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IMPROVEMENT OF SIMPLER ALGORITHM
FOR INCOMPRESSIBLE FLOW ON
COLLOCATED GRID SYSTEM

Y. P. Cheng, T. S. Lee, and H. T. Low
Laboratory of Fluid Mechanics, Department of Mechanical Engineering,
National University of Singapore, Singapore

W. Q. Tao
State Key Laboratory of Multiphase Flow in Power Engineering, School of
Energy & Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi,
People’s Republic of China

In this article an Improved SIMPLER (CLEARER) algorithm is proposed to solve incom-

pressible fluid flow and heat transfer problems. Numerical study shows with the CLEARER

algorithm on a collocated grid, in the correction stage the velocities on the main nodes are

overcorrected with the pressure correction, which lowers the convergence rate; hence a

second relaxation factor is introduced to overcome this disadvantage. By setting this factor

less than the underrelaxation factor for velocities, the convergence performance can be sig-

nificantly enhanced; meanwhile, the robustness can also be increased. Four numerical exam-

ples with reliable solutions are computed to validate the CLEARER algorithm, and the

results show that this algorithm can predict the numerical results accurately. Compared

with the SIMPLER algorithm, CLEARER can enhance the convergence rate greatly,

and in some cases it only needs as little as 17% of the iterations required by SIMPLER

to reach the same convergence criterion.

INTRODUCTION

Since the SIMPLE algorithm was first proposed by Patankar and Spalding [1],
SIMPLE-like algorithms have been used extensively to solve incompressible fluid
flow and heat transfer problems. Because a staggered grid has the advantage of pre-
venting a checkerboard pressure field in the flow solution, the SIMPLE-like algo-
rithms were implemented on staggered grids in the 1980s and before. On the
staggered grid, the vector components and scalar variables are stored at different
locations, being half a control-volume width apart in each coordinate, which will
definitely increase the storage memory and computational time in the numerical
simulation, especially in three-dimensional calculations. Furthermore, the staggered
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arrangement also brings much difficulty to unstructured and curvilinear body-fitted
grids. However, on a collocated grid all the vector variables and scalar variables are
stored at the same location, which avoids the problems of staggered grids. In 1983,
Rhie and Chow [2] proposed a momentum interpolation method to eliminate the
checkerboard pressure. Subsequently, comparison between the staggered grid and
collocated grid [3–5] showed that the SIMPLE-like algorithms on collocated grids
can provide similarly accurate results and convergence rates as those on staggered
grid. Therefore, the collocated grid is attracting more and more attention from
researchers.

However, the use of the momentum interpolation method proposed by Rhie and
Chow may cause additional problems. Majumdar [6] and Miller et al. [7] pointed out

NOMENCLATURE

a thermal diffusivity

aP; aE ; aW ; aN ; aS coefficients in the discretized

equation

A surface area

b source term

Cp specific heat

de; dn diffusion conductivity at the

interface

dP diffusion conductivity on

the main node

E time-step multiple

f þ parameter used for

interpolation

Flowch characteristic flow rate

g gravitational acceleration

Keq equivalent conductivity

L length of cavity

p pressure

p� temporary pressure

p0 pressure correction

R radius

Ra Rayleigh number

Re Reynolds number

Rmax maximum relative mass flow

rate unbalance of control

volume

Su;Sv;ST ;S/ source term

T temperature

u; v velocity component in x and

y directionseu0
eu0
e ;
ev0
nv0
n pseudo-velocity

U ;V dimensionless velocity in x

and y directions

ULid moving velocity of lid

x; y coordinates

X ;Y dimensionless coordinates

a underrelaxation factor

b relaxation factor, thermal

expansion coefficient

c relaxation factor

C nominal diffusion coefficient

d gap width

dx; dy distance between two

adjacent grid points in x and

y directions

Dx;Dy distance between two

adjacent interfaces in x and

y directions

g dynamic viscosity

h angle

n kinematic viscosity

q fluid density

/ general variable

x annular velocity

Subscripts

c cool

e;w; n; s cell face

H high

in inner

m mean

max maximum

nb neighboring grid points

p refers to pressure

P;E;W ;N;S grid points

T refers to temperature

u; v refers to u and v velocities

Superscripts

u; v coefficients related to u and

v velocities

0 resolution of the previous

iteration
� intermediate value
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independently that the solution using the original Rhie and Chow scheme is underre-
laxation factor-dependent, although they can remove the false pressure field effec-
tively. Then Majumdar [6] presented an iteration algorithm to overcome this
dependency. Kobayashi and Pereira [8] also solved this problem by simply setting
the underrelaxation factor equal to 1 before the momentum interpolation method is
implemented, but this method may lower the robustness of the algorithm. Choi [9]
found that the original Rhie and Chow method is also time-step size-dependent,
and he proposed a new scheme to overcome this problem. However, by numerical
example, Yu et al. [10] observed that the solutions from Choi’s scheme are still
time-step size-dependent, and they further reported that a checkerboard pressure field
might be obtained for small underrelaxation factor and time-step size when Rhie and
Chow’s method is used. Later, Yu et al. [11] discussed the role of the interface velocity
on the collocated grid, and recommended that all the interface velocities be obtained
with the momentum interpolation method; then they proposed two momentum
interpolation methods which are independent of both underrelaxation factor and
time-step size.

In the SIMPLE-like pressure-correction algorithms, there are two stages at
each iteration level, which are called the prediction stage and the correction stage.
For each variable, the same underrelaxation factors are adopted in the two stages.
Recently, Tao et al. [12, 13] proposed a novel segregated algorithm named CLEAR
on the staggered grid, which was then extended to the collocated grid [14]. In the
CLEAR algorithm, a second relaxation factor is introduced in the correction stage.
Numerical experiments showed that iteration number can be reduced by a maximum
of 85% compared to the SIMPLER algorithm. However, the robustness of the
CLEAR algorithm may be a little less than that of SIMPLER algorithm.

Therefore, we can see that in order to make a reliable and efficient compu-
tation on a collocated grid, the following three aspects must be guaranteed: (1) the
algorithm should avoid the checkerboard pressure field; (2) the convergent solution
should be independent of the underrelaxation factor and time-step size; and (3) the
algorithm should possess the required robustness. In order to develop a computation
scheme on the collocated grid which possesses the above three features, in this article
the SIMPLER algorithm on the collocated grid is first reviewed briefly. Then, by vir-
tue of some successful practices, an Improved SIMPLER (CLEARER) algorithm is
proposed. Four examples with benchmark solutions are provided to validate the new
algorithm, and its performance is compared with that of the SIMPLER algorithm.
Finally, some conclusions are drawn.

GENERAL REVIEW OF THE SIMPLER ALGORITHM

For simplicity, here we take two-dimensional steady incompressible laminar
fluid in Cartesian coordinates as our example. The collocated grid system is shown
in Figure 1. The governing equations are as follows.

Continuity equation:

qðquf Þ
qx

þ qðqvf Þ
qy

¼ 0 ð1Þ
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Momentum equations:

qðquf uÞ
qx

þ qðqvf uÞ
qy

¼ � qp

qx
þ g

q2u

qx2
þ q2u

qy2

 !
þ Su ð2aÞ

qðquf vÞ
qx

þ qðqvf vÞ
qy

¼ � qp

qy
þ g

q2v

qx2
þ q2v

qy2

 !
þ Sv ð2bÞ

Energy equation:

qðquf TÞ
qx

þ qðqvf TÞ
qy

¼ k
Cp

q2T

qx2
þ q2T

qy2

 !
þ ST ð3Þ

The above four equations can be recast in a general form:

qðquf /Þ
qx

þ qðqvf /Þ
qy

¼ C
q2/
qx2
þ q2/

qy2

 !
þ S/ ð4Þ

where uf and vf stand for the interface velocities whose interpolation scheme is the
major issue on the collocated grid.

Figure 1. Control volumes of collocated grid in 2-D Cartesian coordinates.
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Equation (4) is discretized with the finite-volume method [15, 16] on the collo-
cated grid and the source term S/ is linearized as

S/ ¼ SC þ SP/P ðSP < 0Þ ð5Þ

By taking out the pressure gradient term from S/ for the momentum equation, the
final discretized equation can be written in this form with the underrelaxation factor
incorporated.

aP

au
uP ¼ aEuE þ aW uW þ aNuN þ aSuS þ bP þ Dyðpw � peÞP þ

1� au

au
aPu0

P ð6aÞ

aP

av
vP ¼ aEvE þ aW vW þ aNvN þ aSvS þ bP þ Dxðps � pnÞP þ

1� av

av
aPv0

P ð6bÞ

where

bP ¼ SC Dx Dy ð7Þ

The terms ðpwÞP; ðpeÞP; ðpsÞP, and ðpnÞP are linearly interpolated from the neighbor-
ing nodes:

ðpwÞP ¼ f þw pP þ ð1� f þw ÞpW ð8aÞ

ðpeÞP ¼ f þe pE þ ð1� f þe ÞpP ð8bÞ

ðpsÞP ¼ f þs pP þ ð1� f þs ÞpS ð8cÞ

ðpnÞP ¼ f þn pN þ ð1� f þn ÞpP ð8dÞ

where

f þw ¼
DxW

2dxw
f þe ¼

DxP

2dxe
f þs ¼

DyS

2dys
f þn ¼

DyP

2dyn
ð9Þ

In order to remove the influence of the underrelaxation factor, the modified
momentum interpolation method (MMIM) proposed by Majumdar [6] is adopted
here.

ue ¼ au

P
anbu0

nb þ bP

aP

� �
e

þð1� auÞu0
e þ

auDyðpP � pEÞ
ðaPÞe

¼ eu0
eu0
e þ deðpP � pEÞ ð10Þ
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When the iteration converges, ue and u0
e approach the same value, and this equation

is equivalent to

ue ¼
P

anbu0
nb þ bP

aP

� �
e

þ DyðpP � pEÞ
ðaPÞe

ð11Þ

which is independent of the underrelaxation factor au. Here

eu0
eu0
e ¼ au

P
anbu0

nb þ bP

aP

� �
e

þ ð1� auÞu0
e

¼ au f þe

P
anbu0

nb þ bP

aP

� �
E

þð1� f þe Þ
P

anbu0
nb þ bP

aP

� �
P

� �
þ ð1� auÞu0

e ð12Þ

de ¼
auDy

ðaPÞe
¼ auDy

f þe ðaPÞE þ ð1� f þe ÞðaPÞP
ð13Þ

Similarly, the discretized momentum equation for the v component can be
rewritten as

vn ¼ av

P
anbv0

nb þ bP

aP

� �
n

þ 1� avð Þv0
n þ

avdx pP � pNð Þ
aPð Þn

¼ ev0
nv0
n þ dnðpP � pNÞ ð14Þ

where

ev0
nv0
n ¼ av

P
anbv0

nb þ bP

aP

� �
n

þð1� avÞv0
n

¼ av f þn

P
anbv0

nb þ bP

aP

� �
N

þð1� f þn Þ
P

anbv0
nb þ bP

aP

� �
P

� �
þ ð1� avÞv0

n ð15Þ

dn ¼
avDx

ðaPÞn
¼ avDx

f þn ðaPÞN þ ð1� f þn ÞðaPÞP
ð16Þ

Substituting Eqs. (10) and (14) into the discretized continuity equation,

ðquÞeAe � ðquÞwAw þ ðqvÞnAn � ðqvÞsAs ¼ 0 ð17Þ

we have the following equation for pressure:

aPp�P ¼
X

anbp�nb þ b ð18Þ
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where

aP ¼ aE þ aW þ aN þ aS ð19Þ

aE ¼ ðqAdÞe aW ¼ ðqAdÞw aN ¼ ðqAdÞn aS ¼ ðqAdÞs ð20Þ

b ¼ ðq eu0u0AÞw � ðq eu0u0AÞe þ ðqev0v0AÞs � ðqev0v0AÞn ð21Þ

In the actual calculation, in order to increase the robustness of the algorithm,
the pressure is also underrelaxed; then the final pressure equation can be recast with
the underrelaxation factor incorporated:

aP

aP
p�P ¼

X
anbp�nb þ bþ 1� aP

aP
aPp0

P ð22Þ

In order to let the intermediate velocities satisfy the continuity equation, the
pressure corrections are added to them; the interface velocity correction terms are

u0e ¼ deðp0P � p0EÞ ð23aÞ

v0n ¼ dnðp0P � p0NÞ ð23bÞ

The improved interface velocities can be expressed as

ue ¼ u�e þ u0e ¼ u�e þ deðp0P � p0EÞ ð24aÞ

vn ¼ v�n þ v0n ¼ v�n þ dnðp0P � p0NÞ ð24bÞ

Substituting Eq. (24) into the discretized continuity Eq. (17),

aPp0P ¼
X

anbp0nb þ b ð25Þ

Here the coefficients (aP; aE ; aW ; aN ; aS) are the same with those in the pressure Eq.
(18); the only difference lies in the source term b, which can be calculated as follows:

b ¼ ðqu�AÞw � ðqu�AÞe þ ðqv�AÞs � ðqv�AÞn ð26Þ

Similarly, the velocities on the main nodes can also be corrected as follows:

uP ¼ u�P þ du
Pðp0w � p0eÞP ð27aÞ

vP ¼ v�P þ dv
Pðp0s � p0nÞP ð27bÞ

where

du
P ¼

auDy

ðaPÞP
dv

P ¼
avDx

ðaPÞP
ð28Þ
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The pressure correction at the interface is linearly interpolated as

ðp0wÞP ¼ f þw p0P þ ð1� f þw Þp0W ð29aÞ

ðp0eÞP ¼ f þe p0E þ ð1� f þe Þp0P ð29bÞ

ðp0sÞP ¼ f þs p0P þ ð1� f þs Þp0S ð29cÞ

ðp0nÞP ¼ f þn p0N þ ð1� f þn Þp0P ð29dÞ

The computational steps of the CLEARER algorithm on the collocated grid
can be summarized as follows.

Step 1. Assume the initial velocity field on the main nodes u0
P v0

P and at interfaces
u0

e v0
n.

Step 2. Calculate the discretized coefficients (aP; aE ; aW ; aN ; aS) of the momentum
equations, the discretized coefficients de½Eq: ð13Þ� and dn [Eq. (16)] for the
pressure equation, and also the pseudo-velocities eu0

eu0
e [Eq. (12)] and ev0

nv0
n [Eq.

(15)] to determine the source term [Eq. (21)] for the pressure equation based
on the previous main node and interface velocities.

Step 3. Solve the discretized pressure equation [Eq. (22)] and obtain the pressure field p�.
Step 4. Solve the discretized forms of the momentum equations [Eq. (6)] based on p�

to obtain the intermediate velocity field u�P and v�P.
Step 5. Calculate the interface velocities u�e and v�n with the MMIM based on u�P;

v�P, and p� to determine the source term [Eq. (26)] of the pressure-correction
equation.

Step 6. Solve the pressure-correction equation [Eq. (25)], obtaining the pressure-
correction value p0.

Step 7. Correct the interface velocities ue and vn with Eq. (24) and the velocities on
the main nodes uP vP with Eq. (27).

Step 8. Solve the discretized equations of other scalar variables if necessary.
Step 9. Return to step 2 and repeat the process until the convergent solution

is obtained.

From the procedure above, we can see that with the introduction of MMIM,
the checkerboard pressure field can be damped out, and the solution is underrelaxa-
tion factor-independent.

MATHEMATICAL FORMULATION OF CLEARER

Discussion of the SIMPLER Algorithm

In the conventional SIMPLER algorithm stated above, in the corrector
step after the pressure-correction equation is solved, both the main node velocities
and interface velocities are improved with the pressure correction as shown in
Eqs. (24) and (27). Our numerical experiment shows that it is appropriate to correct
the interface velocities with the pressure correction; however, the velocities at the
main nodes are overcorrected, hence the pressure correction should be underrelaxed
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before it is used to correct the velocities at the main nodes.

uP ¼ u�P þ cudu
Pðp0w � p0eÞP ð30aÞ

vP ¼ v�P þ cvdv
Pðp0s � p0nÞP ð30bÞ

For convenience, we set cu ¼ cv ¼ c and au ¼ av ¼ a hereafter.
Take the lid-driven flow in a square cavity as an example. Figure 2 shows the

influence of the parameter c on the iteration number when the underrelaxation fac-
tor for velocities a ¼ 0:8. In the conventional SIMPLER algorithm, c ¼ 1. When
c > 1, the iteration number will increase sharply, which shows that the pressure cor-
rection cannot be overrelaxed when the velocities at the main nodes are corrected.
However, as c is decreasing, the iteration number can be reduced greatly, even to
50% less than that at c ¼ 1. But if c is decreasing further, the iteration number will
increase mildly, but still stay less than that at c ¼ 1. Although the iteration number
can be reduced by decreasing the value of c, the solution will become oscillatory dur-
ing the convergence progress, which will lower the robustness of the SIMPLER
algorithm. Hence a new expression should be formulated to overcome this short-
coming while increasing the convergence rate.

Improved CLEARER Algorithm

In the SIMPLER algorithm, in both the predictor step and the corrector step,
the same underrelaxation factor for each velocity component is adopted. Recently, a
novel algorithm called CLEAR was proposed, in which the pressure equation

Figure 2. Influence of c on the iteration number at a ¼ 0:8.
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instead of the pressure-correction equation is used in the corrector step. Further-
more, in the corrector step, a second relaxation factor is introduced in determining
the updated pseudo-velocity. Numerical examples show that with this method the
convergence rate can be greatly speeded up compared with the SIMPLER algorithm.
However, the robustness of the CLEAR algorithm is a little less than that of
SIMPLER. Here we combine the advantages of the SIMPLER and CLEAR
algorithms to formulate a new algorithm called CLEARER.

In the predictor step, CLEARER is the same as the SIMPLER and CLEAR
algorithms; the only difference lies in the calculation of the interface velocities in the
corrector step. As suggested by Yu et al. [11], the interface velocities in the correc-
tion stage are obtained with the momentum interpolation method; the details are as
follows.

u�e ¼ bu

P
anbu�nb þ bP þ Dyðp�P � p�EÞ

aP

� �
e

þð1� buÞu0
e

¼ bu f þe

P
anbu�nb þ bP þ Dyðp�P � p�EÞ

aP

� �
E

�
þð1� f þe Þ

P
anbu�nb þ bP þ Dyðp�P � p�EÞ

aP

� �
P

�
þ ð1� buÞu0

e ð31aÞ

v�n ¼ bv

P
anbv�nb þ bP þ Dxðp�P � p�NÞ

aP

� �
n

þð1� bvÞv0
n

¼ bv f þn

P
anbv�nb þ bP þ Dxðp�P � p�NÞ

aP

� �
N

�
þð1� f þn Þ

P
anbv�nb þ bP þ Dxðp�P � p�NÞ

aP

� �
P

�
þ ð1� bvÞv0

n ð31bÞ

Here parameters bu and bv are the relaxation factors in calculating the interface velo-
cities. When the iteration converges, u�e and v�n will approach u0

e and v0
n, respectively,

hence they are both independent of bu and bv. For convenience, we set bu ¼ bv ¼ b
hereafter. Then the improved interface velocities can be expressed as

ue ¼ u�e þ d�e ðp0P � p0EÞ ð32aÞ

vn ¼ v�n þ d�n ðp0P � p0NÞ ð32bÞ

Here

d�e ¼
Dy

ðaPÞe
d�n ¼

Dx

ðaPÞn
ð33Þ

The velocities at the main nodes can be updated as

uP ¼ u�P þ du�
P ðp0w � p0eÞP ð34aÞ

vP ¼ v�P þ dv�
P ðp0s � p0nÞP ð34bÞ
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where

du�
P ¼

Dy

ðaPÞP
dv�

P ¼
Dx

ðaPÞP
ð35Þ

Substituting Eq. (32) into the continuity equation, the pressure-correction
equation will be obtained. The solution procedure of this algorithm is almost the
same as that of the SIMPLER algorithm, except that in step 5 the intermediate inter-
face velocities are calculated according to Eq. (31), and in step 7 the velocities at the
interfaces and main nodes are improved according to Eqs. (32) and (34). Hence, at
every iterative level, the computational effort of CLEARER is identical with that of
the SIMPLER algorithm.

Discussion of the Relaxation Factor b

In the SIMPLE-like segregated algorithms, the momentum equations and con-
tinuity equation are solved sequentially. In order to speed up the convergence rate,
the momentum and continuity equations should be satisfied well at every iterative
level, which is the aim of current SIMPLE variants. In the CLEARER algorithm,
there are two parts to calculating the interface velocities as shown in Eq. (31): one
is obtained from the momentum equation, and the other is the interface velocities
at the previous iterative level which satisfy the continuity equation. By introducing
the relaxation factor b, the relative weights of the two parts can be adjusted to make
them match, so the convergence performance can be improved. It is notable that in
Eqs. (33) and (35) the relaxation factor b can be incorporated, which will not influ-
ence the improved velocities because the pressure-correction equation is singular. In
some cases b can be greater than 1, and when b ¼ a, CLEARER will become the
SIMPLER algorithm. By reducing the value of b, the underrelaxation factor a can
take larger value, which will increase the robustness of algorithm.

Figure 3 shows the influence of b on the iteration number at a ¼ 0:8 in lid-
driven cavity flow. From this we can see that for the SIMPLER algorithm at
b ¼ 0:8, the convergence performance is not optimum. By decreasing the value of
b, the iteration number can be greatly reduced, and it is only one-third at b ¼ 0:3
of that at b ¼ 0:8. Hence better convergence performance can be obtained by adjust-
ing b than c. However, similar to the influence of c, with deceasing b, the required
iteration number will be increased mildly. If the value of b is greater than a, the iter-
ation number will also be increased greatly. Anyway, better convergence character-
istics can be achieved by adjusting the value of b in a wide range below a. A similar
phenomenon can also be found in other computational cases. The optimum value of
b can be obtained by trial and error. In the following section the comparison of con-
vergence performance is carried out under the optimum b.

VALIDATION OF CLEARER WITH NUMERICAL EXAMPLES

In order to verify the feasibility of the CLEARER algorithm on the collocated
grid, four typical numerical examples with available solutions are computed: (1) lid-
driven flow in a square cavity; (2) natural convection in a square cavity; (3) lid-driven
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flow in a polar cavity: and (4) natural convection in an annular enclosure. To make
the comparison between CLEARER and SIMPLER meaningful, the numerical
treatments of all other aspects should be kept the same. In both algorithms the stab-
ility-guaranteed second-order difference scheme (SGSD) [17] is adopted; the
algebraic equations are solved by the alternating direction implicit method (ADI)
[18] incorporating the block-correction technique [19]. For convenience, the time-
step multiple E is adopted in the following presentation, which is related to the
underrelaxation factor a by

E ¼ a
1� a

ð0 < a < 1Þ ð36Þ

The correspondence between a and E is presented in Table 1, which shows that with
the time-step multiple, the performance of the algorithm in the high-value region of
underrelaxation factor can be shown well.

The same convergence criterion is also used for two algorithms, as indicated
below:

Rmax ¼MAX
ðqu�AÞw � ðqu�AÞe þ ðqv�AÞs � ðqv�AÞn

Flowch

� �
< 1:0� 10�8 ð37Þ

Figure 3. Influence of b on the iteration number at a ¼ 0:8.

Table 1. Some correspondence between a and E

a 0.1 0.2 0.4 0.6 0.8 0.9 0.95 0.98 0.99

E 0.11 0.25 0.67 1.5 4 9 19 49 99

474 Y. P. CHENG ET AL.

D
ow

nl
oa

de
d 

by
 [

X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 0
4:

09
 1

5 
M

ar
ch

 2
01

2 



where Rmax is the maximum relative mass flow rate imbalance of all the control
volumes in the computational domain; Flowch is the characteristic flow rate through
the centerline of the cavity; u� and v� are the intermediate interface velocities.

The same grid system for the two algorithms is used for the same problems. A
uniform 51� 51 grid is adopted for the first three cases, while for the last case the
uniform grid 51� 31 is used. The underrelaxation factor for pressure ap ¼ 0:9, and
for the natural-convection problem the underrelaxation factor for temperature
aT ¼ 0:8.

In the following four cases the computation conditions are introduced briefly,
then numerical results with CLEARER are compared with the benchmark solution
to test its accuracy, followed by comparison of the iteration number between the two
algorithms with the variation of underrelaxation factor a. Furthermore, the ratio of
the iteration number between CLEARER and SIMPLER algorithms with a is also
provided. Because there is the same computational effort at every iterative level, the
ratio of iteration number is also that of the computational time.

Case 1: Lid-Driven Flow in a Square Cavity

Computations are conducted at Re ¼ 1; 000, which is defined as

Re ¼ ULidL

n
ð38Þ

Here ULid is the moving velocity of the upper lid, and L stands for the length of the
cavity. In Figure 4, the numerical results with the new algorithm are compared with
the benchmark solution provided by Ghie et al. [20], where X and Y are nondimen-
sional coordinates, normalized by the cavity length L, and U , V are the nondimen-
sional velocities, normalized by the ULid. We can see that the present results of
velocity distributions along the centerlines agree well with the benchmark solutions,
which proves the accuracy of the CLEARER algorithm.

The iteration numbers of the SIMPLER and CLEARER algorithms are com-
pared in Figure 5. It can be seen that the iteration number required by the CLEARER
algorithm is always lower than that required by the SIMPLER algorithm. Both algo-
rithms can get the convergent solution in a large range of underrelaxation factors, and
it also shows that the robustness of CLEARER is no lower than that of SIMPLER.
The ratio of iteration number of CLEARER over SIMPLER is seen in Figure 6; we
can see that in the region of high-value underrelaxation factor a, the CLEARER
algorithm has better convergence performance than SIMPLER. In the range of
variation of a, the ratio of iteration number ranges from 0.25 to 0.73.

Case 2: Natural Convection in a Square Cavity

Natural convection is studied in a square cavity, with top and bottom walls
adiabatic while the left and right walls are kept at a constant but different tempera-
ture. The average Nusselt number Nu near the wall and the maximum velocities at
the centerlines at Ra ¼ 105 are compared with the benchmark solutions [21], as
shown in Table 2, from which we can see that the agreement is quite satisfactory.

IMPROVEMENT OF SIMPLER ALGORITHM ON COLLOCATED GRID 475

D
ow

nl
oa

de
d 

by
 [

X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 0
4:

09
 1

5 
M

ar
ch

 2
01

2 



From Figure 7 we can see that both the CLEARER and SIMPLER algo-
rithms are quite robust in that the underrelaxation factor a can vary from 0.1
to 0.99, while the CLEARER algorithm always needs fewer iterations than the

Figure 4. Comparison between predicted velocity distributions and benchmark solution.
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SIMPLER algorithm to reach the same convergence criterion. The ratio of iter-
ation number of CLEARER over SIMPLER ranges from 0.47 to 0.88, which is
shown in Figure 8.

Figure 5. Comparison of iteration number between SIMPLER and CLEARER.

Figure 6. Ratio of iteration number of CLEARER versus SIMPLER.
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Case 3: Lid-Driven Flow in a Polar Cavity

The configuration of the polar cavity is shown in Figure 9; here h ¼ 1 rad and
d=Rin ¼ 1. The Reynolds number is defined as

Re ¼ ULidd
n

ð39Þ

where ULid ¼ Rinx is the circumferential velocity of the moving lid. The streamlines
in the polar cavity at Re ¼ 1,000 are compared with the results provided by Fuchs
and Tillmark [22], as seen in Figure 10, from which we can see that they agree
quite well.

The iteration numbers of the CLEARER and SIMPLER algorithms are com-
pared in Figure 11. It is found that when the underrelaxation factor a ¼ 0:98, a con-
vergent solution cannot be obtained with the SIMPLER algorithm, while with the
CLEARER algorithm we can still get a convergent solution, which indicates that
CLEARER is more robust than SIMPLER. From Figure 12 we can see that the
ratio of iteration number of CLEARER over SIMPLER ranges from 0.21 to 0.58,
which proves the excellent convergence characteristic of the CLEARER algorithm.

Figure 7. Comparison of iteration number between SIMPLER and CLEARER.

Table 2. Comparison of predicted results with benchmark solutions at Ra ¼ 105

Num Umax Ymax Vmax Xmax

Benchmark 4.510 0.132 0.859 0.258 0.066

Present 4.584 0.131 0.847 0.256 0.071
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Case 4. Natural Convection in an Annular Enclosure

The natural convection between two horizontal concentric cylinders is depicted
in Figure 13, where the inner cylinder is kept at high temperature and the outer
cylinder is at low temperature. Ra ¼ 5� 104 and is defined as

Ra ¼ qgbd3dT

ag
ð40Þ

Figure 8. Ratio of iteration number of CLEARER versus SIMPLER.

Figure 9. Lid-driven flow in a polar cavity.
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Figure 10. Comparison of streamlines at Re ¼ 1,000.

Figure 11. Comparison of iteration number between SIMPLER and CLEARER.
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Kuehn and Goldstein [23] have studied this case through both numerical simulation
and experiment. In Figure 14 the streamlines and isothermals are compared with
their results, which show good agreement.

For accurate comparison, the heat transfer performance around the inner and
outer cylinders is compared with the results of Kuehn and Goldstein [23]. For the

Figure 12. Ratio of iteration number of CLEARER versus SIMPLER.

Figure 13. Natural convection in a concentric cylinder.
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natural convection between two concentric cylinders, the local equivalent con-
ductivity is often used to evaluate the heat transfer performance, which is defined
as follows.

For the inner cylinder:

Keq ¼ �Rin ln
Rin þ d

Rin

� �
qT

qR
ð41aÞ

Figure 14. Comparison of streamlines and isothermals at Ra ¼ 5� 104.
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Figure 15. Comparison of distribution of local equivalent conductivity.

Figure 16. Comparison of iteration number between SIMPLER and CLEARER.
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For the outer cylinder:

Keq ¼ �ðRin þ dÞ ln Rin þ d
Rin

� �
qT

qR
ð41bÞ

From Figure 15 we can see that the distribution of local equivalent conductivity
around both the inner cylinder and the outer cylinder agrees well with the bench-
mark solutions.

The iteration numbers for SIMPLER and CLEARER are compared in
Figure 16, from which we can see that the CLEARER algorithm always has a much
lower iteration number than the SIMPLER algorithm, especially when the under-
relaxation a is quite large. Furthermore, the robustness of CLEARER is no lower
than that of SIMPLER. Figure 17 shows that the ratio of iteration number for
CLEARER over SIMPLER ranges from 0.17 to 0.67.

CONCLUSION

In this article, the CLEARER algorithm on a collocated grid has been pro-
posed based on the idea of the CLEAR algorithm. Then four numerical examples
with reliable solutions have been calculated to validate the algorithm, and the per-
formance of the CLEARER and SIMPLER algorithms has been compared. The
major conclusions are summarized as follows.

1. In the SIMPLER algorithm on a collocated grid, the velocities on the main nodes
are overcorrected by the pressure correction.

Figure 17. Ratio of iteration number of CLEARER versus SIMPLER.
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2. A second relaxation factor is introduced in calculating the interface velocities in
the corrector step, and the convergent solution is independent of this factor.
By keeping the second relaxation factor smaller than the underrelaxation factor
for velocity, the convergence rate can be speeded up greatly.

3. Numerical results with the CLEARER algorithm agree well with the benchmark
solutions.

4. The CLEARER algorithm has higher robustness and better convergence per-
formance than the SIMPLER algorithm, and in some cases the ratio of the iter-
ation number of CLEARER over SIMPLER can be as low as 17%.
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