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AN IMPROVED NUMERICAL SCHEME FOR THE
SIMPLER METHOD ON NONORTHOGONAL
CURVILINEAR COORDINATES: SIMPLERM

Z. G. Qu, W. Q. Tao, and Y. L. He
State Key Laboratory of Multiphase Flow in Power Engineering, School of
Energy & Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi,
People’s Republic of China

In this article, an improved numerical algorithm named SIMPLERM is proposed for

incompressible fluid flow computations on the nonstaggered and nonorthogonal curvilinear

grid system. In the proposed algorithm, the contravariant velocities are chosen as the cell

face velocities and the Cartesian components as the primary variables. The velocity under-

relaxation factor is incorporated into the momentum interpolation, and special treatment is

adopted to avoid the underrelaxation factor dependence of the velocity solution. In addition,

a 1�d pressure difference is introduced into the interfacial contravariant velocity determi-

nation. Compared with the existing implementation methods of the SIMPLE family on non-

staggered and nonorthogonal grids, the SIMPLERM algorithm can guarantee the coupling

between velocity and pressure, underrelaxation independence of the solution, and satisfac-

tion of the conservation law, while still possessing sufficient robustness.

INTRODUCTION

For numerical prediction of fluid flow and heat transfer in complex geometries,
numerical methods of nonorthogonal, body-fitted coordinates may be adopted in
which governing equations are converted from the physical domain to the computa-
tional domain. The grid arrangements, choice of dependent variable of momentum
equations, and pressure–velocity coupling are three key issues for the solution of
incompressible flow problems.

The coupling between velocity and pressure can be naturally guaranteed in the
staggered grid arrangement, but this arrangement is inconvenient for code develop-
ment in a curvilinear body-fitted grid or an unstructured grid, especially for 3-D
computation. This complexity can be greatly alleviated by using a nonstaggered grid
system. However, use of a nonstaggered grid may lead to other undesirable features
of numerical solutions.

For a nonstaggered grid the key issue is how to eliminate the decoupling
between pressure and velocity. In the 1980s, the momentum interpolation method
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(MIM) on the nonstaggered grid was first proposed by Rhie and Chow [1] to
overcome the decoupling difficulty. It was subsequently refined by Peric [2] and
Majumdar [3]. Later, Majumdar [4] and Miller and Schmidt [5] found that the Rhie
and Chow method leads to dependence of the solution on an underrelaxation factor
to some extent, despite damping out the checkerboard pressure distribution. To rem-
edy this undesirable situation, Majumdar [4] provided the modified momentum
interpolation method (MMIM), which was later adapted by Choi [6] for unsteady

NOMENCLATURE

A surface area

AP; AE ; AW ; AN ; AS coefficients in the

discretized equation

b source term

B coefficient in pressure or

pressure-correction

equation

C coefficient in pressure or

pressure-correction

equation

E time-step multiple

f interpolation factor

F flow rate

flowch characteristic (reference)

flow rate

J Jacobi factor

L length, m

p pressure

p0 pressure correction

�ppg average value of

pressure gradient in

g direction

�ppn average value of

pressure gradient in

n direction

Pr Prandtl number

Re Reynolds number

RSmax relative mass flow rate

unbalance of control

volume

u, v velocity component in x,

y directions

u0; v0 velocity correction

ûu; v̂v pseudo-velocity

U, V contravariant velocitybUU ; bVV contravariant pseudo-

velocity

U ; V contravariant velocity

obtained by linear

interpolation

U 0;V 0 contravariant velocity

correction

Ulid moving velocity of lid

xn; xg; yn; yg geometry factor

x, y coordinates in physical

domain

X, Y coordinates in

computational domain

a underrelaxation factor

C nominal diffusion

coefficient

dn; dg distance between two

adjacent grid points in f
and g directions

Dn; Dg distance between two

adjacent interfaces in f
and g directions

f coordinate in

computational domain

g coordinate in

computational domain

m fluid dynamic viscosity

q fluid density

/ general variable

Subscripts

e, w, n, s cell surface

max maximum

P; E; N; S; W grid point

nb neighboring points

non nonorthogonal term

u, v referring to u, v

momentum equation

Superscripts

i intermediate value of

Cartesian coordinates in

iteration

0 previous iteration

� intermediate value in

iteration

! vector
0 correction

— mean value
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flow. An easy technique introduced by Kobayashi and Pereira [7] is to set the under-
relaxation factor to a ¼ 1 before momentum interpolation, but this may lead to
deterioration of the robustness of the algorithm to at least some extent.

Based on a number of previous studies on the nonstaggered (or collocated) grid
system, the present authors put forward four fundamental requirements for develop-
ing a good numerical algorithm in the nonstaggered grid system [8]. The four
requirements are that: (1) the algorithm can avoid the checkerboard pressure distri-
bution; (2) the converged solution is independent of the underrelaxation factor; (3)
the algorithm possesses required robustness; and (4) the conservation laws, both
physical and geometric, should be satisfied as much as possible.

On a nonorthogonal collocated grid, the first problem encountered in the
development of a numerical algorithm is the choice of dependent variables, and dif-
ferent choice lead to different solution algorithms for pressure and velocity coupling.
Shyy and Vu [9] indicated that it is an appropriate choice to use Cartesian velocity
components as the primary variables and contravariant velocity components as cell
face velocities to satisfy the conservation law (both physical and geometric) in the
discrete form.

For curvilinear nonorthogonal coordinates, the implementation of SIMPLE,
SIMPLER, and the modified algorithm SIMPLEM have been proposed in [10].
When in introducing these three algorithms for curvilinear nonorthogonal coordi-
nates, Acharya and Moukalled [10] did not pay special attention to the underrelaxa-
tion factor issue. Kobayashi and Pereira [7, 11] proposed the SIMPLES algorithm,
which could eliminate the effect of underrelaxation factor but reduced the robustness
to some extent. On the other hand, in the SIMPLE method proposed in [10], an
additional pressure gradient correction term was added to the cell-face contravariant
velocity to guarantee the coupling between velocity and pressure. However, this
additional term can demolish the local mass conservation.

Choi et al. [12] proposed a calculation procedure for the SIMPLE algorithm to
eliminate the effect of the underrelaxation factor and avoid the additional correction
term. It was found that if the contravariant velocity was selected as cell face velocity,
an unstable convergence history might occur when the grid nonorthogonality was sig-
nificant, so the covariant velocity components were chosen as the cell face velocities.
However, using the covariant velocity components as cell face velocities will not fully
guarantee the geometric conservation law in the discrete form, as indicated in [9].

From the above brief review, it can be seen that in the current literature there is
no algorithm for nonstaggered grids which can simultaneously satisfy the above four
requirements. The major purpose of this study is to propose a new algorithm, SIM-
PLERM, which can simultaneously satisfy the four requirements to a great degree
for the solution of flow fields in nonorthogonal collocated grids.

GOVERNING EQUATIONS AND DISCRETIZATION

For convective-diffusion problems in two-dimensional Cartesian coordinates,
the governing equations can be expressed as

qðqu/Þ
qx

þ qðqv/Þ
qy

¼ q
qx

C
q/
qx

� �
þ q
qy

C
q/
qy

� �
þ Rðx; yÞ ð1Þ
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where / is the general variable and R is the source term shown in Table 1. In
collocated nonorthogonal curvilinear coordinates, the curvilinear coordinates are
introduced in the following way:

x ¼ xðn;gÞ ð2Þ

y ¼ yðn;gÞ ð3Þ

The governing equations are converted to the computational domain, and the trans-
ferred equation can be expressed as

1

J

qðqU/Þ
qn

þ 1

J

qðqV/Þ
qg

¼ 1

J

q
qn

C
J
ða/n � b/gÞ

� �
þ 1

J

q
qg

C
J
ð�b/n þ c/gÞ

� �
þ Sðn;gÞ ð4Þ

In Eq. (4), a, b, c, and J are geometry factors and U, V are contravariant velocity
components. The above parameters are defined as follows:

a ¼ x2
g þ y2

g b ¼ xnxg þ ynyg c ¼ x2
n þ y2

n ð5Þ

J ¼ xnyg � xgyn ð6Þ

U ¼ uyg � vxg ð7Þ

V ¼ vyn � vxn ð8Þ

The source terms for the converted u and v equations include the transferred pressure
gradients, which can be expressed as

qp

qx
¼ 1

J
ðyg/n � yg/gÞ ð9Þ

qp

qy
¼ 1

J
ð�xg/n � xn/gÞ ð10Þ

Table 1. Correspondence among /, C/, and R/

/ C/ R/

u g � qp

qx

v g � qp

qy

T
m
Pr

0
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The control volumes in the physical domain are converted into the computa-
tional domain and are shown in Figures 1 and 2 for the physical and computational
domains, respectively. In these figures the Cartesian velocity components are located
in the center of the cell and the contravariant velocity components are located at the

Figure 1. Control volume in curvilinear coordinates.

Figure 2. Geometry factor in the computational domain.
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interfaces. The transferred governing equations are discretized in the computation
domain with the finite-volume method (FVM) [13, 14]. The final discretized results
are expressed as follows.

Continuity equation:

ðq Dg Uf Þe � ðq Dg Uf Þw þ ðqDn Vf Þn � ðqDn Vf Þs ¼ 0 ð11Þ

where Uf , Vf stand for the interface contravariant velocity components which are
determined from the interpolated Cartesian velocity components at the interfaces.

Momentum equations:

Au
P

au
uP ¼

X
Au

nbunb � Bu
P

qp

qn
� Cu

P

qp

qg
þ bu þ 1� au

au
Au

Pu0
P ð12Þ

Av
P

av
vP ¼

X
Av

nbvnb � Bv
P

qp

qn
� Cv

P

qp

qg
þ bv þ 1� av

av
Av

Pv0
P ð13Þ

In Eqs. (12) and (13), the underrelaxation factor is incorporated. The pressure gradi-
ent terms for u and v equations are calculated by

qp

qn
¼ ðpeÞP � ðpwÞP

Dn
ð14Þ

qp

qg
¼ ðpnÞP � ðpsÞP

Dg
ð15Þ

where the interface pressures ðpeÞP, ðpwÞP, ðpnÞP, ðpsÞP are linearly interpolated from
the values of the main nodes. The coefficients of Eqs. (12) and (13) are expressed as
follows:

Bu
P ¼

qy

qg

� �
P

DnDg Cu
P ¼ �

qy

qn

� �
P

DnDg ð16aÞ

Bv
P ¼ �

qx

qg

� �
P

DnDg Cv
P ¼

qx

qn

� �
P

Dn Dg ð16bÞ

AE ¼ DeAðjPDejÞ þ �Fe; 0½ �½ � AW ¼ DwAðjPDwjÞ � Fw; 0½ �½ � ð17aÞ

AN ¼ DnAðjPDnjÞ þ �Fn; 0½ �½ � AS ¼ DsAðjPDsjÞ � Fs; 0½ �½ � ð17bÞ

AP ¼ AE þ AW þ AN þ AS ð18Þ

bu ¼ SJ Dn Dg� C
J

bug Dg

� �����e
w

þ C
J

bun Dn

� �����n
s

� �
ð19Þ
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bv ¼ SJ Dn Dg� C
J

bvg Dg

� �����e
w

þ C
J

bvn Dn

� �����n
s

� �
ð20Þ

where F and D are flow rate and diffusion conductivity at the interface,

Fe ¼ ðqU DgÞe Fw ¼ ðqU DgÞw ð21aÞ

Fe ¼ ðqV DnÞe Fw ¼ ðqV DnÞw ð21bÞ

De ¼
a
J

C
Dg
Dn

� �
e

Dw ¼
a
J

C
Dg
Dn

� �
w

ð22aÞ

Dn ¼
c
J

C
Dn
Dg

� �
n

Ds ¼
c
J

C
Dn
Dg

� �
s

ð22bÞ

GENERAL REVIEW OF SIMPLE ALGORITHM

In the SIMPLE algorithm on a collocated nonorthogonal grid, the pressure in
the source term of the momentum equations is obtained directly from the previous
iteration. After solving the momentum equations, the interface Cartesian velocities
are linearly interpolated from the values at the main nodes if the interpolation idea
on the orthogonal grid system is applied, and the interface contravariant velocities
are then determined based on the definition. The interface Cartesian velocities are
determined by

u�e ¼
ðdnÞe�
ðdnÞe

u�E þ
ðdnÞeþ
ðdnÞe

u�P v�e ¼
ðdnÞe�
ðdnÞe

v�E þ
ðdnÞeþ
ðdnÞe

v�P ð23Þ

v�n ¼
ðdgÞn�
ðdgÞn

v�N þ
ðdgÞnþ
ðdgÞn

v�P u�n ¼
ðdgÞn�
ðdgÞn

u�N þ
ðdgÞnþ
ðdgÞn

u�P ð24Þ

The corresponding contravariant velocities are calculated as

U�e ¼ u�
qy

qg
� v�

qx

qg

� �
e

¼ u�eðygÞe � v�eðxgÞe ð25Þ

V �n ¼ v�
qx

qn
� u�

qy

qn

� �
n

¼ v�nðxnÞn � u�nðynÞn ð26Þ

It can be seen from Eqs. (25) and (26) that the so called 1� d pressure difference is not
introduced and the including of which is the successful experience of staggered grids.
Thus such an interpolation scheme may lead to an incorrect pressure distribution. To
avoid an incorrect distribution, Rhie and Chow [15] proposed that an additional
pressure gradient correction term be added to the right-hand side of Eqs. (25)
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and (26). The final interface contravariant velocities are then expressed as

U�e ¼ U�e � B0;u
fe

pE � pP

Dn
� �ppn

� �
ð27Þ

V�n ¼ V �n � C0v
fn

pN � pP

Dg
� �ppg

� �
ð28Þ

where U�e and V �n are calculated by Eqs. (25) and (26), respectively.
Additional terms such as ðpN � pPÞ=Dg½ � � �ppg, are called smoothing terms,

where �ppn and �ppg are the average pressure gradients in the n and g directions, respect-
ively, for the control volume studied. Acharya and Moukalled [10] pointed that if
Eqs. (27) and (28) are used to derive the pressure-correction equation, then the
resulting equation is not the discretized continuity equation but rather is an approxi-
mate form of the continuity equation, and this will lead to mass nonconservative
behavior despite the pressure oscillation being suppressed.

In the implementation of SIMPLER algorithm proposed by Acharya and
Moukalled [10], the pressure is determined by the pressure equation in the prediction
step, but no special attention is paid to the presence of the underrelaxation factor. In
their SIMPLEM algorithm [10], the additional pressure correction term is avoided,
yet the underrelaxation factor effect is not included. In addition, the Cartesian velo-
cities are not updated in time while the interface contravariant velocities are
improved.

As indicated in the introduction, the study of Choi [12] showed that the selec-
tion of contravariant velocities as cell face velocities may lead to unstable conver-
gence, while the covariant selection reduces the satisfaction of the conservation law.

From the above brief discussion, it can be seen that (1) to incorporate the
underrelaxation factor into the algorithm is of great importance to improve the
robustness of the algorithm; and (2) to provide a good interpolation method is essen-
tial to avoid an additional correction term such that the conservation laws (both
physical and geometric) can be satisfied.

In order to incorporate the above two ingredients into the algorithm for fluid
flow and computation on a nonstaggered, nonorthogonal grid system, a new version
of the SIMPLER algorithm, called SIMPLERM, is proposed. The details are pre-
sented in the following section.

MATHEMATICAL FORMULATION OF THE SIMPLERM ALGORITHM

In the SIMPELRM algorithm proposed in this study, the physical and
geometric laws are satisfied by using the contravariant velocities as the cell face velo-
cities and Cartesian components as the primary variables. A prediction step is added
to solve the problems of selecting contravariant velocity components as cell face
velocities when the grid is strongly nonorthogonal, as will be confirmed in the
examples provided later. An appropriate interpolation method for interface contra-
variants is applied which can discard the additional pressure gradient correction
term. Based on this practice, the checkerboard pressure distribution should be fully
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avoided and the underrelaxation factor is combined into the iteration process on
condition that the solution is underrelaxation factor independent.

The above descriptions are the main ideas of the SIMPLERM algorithm. It
can be seen that the SIMPLERM algorithm is based on the SIMPLER algorithm
but is an improved algorithm. The implementation of SIMPLERM algorithm is
as follows.

Prediction Step of the SIMPLERM Algorithm

In one iteration of the SIMPLERM algorithm the pressure is first determined
in the prediction step, which provides the source term for the momentum equation.
In the derivation of the pressure equation, the underrelaxation factor is combined
into the computational process.

Equations (12) and (13) are written in the explicit manner

uP ¼cu0
Pu0
P � B0

uP

qp

qn

� �
P

�C0
uP

qp

qg

� �
P

þð1� auÞu0
p ð29Þ

vP ¼ bv0
Pv0
P � B0

vP

qp

qn

� �
P

�C0
vP

qp

qg

� �
P

þð1� avÞv0
p ð30Þ

where cu0
Pu0
P and bv0

Pv0
P are called pseudo-velocities:

cu0
Pu0
P ¼

P
A0u

nbu0
nb þ b0u

P

ðA0u
P ÞP=au

bv0
Pv0
P ¼

P
A0v

nbv0
nb þ b0v

P

ðA0v
P ÞP=av

ð31Þ

The b terms in Eq. (31) are calculated as follows:

b0u
P ¼ SJ DnDg� C

J
bu0

g Dg

� �����e
w

þ C
J

bu0
n Dn

� �����n
s

� �
ð32Þ

b0v
P ¼ SJ Dn Dg� C

J
bv0

g Dg

� �����e
w

þ C
J

bv0
n Dn

� �����n
s

� �
ð33Þ

The coefficients in Eqs. (29) and (30) are determined by

B0
uP ¼

auBu
P

ðA0u
P ÞP
¼ auðygÞP Dn Dg

ðA0u
P ÞP

ð34Þ

C0
uP ¼

auCu
P

ðA0u
P ÞP
¼ � auðynÞP DnDg

ðA0u
P ÞP

ð35Þ

B0
vP ¼

avB
v
P

ðA0v
P ÞP
¼ � avðxgÞP Dn Dg

ðA0v
P ÞP

ð36Þ
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C0
vP ¼

avCv
P

ðA0v
P ÞP
¼ avðxnÞP Dn Dg

ðA0v
P ÞP

ð37Þ

In the above equations, the superscript 0 means the values are obtained from the pre-
vious iteration. The interface Cartesian components are then gained by mimicking
Eqs. (29) and (30):

u0
e ¼ bu0

eu0
e � B0

u

qp

qn

� �
e

� C0
u

qp

qg

� �
e

þð1� auÞu0
e ð38Þ

v0
e ¼ bv0

ev0
e � B0

v

qp

qn

� �
e

� C0
v

qp

qg

� �
e

þð1� avÞv0
e ð39Þ

u0
n ¼ bu0

nu0
n � B0

u

qp

qn

� �
n

� C0
u

qp

qg

� �
n

þð1� auÞu0
n ð40Þ

v0
n ¼ bvnvn � B0

v

qp

qn

� �
n

� C0
v

qp

qg

� �
n

þð1� avÞv0
n ð41Þ

Equations (38)–(41) can be regarded as the extension of the idea of the modified
momentum interpolation method (MMIM) proposed by Majumdar [14] in orthog-
onal coordinates. In Eqs. (38)–(41), the coefficients are calculated as follows:

ðB0
uÞe ¼

auðygÞeðdnÞeDg

ðA0u
P Þe

ðC0
uÞe ¼ �

auðynÞeðdnÞeDg

ðA0u
P Þe

ð42aÞ

ðB0
vÞe ¼ �

avðxgÞeðdnÞeDg

ðA0v
P Þe

ðC0
v Þe ¼

avðxnÞeðdnÞeDg

ðA0v
P Þe

ð42bÞ

ðB0
uÞn ¼

auðygÞnDnðdgÞn
ðA0u

P Þn
ðC0

uÞn ¼ �
auðynÞnDnðdgÞn
ðA0u

P Þn
ð42cÞ

ðB0
vÞn ¼ �

avðxgÞnDnðdgÞn
ðA0v

P Þn
ðC0

v Þn ¼
avðxnÞnDnðdgÞn
ðA0v

P Þn
ð42dÞ

The variables at the interfaces ( bu0
eu0
e ;
bv0
ev0
e ;
bu0
nu0
n;
bv0
ev0
e) and the coefficients at the interfaces

[ðAu
PÞe; ðAv

PÞe; ðAu
PÞn; ðAv

PÞn] are linearly interpolated from the main points P, E, N:

ðA0u
P Þe¼

ðdnÞe�
ðdnÞe

ðA0u
P ÞEþ

ðdnÞeþ
ðdnÞe

ðA0u
P ÞP ðA0v

P Þe¼
ðdnÞe�
ðdnÞe

ðA0v
P ÞEþ

ðdnÞeþ
ðdnÞe

ðA0v
P ÞP ð43aÞ

ðA0u
P Þn¼

ðdgÞn�
ðdgÞn

ðA0u
P ÞNþ

ðdgÞnþ
ðdgÞn

ðA0u
P ÞP ðA0v

P Þn¼
ðdgÞn�
ðdgÞn

ðA0v
P ÞN þ

ðdgÞnþ
ðdgÞn

ðA0v
P ÞP ð43bÞ

bu0
eu0
e ¼
ðdnÞe�
ðdnÞe

cu0
Eu0
Eþ
ðdnÞeþ
ðdnÞe

cu0
Pu0
P

bv0
ev0
e ¼
ðdnÞe�
ðdnÞe

bv0
Ev0
Eþ
ðdnÞeþ
ðdnÞe

bv0
Pv0
P ð44aÞ

bu0
nu0
n¼
ðdgÞn�
ðdgÞn

cu0
Nu0
N þ
ðdgÞnþ
ðdgÞn

cu0
Pu0
P

bv0
nv0
n¼
ðdgÞn�
ðdgÞn

cv0
Nv0
N þ
ðdgÞnþ
ðdgÞn

bv0
Pv0
P ð44bÞ
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The interface contravariant velocity components are defined as

Ue¼ u
qy

qg
� v

qx

qg

� �
e

ð45Þ

Vn¼ v
qx

qn
�u

qy

qn

� �
n

ð46Þ

Equations (38) and (39) are now substituted into Eq. (45), and Eqs. (40) and (41) are
substituted into Eq. (46) to obtain interface contravariant velocity components:

Ue¼ bu0u0
qy

qg
� bv0v0

qx

qg

� �
e

� B0u
f

qp

qn

� �
e

þ C0u
f

qp0

qg

� �
e

þð1�auÞðygÞeu0
e�ð1�avÞðxgÞev0

e

ð47Þ

Vn¼ bv0v0
qx

qn
� bu0u0

qy

qn

� �
n

þ B0v
f

qp0

qn

� �
n

� C0v
f

qp

qg

� �
n

þð1�avÞðxnÞnv0
n�ð1�auÞðynÞnu0

n

ð48Þ

where

B0u
fe ¼B0

ueyg�B0
vexg¼

auy2
g

A0u
P

þ
avx2

g

A0v
P

 !
e

ðdnÞe Dg ð49aÞ

C0u
fe ¼�C0

ueygþC0
vexg¼

auynyg

A0u
P

þavxnxg

A0v
P

� �
e

ðdnÞe Dg ð49bÞ

B0v
fn ¼�B0

vnxnþB0
unyn¼

avynyg

A0u
P

þanxnxg

A0v
P

� �
n

ðdgÞn Dn ð50aÞ

C0v
fn ¼C0

vnxn�C0
unyn¼

avy2
n

A0u
P

þ
aux2

n

A0v
P

 !
n

ðdgÞn Dn ð50bÞ

It can be seen that in the interfacial contravariant components, Eqs. (47) and
(48), the velocity underrelaxation factors are included. In order to guarantee that the
solution is independent of the underrelaxation factor, the underrelaxation factors for
the u momentum equation and the v momentum equation are set to be identical but
not equal to 1, that is, (a¼ au¼ av 6¼ 1). Then Eqs. (47) and (48) can be rewritten as

Ue¼ bu0u0
qy

qg
� bv0v0

qx

qg

� �
e

� B0u
f

qp

qn

� �
e

þ C0u
f

qp0

qg

� �
e

þð1�aÞU0
e ð51Þ

Vn¼ bv0v0
qx

qn
� bu0u0

qy

qn

� �
n

þ B0v
f

qp0

qn

� �
n

� C0v
f

qp

qg

� �
n

þð1�aÞV0
n ð52Þ
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The coefficients B0u
fe , C0u

fe , B0v
fn , C0v

fn are recast as

B0u
fe ¼ B0

ueyg � B0
vexg ¼

y2
g

A0u
P

þ
x2

g

A0v
P

 !
e

aðdnÞe Dg ð53aÞ

C0u
fe ¼ �C0

ueyg þ C0
vexg ¼

ynyg

A0u
P

þ xnxg

A0v
P

� �
e

aðdnÞe Dg ð53bÞ

B0v
fn ¼ �B0

vnxn þ B0
unyn ¼

ynyg

A0u
P

þ xnxg

A0v
P

� �
n

aðdgÞn Dn ð54aÞ

C0v
fn ¼ C0

vnxn � C0
unyn ¼

y2
n

A0u
P

þ
x2

n

A0v
P

 !
n

aðdgÞnDn ð54bÞ

By introducing the pseudo-contravariant velocity components,

cU0
eU0
e ¼ bu0u0

qy

qg
�bvv0 qx

qg

� �
e

þ C0u
f

qp

qg

� �
e

þð1� aÞU0
e ð55Þ

cV 0
nV 0
n ¼ bv0v0

qx

qn
� bu0u0

qy

qn

� �
n

þ B0v
f

qp

qn

� �
n

þð1� aÞV 0
n ð56Þ

Eqs. (51) and (52) can be rewritten as

Ue ¼ cU0
eU0
e � B0u

f

qp

qn

� �
e

ð57Þ

Vn ¼ cV 0
nV 0
n � C0v

f

qp

qg

� �
n

ð58Þ

By substituting Eqs. (57) and (58) into the continuity equation, Eq. (11), we get the
pressure equation:

A0
Pp�P ¼

X
A0

nbp�nb þ b ð59Þ

where

A0
P ¼ A0

E þ A0
W þ A0

N þ A0
S ð60Þ

ðA0
EÞP ¼ ðA0

W ÞE ¼
q Dg B0u

f

dn

 !
e

ð61Þ

ðA0
NÞP ¼ ðA0

SÞN ¼
q Dn C0v

f

dg

 !
n

ð62Þ

b ¼ ðqDgcU0U0Þ
����w
e

þ ðq Dn cV0V0Þ
����s
n

ð63Þ

54 Z. G. QU ET AL.

D
ow

nl
oa

de
d 

by
 [

X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 0
3:

52
 1

5 
M

ar
ch

 2
01

2 



To further improve the robustness of the algorithm, the pressure underrelaxation
factor ap is also incorporated. The final form of the pressure equation in the predic-
tion step can be expressed as

A0
P

ap
p�P ¼

X
A0

nbp�nb þ bþ 1� ap

ap
A0

Pp0
P ð64Þ

The pressure solved from the pressure equation is used to calculate the source
term of the momentum equation. The discretized momentum equations are then
solved to update the Cartesian velocities at the main node, and the resulting veloci-
ties are defined by u�, v�. Then the interface contravariant velocities components are
determined directly, based on the updated Cartesian velocities at the main nodes.

The intermediate interface contravariant velocity components are determined
by a modified momentum interpolation method based on Eqs. (38)–(41), in which
the underrelaxation factor is incorporated under the condition of au ¼ av ¼ a 6¼ 1.
The modified interpolation details are as follows.

On the condition of au ¼ av ¼ a 6¼ 1, Eq. (31) is recast as

cui
Pui
P ¼

P
A0u

nbu�nb þ b0u
P

ðA0u
P ÞP=a

bvi
Pvi
P ¼

P
A0v

nbv�nb þ b0v
P

ðA0v
P ÞP=a

ð65Þ

In Eq. (65), the cui
Pui
P, bvi

Pvi
P terms represent the intermediate grid pseudo-Cartesian velo-

cities. The corresponding interface pseudo-Cartesian velocities are linearly interpo-
lated as

bui
eui
e ¼
ðdnÞe�
ðdnÞe

cui
Eui
E þ
ðdnÞeþ
ðdnÞe

cui
Pui
P

bvi
evi
e ¼
ðdnÞe�
ðdnÞe

bvi
Evi
E þ
ðdnÞeþ
ðdnÞe

bvi
Pvi
P ð66Þ

bui
nui
n ¼
ðdgÞn�
ðdgÞn

cui
Nui
N þ
ðdgÞnþ
ðdgÞn

cui
Pui
P

bvi
nvi
n ¼
ðdgÞn�
ðdgÞn

cvi
Nvi
N þ
ðdgÞnþ
ðdgÞn

bvi
Pvi
P ð67Þ

Similar to the deviation of Eqs. (51) and (52), the intermediate interface contravar-
iant velocity components are obtained with the modified momentum interpolation:

U�e ¼ buiui
qy

qg
� bvivi

qx

qg

� �
e

� B0u
f

qp�

qn

� �
e

þ C0u
f

qp�

qg

� �
e

þð1� aÞU0
e ð68Þ

V �n ¼ bvivi
qx

qn
� buiui

qy

qn

� �
n

þ B0v
f

qp�

qn

� �
n

� C0v
f

qp�

qg

� �
n

þð1� aÞV0
n ð69Þ

The coefficients B0u
f , C0u

f , B0v
f , and C0v

f are calculated by Eqs. (53) and (54). It should
be emphasized that Eqs. (68) and (69) are consistent with Eqs. (51) and (52); the only
difference is the computational levels. Equations (51) and (52) are based on the pre-
vious velocities u0, v0, while Eqs. (68) and (69) are based on the intermediate veloci-
ties ui, vi. It is clear that the 1� d pressure difference is introduced to prevent
oscillation of the pressure field. When iteration converges, U�e and V �n are equal to
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U0
e and V0

n , respectively, and the effect of the underrelaxation factor is eliminated,
making the final solution independent of the underrelaxation factor.

The use of Eqs. (68) and (69) can fully discard the additional pressure gradient
term in Eqs. (27) and (28), so the SIMPLERM algorithm can guarantee the mass
conservation of control volumes. This is the key difference between the SIMPLE
and SIMPLERM algorithms.

Correction Step of the SIMPLERM Algorithm

The interface velocities U�e , V �n , which do not satisfy the continuity equation
need to be improved to satisfy the continuity equation. Based on Eqs. (29)
and (30), the velocity correction at the main node is obtained after neglecting the
neighboring velocity correction. The velocity corrections for u and v are then
expressed as

u0P ¼ �B0
uP

qp0

qn
� C0

uP

qp0

qg
ð70Þ

v0P ¼ �B0
vP

qp0

qn
� C0

vP

qp0

qg
ð71Þ

The improved velocities at the main node are expressed as

uP ¼ u�p þ u0P ð72Þ

vP ¼ v�p þ v0P ð73Þ

The intermediate contravariant velocities at the main node are

UP ¼ u�
qy

qg
� v�

qx

qg

� �
P

ð74Þ

VP ¼ v�
qx

qn
� u�

qy

qn

� �
P

ð75Þ

The corresponding contravariant velocity corrections at the main node are

U 0P ¼ u0
qy

qg
� v0

qx

qg

� �
P

ð76Þ

V 0P ¼ v0
qx

qn
� u0

qy

qn

� �
P

ð77Þ

Equations (70) and (71) are substituted into Eqs. (76) and (77):

U 0P ¼ ð�ygB0
uP þ xgB0

vPÞp0n þ ð�ygC0
uP þ xgC0

vPÞp0g ð78Þ

V 0P ¼ ð�xnC0
vP þ ynC0

uPÞp0g þ ð�xnB0
vP þ ynB0

uPÞp0n ð79Þ
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To obtain the pressure-correction equation of a five-point computational molecule,
the p0g in Eq. (78) and the p0n term in Eq. (79) are omitted, so the final contravariant
velocity corrections at the main node are expressed as

U 0P ¼ ð�ygB0
uP þ xgB0

vPÞp0n ð80Þ

V 0P ¼ ð�xnC0
vP þ ynC0

uPÞp0g ð81Þ

By mimicking Eqs. (80) and (81), the interface contravariant velocity components are
obtained as

U 0e ¼ �B0u
fe p0n ð82Þ

V 0n ¼ �C0v
fn p0g ð83Þ

where the coefficients of B0u
fe and C0v

fn are calculated by Eqs. (53a) and (54b). With the
pressure-correction term, the improved interface contravariant velocities can be
expressed as

Ue ¼ U�e � B0u
f

qp0

qn

� �
e

ð84Þ

Vn ¼ V �n � C0v
f

qp0

qg

� �
n

ð85Þ

Equations (84) and (85) are substituted into the continuity equation, and the press-
ure-correction equation in the correction step is thus obtained.

A0
Pp0p ¼

X
A0

nbp0nb þ b ð86Þ

The coefficients AP, AE , AW , AN , and AS are determined by Eqs. (60)–(62), and the
term b is calculated based on the intermediate interface contravariant velocity,

b ¼ ðq Dg U�f Þ
��w
e
þ ðq Dn V�f Þ

��s
n

ð87Þ

CALCULATION PROCEDURE FOR SIMPLERM ALGORITHM

The calculation procedure for the SIMPLERM algorithm can be expressed as
follows.

1. Assume the initial velocity field u0
P, v0

P, U0
f , V 0

f .
2. Based on the interface contravariant velocity and the Cartesian velocity at the

main nodes, calculate the coefficient of the momentum equation and interface
pseudo-contravariant velocities cU0

eU0
e by Eq. (55) and cV 0

nV 0
n by Eq. (56).

3. Calculate the related coefficients of the pressure equation, B0u
fe by Eq. (53a) and

C0v
fn by Eq. (54b).

4. Solve the pressure equation (64) and obtain the pressure field p�.
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5. Calculate the source term of the momentum equation by Eqs. (14) and (15) on p�

and solve the momentum equations to obtain the intermediate velocities u�P
and v�P.

6. Calculate the intermediate contravariant velocities, U�e by Eq. (68) and V �n by
Eq. (69).

7. Solve the pressure-correction equation, Eq. (86), to obtain the pressure-
correction term p0.

8. Obtain the improved interface contravariant velocities, Ue by Eq. (84) and Vn by
Eq. (85), and the Cartesian velocities at the main node, uP by Eq. (72) and vP by
Eq. (73).

9. Calculate the coefficients of other general variable if coupled with velocities and
solve the discretized equations.

10. Return to step 2 and repeat until convergence is reached.

To sum up, in the proposed algorithm the contravariant velocity components
are taken as the cell face velocities, and this guarantees satisfaction of the conser-
vation laws. The 1� d pressure difference introduced in steps (6) and (7) can effec-
tively prevent pressure field oscillation. The underrelaxation factor is combined into
the calculation procedure, which improves robustness while not affecting the final
converged solution. Finally, the additional pressure-correction term is avoided,
and the mass conservation law can be satisfied with sufficient accuracy.

TEST PROBLEMS AND RESULTS

In order to test the feasibility of the proposed SIMPLERM algorithm when the
grid is strongly nonorthogonal, the flow in a cavity with a moving lid and inclined
side walls proposed by Demirdzic and Peric [17] is solved. Two typical inclinations
with b ¼ 30� and 45� are tested separately for comparison. Peric [18] pointed out that
if the nonorthogonal term is omitted in the derivation of the pressure-correction
equation, the algorithm became inefficient when the angles between grid lines
approach 45�, and it usually fails to converge when the angles fall below 30�. So
in the calculation for these two typical cases in [17], the cross-derivatives resulting
from nonorthogonality are treated implicitly, leading to the pressure correction
being a nine-point computational molecule for 2-D problem. In the SIMPLERM
algorithm of this study, the nonorthogonal term is also dropped to gain a five-point
pressure-correction equation. By using an appropriate prediction step and underre-
laxation factor, the SIMPLERM algorithm shows good performance for these two
typical cases.

The geometry and boundary condition are displayed in Figure 3. The govern-
ing equations are omitted for simplification of presentation. Computation is conduc-
ted with Re ¼ 1,000, and the adopted mesh is 103� 103. The Reynolds number is
defined as

Re ¼ q � uL � L
g

ð88Þ
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The meshes are generated with the Poisson equation [16], and are represented
in Figure 4 for b ¼ 45� and 30�. To demonstrate the effectiveness of SIMPLERM to
overcome the shortcoming of nonsatisfaction of local mass conservation, four mass
and momentum residuals are defined. The first is the maximum mass residue of
control volumes, called RSmax 1, in which the interface contravariant velocity does
not include the smoothing term. The second residual is the maximum mass residue
of control volumes, called RSmax 2, in which the interface contravariant velocity is
added by the smoothing term. The last two residuals are the maximum momentum
equation residuals for u and v, called RSu and RSv, respectively. The expressions of
the above four residuals are

Figure 3. Computation domain and boundary conditions.

Figure 4. Generated grid distribution.
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RSmax 1 ¼ ðqDg U�f Þ
��w
e
þ ðq Dn V �f Þ

��s
n

h i
max

ð89Þ

RSmax 2 ¼ ðqDg U�f Þ
��w
e
þ ðq Dn V �f Þ

��s
n

h i
max

ð90Þ

Rsu ¼
X

NEWS

A�uP

au
uP �

X
A�unbunb � Bu

P

qp�

qn
� Cu

P

qp�

qg

��(
þ bu þ 1� au

au
A�uP u�P

��2
)1=2

max

ð91Þ

Rsv ¼
X

NEWS

A�vP

av
vP �

X
A�vnbvnb � Bv

P

qp�

qn
� Cv

P

qp�

qg

��(
þ bv þ 1� au

au
A�uP v�P

��2
)1=2

max

ð92Þ

In Eqs. (89) and (90), U�f and V�f are calculated from Eqs. (25) and (26), respectively,
and U�f and V �f are obtained with Eqs. (27) and (28), respectively, which occur in the
source terms of the pressure equations. Figures 5 and 6 show the convergence histor-
ies for the solution procedures using SIMPLE and SIMPLERM, respectively. In
Figure 5, the two maximum mass residuals and two momentum equation residuals
obtained by using SIMPLE algorithm for b ¼ 45� and 30� are presented. It can be
found that the two residuals of the momentum equations and RSmax 2 are driven
to zero with iteration; however, the real residue of continuity equation RSmax 1

remains at a certain level of about 4� 10�4. The predicted tendency shown in
Figure 5 indicates that the integral form of the continuity equation is not actually
satisfied because of the existence of the correction term added to the interface contra-
variant velocities. As a result, the interface contravariant velocities are no longer
exactly equal to the real ones in the local mass conservation, which leads to the result

Figure 5. Residuals variation of SIMPLE algorithm with different inclined walls.
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that the solved pressure-correction equation is not the discretized continuity equa-
tion but rather an approximate form.

For the SIMPLERM algorithm, the mass residue RSmax is defined as

RSmax ¼ ðq Dg U�f Þ
��w
e
þ ðqDn V�f Þ

��s
n

ð93Þ

In Eq. (93), U�f and V �f are calculated by Eqs. (68) and (69), in which no additional
term is introduced. The variation tendency of the residues RSmax 2, RSu, and RSv are
displayed in Figure 6 for the two inclined wall angles. It is shown that all the residues
decrease to zero with iteration, which implies that satisfaction of the continuity equa-
tion is fully realized.

It is specially noted that when the grid nonorthogonality is significant (the wall
inclined angle is 30�), the unsteady convergence histories described in [12] do not
occurs in the present study.

The stream function results of the SIMPLERM algorithm and [17] are pre-
sented in Figures 7 and 8 for two inclined cases. It can be seen that the two results
are in good agreement. The numerical results further confirm the prediction accuracy
of SIMPLERM.

In order to evaluate the robustness of the SIMPLERM algorithm in a wide
range, the time-step multiple, E, instead of the underrelaxation factor, is used, which
is related to the underrelaxation factor a by Eq. (94) [19]:

E ¼ a
1� a

ð0 < a < 1Þ ð94Þ

Some correspondence between a and E is presented in Table 2. The calculation
is conducted with the SIMPLERM algorithm for Re ¼ 1,000. The convergence
criterion is that the nondimensional mass residual RSmax is less than 5:0� 10�8.
Figure 9 shows the relation of iteration number and E. It can be seen that a con-
verged solution can be reached for underrelaxation factor varying from 0.1 to 0.5.

Figure 6. Residuals variation of SIMPLERM algorithm with different inclined walls.
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Figure 7. Stream function comparison with b ¼ 45�.

Figure 8. Stream function comparison with b ¼ 30�.
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Table 2. Some correspondence between a and E

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

E 0.111 0.25 0.428 0.66 1 1.5 2.33 4 9 19

Figure 9. Variation of iteration number with E.
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The robustness can be seen to be quite good with the pressure-correction equation of
a five-point computational molecule.

To examine the capability of the SIMPLERM algorithm for the coupling
between velocity and pressure, the predicted pressure profiles along section CL2
are shown in Figure 10 for b ¼ 45� and 30� for the underrelaxation factor 0.1.
The reference pressure point is the center of the left side wall. It can be obviously
observed that no zigzag pressure field is predicted. This result shows that the SIM-
PLEM algorithm can damp out the false pressure field successfully.

Figure 10. Pressure profile along section CL2.

64 Z. G. QU ET AL.

D
ow

nl
oa

de
d 

by
 [

X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 0
3:

52
 1

5 
M

ar
ch

 2
01

2 



To investigate the effect of the underrelaxation factor on the converged sol-
ution, typical values of velocities u and v in locations in section CL1 with y coordi-
nate 0:45

ffiffiffi
2
p

L under various underrelaxation factors are shown in Tables 3 and 4 for
the two angles, respectively. It is obvious that the converged velocity solution is inde-
pendent of the underrelaxation factor.

CONCLUSIONS

In this article, a modified algorithm named SIMPLERM is proposed to predict
incompressible fluid flow and heat transfer on nonstaggered collocated grids. In the
SIMPLERM algorithm, the contravariant velocity is chosen as cellface velocity and
the underrelaxation factor is fully combined into the momentum interpolation on
condition that the underrelaxation factors for u momentum and v momentum are
identical but not equal to 1. The robustness of the algorithm is greatly improved.
In the calculation of interface contravariant velocity, the SIMPLERM algorithm
completely avoids the additional correction term and the prediction step is intro-
duced to improve the convergence stability and robustness of the algorithm. Two
typical numerical examples in nonorthogonal curvilinear coordinates are studied
to confirm the feasibility of the SIMPLEM algorithm in terms of prediction
accuracy, robustness, and stability.
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