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An approach is presented for designing initial fields for a series of computations of heat

transfer and fluid flow problems. Through polynomial interpolation with existing converged

solutions, better initial fields are obtained for the solutions of the next case. This procedure

is repeated until all the cases are numerically simulated. This method is called the interpo-

lative initial field method. By using this method the total iteration times can be substantially

reduced. In addition, the more cases are used in the interpolation, the more efficient the

interpolative initial filed will be.

INTRODUCTION

How to enhance iteration convergence rate in numerical simulation of fluid
flow and heat transfer problems is always a research interest of the computational
fluid dynamics and heat transfer community. Researchers focus mostly on either
improving numerical algorithms [1–10] or using efficient matrix solution methods
[10–19]. The development of the SIMPLE family of algorithms is a typical example
of the first category, while adoption of TDMA [11, 12, 20], PDMA [15, 21], and SIP
[17] to the Krylov subspace method [22] represent using efficient matrix solution
methods. The common feature of the two categories is that the emphasis is concen-
trated on a single solution process.

However, for many practical problems, a group of more or less related cases is
to be solved to reveal the relationship between dependent variables and independent
variables. For example, in the laminar fluid flow over a rectangular backward step
problem, the distance between the position of the reattachment point and the step,
LR, increases gradually with Reynolds number Re [23]. In natural-convection flow
in a square cavity, the Nusselt number Nu increases with Rayleigh number
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Ra [24]. If the purpose of numerical simulations is to find the relationship between
LR and Re for the first case or between Nu and Ra for the second case, then a series
of computations must be performed. The final computational efficiency will depend
on how we obtain the series of solutions efficiently. To the authors’ knowledge, little
attention has been paid to this issue in the open literature.

It is well known that for nonlinear problems, the initial fields have great effects
on the iterative numerical solution process. While ‘‘good’’ initial fields can shorten
the iterative time, bad initial fields may even lead to the divergence of iteration
[20]. Therefore, how to design initial fields is a very important issue in a series of
numerical computations. In the past years, a common approach has been using
the previous solutions as the initial fields for a successive computation [24].

In the numerical design of a new type of fin-and-tube heat exchanger, the
present authors conducted several series of numerical computations to reveal the
relationships between Nu and Re and between f and Re. In this practice, we
developed a rather efficient numerical method for a series of computations. It is
called the interpolative initial field method. In the following, the developed numeri-
cal method will first be introduced, followed by the presentation of seven application
examples and comparisons with conventional step-by-step methods. Finally, some
conclusions will be summarized.

NUMERICAL METHODS

Basic Idea of the Interpolative Initial Field Method

Assume that a series of numerical simulations are going to be conducted for
steady-state, incompressible, and laminar fluid flow and heat transfer in a certain

NOMENCLATURE

a fluid thermal diffusivity

A surface area

D diameter

flowch characteristic (reference) flow rate

g gravitational acceleration

H1; H2 height defined in Figure 7

l length

L length of square cavity

L1;LR;L2 length defined in Figure 5

Lin;Lx length defined in Figure 6

Minitial initial fields

Mresult converged fields

Pr Prandtl number

qm mass flow rate

Q air-side heat transfer

r radius

R radius of tube wall; mass flow rate

imbalance of control volume

Ra Rayleigh number

Re Reynolds number

Rscv relative mass flow rate imbalance of

control volume

u; v velocity component in x and y

directions

u�; v� velocity correction

U ;V nondimensional velocity

Ulid driven lid velocity

x; y coordinates

X ;Y dimensionless coordinates

a underelaxation factor

b coefficient of thermal expansion

d gap width

DT temperature difference

m fluid dynamic viscosity

n fluid kinetic viscosity

q density

- angular velocity

Subscripts

in inlet; inner

max maximum

mean averaged

out outlet

total all
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geometric configuration with a fixed grid system. The basic independent variable,
say Reynolds number, is subject to change within a wide range of variation. Apart
from the upper and lower limitations of the independent variable, several intermit-
tent points are required. For the computations of the intermittent cases, the initial
fields can be obtained from existing results by interpolation. Here the computation
order plays an important role. When a series of computations is to be conducted, the
first=beginning case has to be completed with arbitrary assumed initial fields, fol-
lowed by the second=end case of the series with the converged result fields of the first
case as the initial fields. Based on the results of these two cases, we adopted the
interpolation method to design the initial fields of the third case, located at the center
point of two end cases. Once the third case is solved, its results and the previous two
results are employed for the next case. Using dichotomy for selecting the new point,
more cases can be solved, and more converged results are adopted for interpolation.

The basic idea of the interpolative initial field method can be summarized as
follows.

1. Conduct the simulation for the case with the lower limitation of the independent
variable with initial fields determined by a conventional method, say zero initial
fields.

2. Conduct the simulation for the case with the higher limitation of the independent
variable, with the solutions of the lower limitation of the independent variable as
the initial fields.

3. Conduct the simulation for the middle point between the upper and lower limita-
tions of the independent variable. This may be a middle point in the logarithmic
scale, depending on the individual problem. The term ‘‘middle’’ is a qualitative
description, not necessarily the exact middle between the upper and lower limita-
tions, depending on the given conditions. For this case the Lagrangian poly-
nomial interpolation method is used to get the initial fields from the two
existing solutions.

4. Perform more simulations within the variation range of the independent variables
with the interpolative initial fields. All the existing solutions should be used for
the interpolation of the initial fields for a new case. The more the existing solu-
tions are used in the interpolation, the more efficient the interpolative initial field
method will be.

Expression for Field Interpolation

The Lagrange interpolation expression can be written as [25]

LnðxÞ ¼
Xn

i¼1

Yn

j¼1
j 6¼i

x� xj

xi � xj

0
B@

1
CAf ðxiÞ ð1Þ

where n is the case number for which the solutions are known. It should be noted
that in Eq. (1), the variable x represents the independent parameter and f ðxiÞ is
the function of the parameter to be interpolated. For example, when natural convec-
tion in an enclosure is simulated, and we have obtained the solutions (velocity, tem-
perature distributions) for Ra ¼ 1,000 and 100,000, the initial fields for velocity and
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temperature distributions for Ra ¼ 10,000 are to be interpolated. Then for this case
Ra is the independent variable x, and velocity and temperature distributions are the
function f ðxiÞ. The truncation error of the Lagrange interpolation polynomial is
expressed as

RnðxÞ ¼ f ðxÞ � LnðxÞ ¼
1

ðnþ 1Þ! f ðnþ1ÞðnÞpnþ1ðxÞ ð2Þ

It can be seen that the more cases are used in the interpolation, the smaller the trunc-
ation error of the initial fields will be.

The converged results, U, V, P, and T fields corresponding with the character-
istic number, say Re, can replace f ðxiÞ and xi in Eq. (1), respectively. Through
interpolation with known converged fields, the new fields of variables (U, V, P,
and T ) can be obtained.

When the logarithmic scale is used to express the numerical results, such as Nu
versus Re, the position where the initial field is to be interpolated is better determ-
ined by the logarithmic scale. Taking the Lagrange interpolation expression as an
example, the following expressions can be obtained:

Re ¼ ul

n
ð3Þ

f ðuiÞ ¼ f ðReiÞ ð4Þ

Ln½logðuÞ� ¼
Xn

i¼1

Yn

j¼1
j 6¼i

logðuÞ � logðujÞ
logðuiÞ � logðujÞ

2
64

3
75f ðuiÞ ð5Þ

L0n½logðReÞ� ¼
Xn

i¼1

Yn

j¼1
j 6¼i

logðReÞ � logðRejÞ
Rei �Rej

2
64

3
75f ðReiÞ

¼
Xn

i¼1

Yn

j¼1
j 6¼i

logðul=nÞ � logðujl=nÞ
logðuil=nÞ � logðujl=nÞ

2
64

3
75f ðReiÞ

¼
Xn

i¼1

Yn

j¼1
j 6¼i

logðuÞ � logðujÞ
logðuiÞ � logðujÞ

2
64

3
75f ðuiÞ

¼ Ln½logðuÞ�

ð6Þ

In order to compare the computation time, the step-by-step initial fields
method is also used, for which the initial field setup can be expressed as

Miþ1
initialðuÞ ¼Mi

resultðuÞ ð7Þ
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where the superscript stands for the case number. Such a practice has been widely
used in the literature [25], and compared with the arbitrary field assumptions for
every case, this step-by-step method, i.e., a previous converged result, used as the
initial field of the next computation, can also enhance the convergence rate.

Numerical Comparison Conditions

For a meaningful comparison between step-by-step initial fields and the
Lagrange interpolation initial fields method, the same simulation code should be
used. And except for the initial fields, the other numerical treatment should be the
same, too. In the following comparison, the numerical treatments for computation
are introduced as follows.

For the coupling between velocity (U, V) and pressure (P), the SIMPLEC [3]
algorithm is employed. Using an absolutely stable and simple scheme, the power-
law scheme [5], can keep the stability of the solution procedure. The algebraic equa-
tions are solved by the alternating-direction implicit method (ADI) incorporating the
block-correction technique [1]. For all the cases studied, the same value is adopted
for the underrelaxation factor a. The convergence criterion is written as follows:

Rscv ¼MAX
cv

ðqu�AÞw � ðqu�AÞe þ ðqv�AÞs � ðqv�AÞn
flowch

� �
� e ð8Þ

where the nondimensional Rscv is the maximum mass residue of all control volumes,
which represents the mass conversion degree of each control value. The value e is
different for different problems, and is uniform for all cases in the same problem.

These two initial field setup methods are applied to six two-dimensional
problems and one three-dimensional problem of fluid flow and heat transfer. They
are (1) lid-driven cavity flow in a square cavity, (2) lid-driven cavity flow in a polar
cavity, (3) laminar fluid flow over a rectangular backward-facing step, (4) laminar
fluid flow over an annular backward step, (5) natural convection in a square cavity,
(6) natural convection in an annulus enclosure, and (7) three-dimensional fluid
flow and heat transfer in a slit fin surface. These seven problems are all based on
the following assumptions: laminar, incompressible, steady-state, and constant fluid
property. Because of space limitations, the governing equations of each problem are
omitted; they can be found in other documentation [5, 20].

The iteration number for obtaining a converged solution, and the total
iteration number, are compared.

NUMERICAL EXPERIMENTS

To simplify the description, the three methods and the meanings of other
special words are defined as follows.

Method A: computation with zero initial fields.
Method B: computation with previous converged fields as initial fields, or step-by-

step initial fields. For a series of computations, the first point is computed
by Method A, then the neighboring second point is computed with the
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converged solution of the first point as the initial field. For the rest of the
points, this procedure is repeated until the last point is reached.

Method C: computation with interpolative initial fields. For a series of computations
the first and second points are the beginning and end points. In the compu-
tation of the second points, the converged solutions of the first point are used
as the initial fields. Then the points between the two end points are computed
with interpolative initial fields.

Order: the computation order with Method C.
Number: iteration number.
Points: the total number of cases computed in a series of computations.
Total: the total iteration number for all cases.

Problem 1: Lid-Driven Cavity Flow in a Square Cavity

This problem has been studied by Ghie et al. [7]. The computational configur-
ation and the results of stream function are shown in Figure 1, where x and y are
nondimensional coordinates, normalized by the cavity height. A uniform grid of
102� 102 is employed. Calculations are conducted for from Re ¼ 10 to 1,000.
The Reynolds number is defined by

Re ¼ UlidL

n
ð9Þ

The iteration numbers are listed in Tables 1 and 2 (16 points for Methods A
and C, respectively), Tables 3, 5, and 7 (5, 9, and 16 points for Method B, respect-
ively). In Tables 4, 6, and 8, the ratios of iteration number of the three kinds of meth-
ods are presented. It can be seen that for 5, 9, and 16 points, the ratio of saving of
iteration numbers for Method B to Method A are 15.63%, 21.06%, and 33.55%,
respectively; for Method C to Method A, 33.78%, 45.30%, and 62.38%, respect-
ively; and for Method C to Method B, 21.5%, 30.70%, and 43.39%, respectively.
The saving in iteration number is appreciable.

In Figures 2 and 3, parts of initial fields and final converged fields from Meth-
ods A and C are compared. For Re ¼ 100, its interpolation order is third-order (i.e.,
two existing solutions are used). Though its tendency is approximately similar, the
value is far away from the converged fields. And from Tables 2 and 7, it can be seen
that the iteration number with Method C is 1,442, larger than with Method B, which
is 976. For Re ¼ 50, the interpolation order is 12th-order (i.e., 11 existing solutions
are used). It can be seen that parts of the initial fields are nearly the same as the
converged fields. Thus, the iteration number with Method C is 72, far less than that
with Method B, 1,201 (see Tables 2 and 7). In Table 8 the savings in total iteration
numbers are summarized for the 16-points situation. Method C can save 62.4%
over Method A and 43.4% over Method B. The interpolated initial fields are very
effective.

In Table 9, the iteration numbers for different points are listed. For the begin-
ning situation (5 points), the required iteration numbers are listed in the first column.
For the second situation (9 points), the extra iteration numbers required to obtain
the converged solution are expressed by þ XXXX. As can be seen from the table,
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Method C offers a great advantage in saving of total iteration number. And the more
points there are, the more efficient the interpolative initial fields method is. For the
situation of 16 points, the required iteration numbers for Method C are only 1=3.39
of that of Method B.

Table 1. Computation with Method A for 16 points (first example)

Re 10 17.8 30 31.6 50 56.2 80 100

Number 2,226 2,569 1,314 2,434 2,113 2,222 2,638 3,252

Re 120 178 300 316 500 562 800 1,000

Number 4,248 3,241 3,116 3,103 2,812 3,234 3,042 3,680

Figure 1. Lid-driven cavity flow in a square cavity (Re ¼ 100): (a) flow configuration; (b) predicted stream

function.
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Table 3. Computation with Method B for 5 points (first example)

Re 10 31.6 100 316 1,000

Number 2,226 979 3,055 2,207 3,931

Table 4. Comparison with total iteration number for 5 points in Table 3 (first example)

Method A Method B Method C

Total 14,695 12,398 9,731

(14,695� 12,398)=14,695 ¼ 15.63% (14,695� 9,731)=14,695 ¼ 33.78%

(12,398� 9,731)=12,398 ¼ 21.5%

Table 2. Computation with Method C for 16 points (first example)

Re 10 17.8 30 31.6 50 56.2 80 100

Order 1 6 10 4 12 8 14 3

Number 2,226 1,151 55 1,014 72 1,233 88 1,442

Re 120 178 300 316 500 562 800 1,000

Order 16 9 11 5 13 7 15 2

Number 113 1,014 191 1,707 445 1,072 1314 3,342

Table 5. Computation with Method B for 9 points (1–9 in Table 2) (first example)

Re 10 17.8 31.6 56.2 100 178 316 562 1,000

Number 2,226 1,976 1,458 1,737 2,496 2,203 2,274 3,291 2,832

Table 6. Comparison with total iteration number for 9 points in Table 5 (first example)

Method A Method B Method C

Total 25,961 20,493 14,201

(25,961� 20,493)=25,961 ¼ 21.06% (25,961� 14,201)=25,961 ¼ 45.30%

(20,493� 14,201)=20,493 ¼ 30.70%

Table 7. Computation with Method B for all 16 points in Table 2 (first example)

Re 10 17.8 30 31.6 50 56.2 80 100

Number 2,226 1,976 834 1,195 1,201 1,049 1,448 976

Re 120 178 300 316 500 562 800 1,000

Number 858 3,241 2,061 799 2,812 3,234 3,042 3,114

Table 8. Comparison of total iteration number for all 16 points in Table 7 (first example)

Method A Method B Method C

Total 45,244 30,066 17,021

(45,244� 30,066)=45,244 ¼ 33.55% (45,244� 17,021)=45,244 ¼ 62.38%

(30,066� 17,021)=30,066 ¼ 43.39%
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Problem 2: Lid-Driven Cavity Flow in a Polar Cavity

The configuration and its converged stream function are shown in Figure 4
(h ¼ 1 radian, d=Rin ¼ 1). This problem was studied by Fuchs and Tillmark using
both experimental and numerical methods [26]. The Reynolds number is defined as

Re ¼ Rin � x � d
n

ð10Þ

Figure 2. Parts of initial fields and converged fields with Method A and Method C for Re ¼ 100.
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Figure 3. Parts of initial fields and converged fields with Method A and Method C for Re ¼ 50.

Table 9. Iteration numbers for different points (first example)

Number of points 5 9 (¼ 5þ 4) 16 (¼ 9þ 7)

Method A 14,695 þ 11,266 þ 19,283

Method B 12,398 þ 8,095 þ 9,573

Method C 9,731 þ 4,470 þ 2,820
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Our computations are conducted on a grid system of 102� 102, with Reynolds num-
ber ranging from 10 to 1,000.

The same comparison process can be made as for the first case. For simplicity
of presentation, only the saving in the total iteration numbers for 5, 9, and 16 points
are presented in Tables 10, 11, and 12. For the three situations, the related Reynolds
numbers are listed after each table. As can be expected from the tables, the intermit-
tent points are determined in the logarithmic scale for the situation with 5 and 9
points. For the other situation the extra points are added randomly. From Tables
10, 11, and 12, it can be observed that the saving of iteration numbers using Method
C over Method A for the three situations range from 47.9% to 72%. The saving of
iteration number is appreciable.

Problem 3: Laminar Fluid Flow over a Rectangular Backward Step

The problem configuration and its converged stream function are shown sche-
matically in Figure 5. The geometric parameters are taken from Kondoh et al.
[23]: H2=H1 ¼ 2, L1=H1 ¼ 5, L2=H1 ¼ 30. The inlet velocity distribution is fully
developed:

X ¼ 0; 1 < Y <
H1 þH2

2
: U ¼ 1:5 1� Y � 0:5ðH2=H1Þ � 1

0:5ðH2=H1Þ

� �� �
; V ¼ 0

ð11Þ

Figure 4. Lid-driven cavity flow in a polar cavity (Re ¼ 100).

Table 10. Comparison with total iteration number for 5 points (second example)

Method A Method B Method C

Total 8,788 4,902 4,644

(8,788� 4,902)=8,650 ¼ 44.93% (8,788� 4,644)=8,650 ¼ 47.91%

(4,902� 4,644)=4,902 ¼ 5.26%

Re 10 31.6 100 316 1,000
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The Reynolds number is defined as

Re ¼ umeanH1

n
ð12Þ

where umean is the mean velocity at the inlet section. Reynolds number ranges from
10 to 500, and a grid system of 122� 62 is adopted. In the domain 0 < X < L1=H1,
0 < Y < 1, the domain extension method [20] is used to deal with the solid region. At
the outflow boundary, fully developed condition is assumed.

The saving in the total iteration times for the 8- and 15-points situations are
listed in Tables 13 and 14. The comparison shows that for this problem Method C
may save 47.3% to 65.8% of total iteration numbers over Method A. Once again,
the example shows the efficiency of the interpolative initial fields.

Table 11. Comparison with total iteration number for 9 points (second example)

Method A Method B Method C

Total 14,176 6,642 5,726

(14,176� 6,642)=14,176 ¼ 53.15% (14,176� 5,726)=14,176 ¼ 59.61%

(6,642� 5,726)=6,642 ¼ 13.79%

Re 10 17.78 31.62 56.23 100 177.8 316.2 562.3 1,000

Table 12. Comparison with total iteration number for all 16 points (second example)

Method A Method B Method C

Total 27,243 13,017 7,621

(27,243� 13,017)=27,243 ¼ 52.22% (27,243� 7,621)=27,243 ¼ 72.03%

(13,017� 7,621)=13,017 ¼ 41.45%

Re 10 17.78 30 31.62 50 56.23 80 100

Re 120 177.8 300 316.2 500 562.3 800 1,000

Figure 5. Laminar fluid flow over a rectangular backward step.
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The following should be noted when an algorithm of the SIMPLE family is
used to deal with the coupling between velocity and pressure. In our computation
the left-side solid region is taken as a special fluid with very large viscosity. And
the west–south corner point is taken as the reference point for the pressure. The
reference pressure value should be the same for different point computation in order
to make the interpolative initial pressure field meaningful.

Problem 4: Laminar Fluid Flow over an Annular Backward Step

In Figure 6, the problem configuration and its converged stream function are
shown, where Lx=Din ¼ 30, Lin=Din ¼ 5, and Dout=Din ¼ 2.

The inlet velocity distribution is assumed to be fully developed:

u ¼ umax 1� r2

R2
in

� �
Rin ¼

Din

2
umax ¼ 2umean ð13Þ

The Reynolds number is defined as

Re ¼ umeanDin

n

where umean is the mean velocity at the inlet section. In the present study, Reynolds
number ranges from 10 to 500, and a grid system of 202� 42 is adopted. The domain
extension method is used: the inlet step region of the solid is treated as a special fluid
with very large viscosity [20]. At the outflow boundary, fully developed condition is
assumed.

Experimental and numerical studies of this problem were carried out by
Macagno and Hung [27]. They provided the following results: the ratios of the reat-
tachment length over inlet diameter, LR=Din, as 2.2, 4.3, 6.5, and 8.8 for Re numbers

Table 13. Comparison with total iteration number for 8 points (third example)

Method A Method B Method C

Total 6,046 3,488 3,185

(6,046� 3,488)=6,046 ¼ 42.31% (6,046� 3,185)=6,046 ¼ 47.32%

(3,488� 3,185)=3,488 ¼ 8.69%

Re 10 17.8 31.6 56.2 100 177.8 316.2 500

Table 14. Comparison with total iteration number for all 15 points (third example)

Method A Method B Method C

Total 10,953 5,109 3,749

(10,953� 5,109)=10,953 ¼ 53.36% (10,953� 3,749)=10,953 ¼ 65.77%

(5,109� 3,749)=5,109 ¼ 26.62%

Re 10 17.8 20 31.6 50 56.2 80 100

Re 150 178 200 300 316 400 500
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50, 100, 150, and 200, respectively. Our predicted LR=Din from the three kinds of
methods are the same: 2.19, 4.40, 6.63, and 8.86 for Re number ¼ 50, 100, 150,
and 200.

The total iteration number comparisons for three situations are presented in
Tables 15–17. As can be seen there, the saving in total iteration number is significant
for 11 and 17 points: the total iteration number of Method C can save 40.7% and
61.7%, respectively, compared with Method A.

Problem 5: Natural Convection in a Square Cavity

As shown in Figure 7a, the square cavity has two adiabatic walls (top and bot-
tom), with its two vertical walls being maintained at constant but different tempera-
tures. The predicted results stream function for Ra ¼ 105 is shown in Figure 7b, and
it coincides well with that of Barakos and Mitsoulis [24].

Computations are performed for a series of simulation with Ra from 102 to 106

based on the Boussineq assumption. The Rayleigh number is defined by

Ra ¼ qgbL3DT

am
ð14Þ

A uniform grid system of 102� 102 is adopted.

Table 15. Comparison with total iteration number for 5 points (fourth example)

Method A Method B Method C

Total 3,978 3,083 2,709

(3,978� 3,083)=3,978 ¼ 22.50% (3,978� 2,709)=3,978 ¼ 31.90%

(3,083� 2,709)=3,083 ¼ 12.13%

Re 20 50 100 150 200

Figure 6. Laminar fluid flow over an annular backward step.
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The cavity average Nusselt numbers for Ra ¼ 103, 104, 105, and 106 obtained in
[24] are 1.114, 2.245, 4.510, and 8.806, respectively; and our predicted corresponding
results are 1.13, 2.25, 4.53, and 8.91, showing very good agreement.

In Tables 18–20 the iterations number comparisons for three situations with
5, 9, and 17 points are provided. The saving with Method C compared with
Method A ranges from 42.02% to 77.0%.

Problem 6: Natural Convection in an Annulus Enclosure

This test problem is for laminar natural convection between two horizontal
concentric cylinders, depicted in Figure 8a. Our predicted results of stream function
in Figure 8b for Ra ¼ 105 is in good agreement with Kuehn and Goldstein’s
result [28].

Table 17. Comparison with total iteration number for all 17 points (fourth example)

Method A Method B Method C

Total 11,855 7,382 4,545

(11,855� 7,382)=11,855 ¼ 37.73% (11,855� 4,545)=11,855 ¼ 61.66%

(7,382� 4,545)=7,382 ¼ 38.43%

Re 1 1.778 3.162 5 5.623 10 17.78 20 31.62

Re 50 56.23 100 150 177.8 200 300 316.2

Table 16. Comparison with total iteration number for 11 points (fourth example)

Method A Method B Method C

Total 7,337 5,360 4,350

(7,337� 5,360)=7,337 ¼ 26.95% (7,337� 4,350)=7,337 ¼ 40.71%

(5,360� 4,350)=5,360 ¼ 18.84%

Re 1 1.778 3.162 5.623 10 17.78 31.62 56.23 100 177.8 316.2

Figure 7. Natural convection in a square cavity for Ra ¼ 105.
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Computations are performed from Ra ¼ 102 to 106. The Rayleigh number is
defined by

Ra ¼ qgbd3DT

am
ð15Þ

The Boussinesq assumption is adopted. Computations are conducted on a uniform
grid system with 82� 62 mesh.

The comparison results shown in Tables 21–23 once again demonstrate the
great advantage of the interpolative initial fields method. For the three situations
with 5, 9, and 16 points, the total iteration number savings with Method C are
22.6%, 46.2%, and 65.3%, respectively, compared with Method A.

Problem 7: Three-Dimensional Slit Fin Surface Simulation

Of course, it is very disappointing if a new method is efficient only for simple
problems. Thus, the advantage of Method C should be tested by a complicated 3-D

Table 18. Comparison with total iteration number for 5 points (fifth example)

Method A Method B Method C

Total 12,071 7,976 6,998

(12,071� 7,976)=12,071 ¼ 33.97% (12,071� 6,998)=12,071 ¼ 42.02%

(7,976� 6,998)=7,976 ¼ 12.25%

Ra 100 1,000 10,000 100,000 1,000,000

Table 19. Comparison with total iteration number for 9 points (fifth example)

Method A Method B Method C

Total 22,384 10,665 8,512

(22,384� 10,665)=22,384 ¼ 52.35% (22,384� 8,512)=22,384 ¼ 61.97%

(10,665� 8,512)=10,665 ¼ 20.19%

Ra 100 316.2 1,000 3,162 10,000 31,620 100,000 316,200 1,000,000

Table 20. Comparison with total iteration number for all 17 points (fifth example)

Method A Method B Method C

Total 42,335 15,892 9,738

(42,335� 15,892)=42,335 ¼ 62.46% (42,335� 9,738)=42,335 ¼ 77.0%

(15,892� 9,738)=15,892 ¼ 38.72%

Ra 100 177.8 316.2 562.3 1,000 1,778 3,162 5,623 10,000

Ra 17,780 31,620 56,230 100,000 177,800 316,200 562,300 1,000,000
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problem. The problem of air flow and heat transfer characteristics in a three-
dimensional slit fin surface is selected for this purpose.

Figure 9 shows the detail fin configurations of the slit fin. Eight straight strips
with 2.5-mm width and 1.0-mm depths are just punched based on the above fin
surface with 2-row tubes. The other details of the geometry can be found in [29].

The computational domain is shown in Figure 10. As can be seen there, two
additional regions are added for numerical treatment purposes. The lengths of these
two additional regions are 1.5 times and 5 times the streamwise fin length, respect-
ively. This should guarantee that air velocity is uniform in the domain inlet and fully
development condition obtains in the domain outlet.

The computational domain is meshed by a nonuniform 208� 64� 24 grid sys-
tem. The domain extended method is adopted to deal with the circular boundary
[20], and the tube is approximated by a stepwise method.

The maximum relative mass residual of control volume and the relative difference
between two successive iterates are adopted for the judging of iteration convergence:

Rmax

qm

����
���� � 10�6 ð16Þ

Q
ðkþ100Þ
total �Q

ðkÞ
total

Q
ðkþ100Þ
total

�����
����� � 10�6 ð17Þ

Figure 8. Natural convection in an annulus enclosure for Ra ¼ 104.

Table 21. Comparison with total iteration number for 5 points (sixth example)

Method A Method B Method C

Total 6,311 5,404 4,884

(6,311� 5,404)=6,311 ¼ 14.37% (6,311� 4,884)=6,311 ¼ 22.61%

(5,404� 4,884)=5,404 ¼ 9.62%

Ra 1,000 3,162 10,000 31,620 100,000
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To show the wide applicability, for this case we choose the air velocity as the
interpolative independent variable, and velocity, pressure, and temperature distribu-
tions as the interpolated functions.

Two series computations are conducted for comparison; for one series the inlet
velocity varies from 0.5 to 2.5 m=s and 9 points with a 0.25-m=s interval; and for
the other the inlet velocity changes from 0.5 to 3.5 m=s and 7 points with 0.5-m=s
interval are used.

In Table 24 the savings in the iteration numbers for series A are listed The
ratios of total saving in CPU time for Method C over Methods A and B are up
to 67.67% and 42.33%, respectively. The result is quite exciting.

In Table 25, the comparison results for the second series are provided. The
ratios of total saving CPU time for Method C over Method A and B are up to
58.82%, 39.37%, respectively.

Table 23. Comparison with total iteration number for all 16 points (sixth example)

Method A Method B Method C

Total 18,090 10,413 6,285

(18,090� 10,413)=18,090 ¼ 42.44% (18,090� 6,285)=18,090 ¼ 65.26%

(10,413� 6,285)=10,413 ¼ 39.64%

Ra 1,000 1,778 3,162 5,000 5,623 7,500 8,500 10,000

Ra 17,783 30,000 31,623 50,000 56,234 60,000 80,000 100,000

Table 22. Comparison with total iteration number for 9 points (sixth example)

Method A Method B Method C

Total 10,572 7,181 5,684

(10,572� 7,181)=10,572 ¼ 32.08% (10,572� 5,684)=10,572 ¼ 46.24%

(7,181� 5,684)=7,181 ¼ 20.85%

Ra 1,000 1,778 3,162 5,623 10,000 17,783 31,623 56,234 100,000

Figure 9. Slit fin with parallel strips.
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In addition, in Table 26, a specific point, v ¼ 1.6 m=s, is computed for the first
series with these three kinds of methods. Based on the existing points of the first
series, Method C has perfect behavior. A reduction of computational time up to
one order of magnitude is obtained.

From this example, it can be found that the interpolative initial fields method is
a good approach for simulation of a complicated 3-D problem.

DISCUSSION

Through the above seven examples, it is demonstrated that the interpolative
initial fields method can greatly improve the convergence rate of the iterative process
for a series of numerical simulations compared with the conventional methods
(Method A or Method B). For these problems, generally speaking, the total saving
of iteration numbers is about 23% to 77% compared to Method A, and about
3.07% to 43.39% compared to Method B. The more points are used, the more time
saving can be obtained.

Obviously, for the first several points, Method C has a little advantage.
Especially for the second point (always the end point), the iteration number of most
problems is higher than with Method B. For Method C, it is the end point that cost
the most iteration time, and it decreased the saving ratio of total iteration number.
In contrast, the increase in the iteration number of later-added points can most
effectively exhibit the advantage of Method C. For a series of computations, the
interpolative initial fields method is very useful.

During the numerical experiment, we found that the order of computational
points is also very important. According to our experience, dichotomy is the best
choice. For example, if the first and second points are Re ¼ 10 and 1,000, the third
point should be Re ¼ 100, because it is the average logarithm value of previous two
points.

Certainly, interpolation initial fields also need time for computing. Neverthe-
less, for any complicated problems, it is negligible. For example, for interpolation
for a 3-D slit fin surface, it took less than 60 s, far less than the simulation time,
which was more than several hours.

Figure 10. Top view of the computational domain.

Table 24. Comparison with total CPU time

Method A Method B Method C

Total 587,173 329,137 189,827

(587,173� 329,137)=587,173 ¼ 43.96% (587,173� 189,827)=587,173 ¼ 67.67%

(329,137� 189,827)=329,137 ¼ 42.33%

Velocity (m=s) 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
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CONCLUSIONS

In this article, comprehensive numerical experiments have been conducted for
the interpolative initial fields method. The six 2-D and one 3-D experiments tested
incompressible laminar fluid flow and heat transfer problems over three orthogonal
coordinates. Numerical experiments definitely demonstrate that for a series compu-
tations the interpolative method can significantly enhance the convergence rate of
the iteration process compared with the step-by-step initial fields method or without
preconditioned initial fields. For the six 2-D problems tested, the interpolation
method can reduce the iteration number by 3–77%. For the one 3-D problem, it
can reduce the CPU time up to 40%.
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