Thus, as a compromise between accuracy and stability
of the second-order difference schemes, we propose that the design range of ai

should be within 0.5 to 2.

3.3. 1-D Steady Convective-Diffusion Problem

In order to demonstrate numerically the scheme absolute stability when
ai � ai0, we calculate the 1-D steady-state convection-diffusion problem under the
condition of /ð0Þ ¼ 1 and /ð0Þ ¼ 2. Figure 6 shows the numerical results for
QUICK, SUD, and schemes 12, 13, and 14. Figure 6(a) shows that the results of
the QUICK scheme are oscillating when the grid Pelect number is 5, but the results
of the SUD, and of schemes 12, 13, and 14, are reasonable. Figure 6(b) shows that
even when the grid Pelect number reaches 100,000, the absolutely stable schemes
SUD, 12, 13, and 14 still give physically plausible solutions. However, with increas-
ing ai, the false diffusion increases.

4. CONCLUSIONS

In this article, a general formulation of the interfacial interpolation for the dis-
cretized convective term is presented and a comprehensive analysis of its character-
istics is conducted. The major findings can be summarized as follows.

1. A general formulation of the second-order and any higher-order difference
schemes for the convective term is proposed. The general formulation of the
second-order schemes can unify all existing schemes of the second-order type.
It is helpful to thoroughly analyze the solution characteristics of various schemes,
that is, the convergence, false diffusion, and stability.

2. Based on the general formulation of the second-order difference schemes, a for-
mulation for an absolutely stable scheme is presented. Moreover, numerical test
proves that the absolutely stable schemes can give physically plausible numerical
solutions even if the grid Peclet number is increased to 100,000 for 1-D convective
diffusive problem.

3. The characteristics of 14 schemes constructed by the general formulation are
examined for the aspects of accuracy, economic, and stability. It is found for
the two benchmark problems tested that the CPU time for the different schemes
is almost the same. However, with increase of the value of ai under higher Re,
the false diffusion of the schemes becomes serious while their stability become bet-
ter. For the second-order accuracy schemes, there is a serious contradiction
between the scheme numerical accuracy and the scheme stability. And it is recom-
mended that the value of ai be within 0.5 to 2 as a compromise between stability
and accuracy.
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