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Abstract

Purpose – To provide an improved version of SIMPLER algorithm which can enhance the convergence
rate of the iterative solution procedure in the field of computational fluid dynamics analysis.

Design/methodology/approach – The improved version of SIMPLER algorithm is developed by
modifying the coefficients of the velocity correction equation and implementing the correction of
pressure within an iteration cycle.

Findings – The CSIMPLER algorithm (the improved version) can enhance the convergence rate for
almost all cases tested, especially for the low under-relaxation factor situations. The pressure
correction term even can be overrelaxed to further enhance the convergence rate.

Research limitations/implications – The CSIMPLER algorithm can enhance the rate of
convergence to different degree for different problems. It can only be adopted to solve the
incompressible fluid flow and heat transfer.

Practical implications – CSIMPLER is a simple and effectual method to enhance the convergence
rate of the iterative process for the computational fluid dynamics analysis. The existing code of
SIMPLER can be easily changed to CSIMPLER.

Originality/value – The paper developed an improved version of SIMPLER algorithm with some
minor changes in the existing SIMPLER code.

Keywords Programming and algorithm theory, Flow, Heat transfer, Fluid dynamics, Numerical analysis

Paper type Research paper

Nomenclature
aP, aE, aW, aN, aS ¼ coefficients in the

discretized equation
A ¼ surface area
b ¼ constant term in the

discretized equation

de, dn ¼ coefficients in the
velocity correction
equation

E ¼ time step multiple
p ¼ pressure
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p * ¼ temporary pressure
p0 ¼ pressure correction
qm ¼ reference mass flow rate
Rmax ¼ maximum of absolute

values of the mass flow
rate residuals

Rsum ¼ total mass flow rate
residuals of entire
domain

Smax ¼ relative maximum of
absolute values of the
mass flow rate residuals

Ssum ¼ relative total mass flow
rate residuals of entire
domain

Sf ¼ source term
u,v ¼ velocity component in x,

y direction

u0,v0 ¼ velocity correction
û; v̂ ¼ pseudovelocity
x, y ¼ coordinates
a ¼ under-relaxation factor
dx, dy ¼ distance between two

adjacent grid points in
x and y direction

Dx, Dy ¼ control volume width in
x, and y direction

f ¼ general variable
r ¼ fluid density
G ¼ nominal diffusion

coefficient
n ¼ fluid kinetic viscosity

Subscripts
e, n ¼ east, north interface
nb ¼ neighboring grid points

Introduction
In the numerical solution of incompressible fluid flow and heat transfer problems, the
pressure-correction approach is the most popular method used in CFD/NHT
community. The first pressure-correction algorithm was the SIMPLE proposed by
Patankar and Spalding (1972). The acronym SIMPLE stands for semi-implicit method
for the pressure-linked equation. The major approximations made in the SIMPLE
algorithm are (Tao, 2001):

. The initial pressure field and the initial velocity fields are independently
assumed, hence the inherent interconnection between pressure and velocities are
neglected, leading to some inconsistency between them.

. The effects of the pressure corrections of the neighboring grids are arbitrary
dropped in order to simplify the solution procedure, thus make the algorithm
semi-implicit.

These assumptions will not affect the final solutions if the iterative process converges
(Tao, 2001; Patankar, 1980). However, they do affect the convergence rate. As described
in Shyy and Mittal (1998), the great simplicity of the SIMPLE algorithm comes from
the neglecting the terms that couples neighboring velocity values in the equation for
the velocity correction. However, this can also cause slow convergence of the SIMPLE
algorithm and it has been found this neglect tends to overpredict the pressure
correction and underrelaxation for the pressure correction has to be resorted to in order
to stabilize the iterative procedure. Therefore, since the propose of the SIMPLE
algorithm, a number of its variants were proposed in order to overcome one or both of
the approximations (Patankar, 1981; van Doormaal and Raithby, 1984, 1985; Raithby
and Schneider, 1988; Issa, 1985; Connell and Stow, 1986; Chatwani and Turan, 1991;
Lee and Tzong, 1992; Yen and Liu, 1993; Sheng et al., 1998; Yu et al., 2001; Gjesdal and
Lossius, 1997; Wen and Ingham, 1993).

The SIMPLER algorithm (Patankar, 1981) successfully overcome the first
approximation, and is widely used in the current CFD/NHT community. Even
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though there are more than ten variants of the SIMPLE-like algorithm, the second
approximation, i.e. the drop of the neighboring grid effects, have not been successfully
resolved so far and many attempts have been made to resolve the problem. In 1984, van
Doormaal and Raithby (1984) proposed the SIMPLEC algorithm, in which by changing
the definition of the coefficients of the velocity correction equation the effects of this
drop is partially compensated. In the algorithm SIMPLEX (van Doormaal and Raithby,
1985; Raithby and Schneider, 1988), by solving a set of algebraic equation for the
coefficients in the velocity correction equations, the effects of dropping the neighboring
grids are also taken into account in some degree. In 1985, the PISO method is proposed
by Issa (1985) to implement two or more correction steps of pressure correction. In 1986
Connell and Stow (1986) proposed two variants of pressure correction process.
Chatwani and Turan (1991) proposed a pressure-velocity coupling algorithm in 1991 to
determine the under-relaxation factor in the pressure correction equation based on the
minimization of the global mass residual norm. In 1992, Lee and Tzong (1992)
introduced an artificial source term into the pressure-linked equation to improve the
convergence performance. In 1993, Yen and Liu (1993) proposed the explicit correction
step method to accelerate the convergence by making the velocity explicitly satisfy the
momentum equation. For buoyancy driven fluid flows Sheng et al. (1998) introduced a
temperature correction into the velocity correction equation. In 2001, Yu et al.(2001)
modified the SIMPLER algorithm by artificially changing the under-relaxation term to
match the variable to be solved. The revised method was called MSIMPLER. All the
above-mentioned algorithms and some others not mentioned above (for example,
SIMPLESSEC, SIMPLESSE of Gjesdal and Lossius (1997), and the method proposed in
Wen and Ingham (1993) are usually called SIMPLE-like or SIMPLE-family algorithm.
The character common to all these algorithms is that a pressure correction term is
introduced to the segregated solution process to improve the velocity and the effects of
the pressure corrections of the neighboring grid points are neglected. Recently,
Moukalled and Darwish (2000) made a comprehensive review and reorganization of the
express format for all the pressure correction algorithms. It can be seen that the
SIMPLER algorithm successfully overcomes the first approximation, while almost all
other variants of the SIMPLE algorithm concentrate on overcoming the second
approximation. There seems no such attempt in the literature to combine the SIMPLER
algorithm and one of the other variants so that the effects of both of the two
approximations can be alleviated in a better degree in one algorithm.

In the present work, the idea of SIMPLEC is incorporated into the SIMPLER
algorithm to overcome the second approximation in some extent. The revised algorithm
is called consistent-SIMPLER (CSIMPLER) hereafter. Numerical experiments showed
that CSIMPLER can generally accelerate the rate of convergence, especially for natural
convection and the cases with low under-relaxation factor.

Mathematical formulation
In the following, the major steps in the algorithm SIMPLER and SIMPLEC are briefly
reviewed, and then the idea of CSIMPLER is presented.

Brief review of the SIMPLER algorithm
In all cases considered, the flow was assumed to be Newtonian, laminar and
two-dimensional. Viscous dissipation is omitted. All thermophysical properties except
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density are presumed constant. The Boussinesq approximation is used for natural
convection problem. In Cartesian coordinates, the governing equations are as follows:

Mass:

›ðruÞ

›x
þ

›ðrvÞ

›y
¼ 0 ð1Þ

Momentum:

›ðruuÞ

›x
þ

›ðrvuÞ

›y
¼ 2

›p

›x
þ m

›2u

›x 2
þ

›2u

›y 2

� �
ð2Þ

›ðruvÞ

›x
þ

›ðrvvÞ

›y
¼ 2

›p

›y
þ m

›2v

›x 2
þ

›2v

›y 2

� �
ð3Þ

Discretizing the governing equations by the finite volume method (Tao, 2001;
Moukalled and Darwish, 2000) on a staggered grid system (Figure 1), we have

aPFP ¼
X

anbFnb þ b ð4Þ

where F is the general valuable standing for u and v, the subscripts P and nb refer to
the gird point P and its neighboring grids, respectively, ap is the coefficient for the main
grid point, anb’s are the coefficients of neighboring grid points and b is the source term.

For the discretized momentum equations separating the pressure gradient term
from the b-term and replace the general valuable by u or v, we have:

Figure 1.
Control volumes in 2D
Cartesian coordinates
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aeue ¼
X

anbunb þ ð pP 2 pE ÞAe þ b ð5aÞ

anvn ¼
X

anbvnb þ ð pP 2 pN ÞAn þ b ð5bÞ

The discretized pressure equation is deduced from the momentum equations and the
continuity equation and can be expressed as

aPpP ¼
X

anbpnb þ bP ð6Þ

For details, references (Tao, 2001; Patankar, 1980) can be consulted.
By solving equations (5a) and (5b), we can obtained the intermediate solutions,

symbolized by u* and v* which need to be improved such that the improved velocities
can satisfy the mass conservation condition for each control volume.

By introducing a pressure correction term, p0, and the corresponding velocity
correction terms u0 and v0, the improved velocities can be expressed by

u ¼ u* þ u0 ð7aÞ

v ¼ v* þ v0 ð7bÞ

These improved velocities are required to satisfy the continuity condition.
The equations for the velocity correction terms, u0, v0, can be derived by some

substitution and rearrangement (Tao, 2001; Patankar, 1980), and take the following
form:

aeu
0
e ¼

X
anbu0

nb þ ð p0P 2 p0EÞAe ð8aÞ

anv0n ¼
X

anbv0nb þ ð p0P 2 p0N ÞAn ð8bÞ

At this point an approximation, i.e. the second approximation in the SIMPLE algorithm
mentioned above, is introduced: dropping the terms

P
anbu0

nb and
P

anbv0nb in the
above equations to simplify the expressions. Then we obtain

u0
e ¼ deð p0P 2 p0EÞ; v0e ¼ dnð p0P 2 p0N Þ ð9aÞ

where de, dn are defined as

de ¼
Ae

ae
; dn ¼

An

an
ð9bÞ

Then the improved velocities are rewritten as follows:

ue ¼ u*e þ de p0P 2 p0E
� �

ð10aÞ

vn ¼ v*n þ dn p0P 2 p0N
� �

ð10bÞ

Substitution of the improved velocities of equations (10a) and (10b) into continuity
equation, the equation for the pressure correction term is then derived
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aPp0P ¼
X

anb p0nb þ b ð11aÞ

where

b ¼ ðru*AÞw 2 ðru*AÞe þ ðrv*AÞs 2 ðrv*AÞn ð11bÞ

In equation (11b) the coefficients are the same as those in the equation (6) except the
b-term, where the velocities take the values of the previous iteration, rather than the
intermediate solutions.

The solution procedure of the SIMPLER algorithm is as follows:
. guess a initial velocity field u 0, v 0;
. calculate the coefficients of the discretized momentum equations and the

pseudo-velocities û and v̂ by following equations:

û ¼

P
anbu0

nb þ b

ae
; v̂ ¼

P
anbv0

nb þ b

an

. solve pressure equation to get p *;

. solve the discretized momentum equations with p* to get u* and v*;

. solve the pressure correction equation to get p0;

. correct the velocities by equations (7a) and (7b);

. solve the discretized equations for other scalar variables if necessary; and

. return to step 2 until convergence condition is satisfied.

It is to be noted that in the SIMPLER algorithm, the pressure correction term is only
used to correct the velocities, but not used to correct the pressure. The pressure
correction values are overpredicted by solving equation (11a), because the effects of the
velocity corrections at neighboring grid points are totally neglected. The obtained
pressure correction values are appropriate to correct the velocities, but not to pressure
values.

Since the discretized equations are all solved by iterative method, the solutions of
velocities of the current iteration are based on the coefficients and source term
determined by the solutions of the last iteration. In particular, the pressure field is
solved according to the velocities of the previous iteration, and it is in this aspect that
the solved velocity field and the pressure field are not consistent. It is the authors’
consideration that the pressure filed may be further revised within the iteration that the
consistency between the two fields can be refined.

Review of the SIMPLEC method
Subtracting the two sides of equations (8a) and (8b) by

P
anbu0

e;
P

anbv0n; respectively,
we have:

ðae 2
X

anbÞu
0
e ¼

X
anbðu

0
nb 2 u0

eÞ þ ð p0P 2 p0E ÞAe ð12aÞ
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ðan 2
X

anbÞv
0
n ¼

X
anbðv

0
nb 2 v0nÞ þ ð p0P 2 p0N ÞAn ð12bÞ

Now dropping the first term of the right hand side of the above two equations, we
obtain the following velocity correction equations:

u0
e ¼ d0

eð p0P 2 p0EÞ; v0e ¼ d0
nð p0P 2 p0N Þ ð13aÞ

where

d0
e ¼

An

ae 2
P

anb

� � ; d0
n ¼

An

an 2
P

anb

� � ð13bÞ

Obviously the drop of the first term at the right hand side of equations (12a) and (12b)
have less effect than that of dropping the corresponding term in equations (8a) and (8b).
This means that the SIMPLEC algorithm alleviates in some degree the effect of the
second approximation in the SIMPLE algorithm.

The pressure correction equation in the SIMPLEC algorithm is the same as that in
the SIMPLE algorithm except that the d-terms are calculated from equation (13b). The
solution procedure of the SIMPLEC algorithm is identical to that of SIMPLE (Tao,
2001; Patankar, 1980).

Presentation of the CSIMPLER algorithm
Now we incorporate the major idea of the SIMPLEC algorithm into the SIMPLER
algorithms as follows:

. the pressure correction equation of the SIMPLEC is adopted in the SIMPLER
algorithm, i.e. the d-terms are calculated from equation (13b);

. the pressure is also corrected after the pressure correction equation is solved:

p ¼ p* þ app0 ð14Þ

where ap is the relaxation factor for the pressure correction. When ap , 1, it is
underrelaxation of the pressure correction, while ap . 1 implies the overrelaxation.
Our practices have shown that overrelaxation of the pressure correction term is often
useful for the acceleration of the convergence procedure which will be discussed later.

By adopting above two treatments into SIMPLER algorithm and keeping the
solution procedures the same, the resulting solution algorithm is called consistent
SIMPLER, simplified by CSIMPLER.

We consider that the introduction of the pressure correction term into the present
pressure will improve the coupling between velocity and pressure, hence, may
accelerate the convergence of the iterative process. It is to be noted that for any existing
code based on the SIMPLER algorithm the implementation of the CSIMPLER
algorithm is very simple and easy.
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Numerical comparisons of CSIMPLER and SIMPLER
Comparison conditions
The performance of CSIMPLER and SIMPLER algorithm is compared for seven
different problems of fluid flow and heat transfer. In order to make a meaningful
comparison between SIMPLER and CSIMPLER, the numerical treatments of all other
aspects should be the same. These includes:

. Discretization scheme. For the stability of solution procedure and the simplicity
of implementation, the absolutely stable scheme, power-law scheme (Tao, 2001),
is adopted.

. Solution method of the algebraic equations. The algebraic equations are solved by
the alternative direction implicit method (ADI) incorporated by the
block-correction technique (Moukalled and Darwish, 2000).

. Under-relaxation factor. For both the SIMPLER and CSIMPLER algorithm, the
same value is adopted for the under-relaxation factor a. For the convenience of
presentation, the time step multiple, E, is used in the following presentation,
which relates to the under-relaxation factor a by equation (15) (van Doormaal
and Raithby, 1984):

E ¼
a

1 2 a
ð0 , a , 1Þ ð15Þ

Some correspondence between a and E is presented in Table I. It can be seen that
with the time step multiple, we have a much wider range to show the
performance of the algorithm in the high value region of the under-relaxation
factor.

. Convergence criterion. The convergence criterion is adopted as follows:

Ssum ¼
Rsum

qm
# 1; Smax ¼

Rmax

qm
# 1 ð16Þ

where Rsum is the sum of the mass flow rate residuals of all the internal control
volumes, Rmax is the maximum of absolute values of the mass flow rate
residuals, qm is a reference flow rate. For the seven examples tested the value of 1
is taken as 5 £ 1028:

For an open system with inlet and outlet boundaries, qm is the inlet mass flow
rate. For a close system, it is given by

qm ¼

Z b

a

rjujdy ð17Þ

where a, b stand for the bottom and top of any section of the system (Figure 2(a)).

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
E 0.111 0.25 0.428 0.66 1 1.5 2.33 4 9 19

Table I.
Some correspondence
between a and E
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. Grid system. Grid system character is specified individually. For each problem
the same grid system is used for the two algorithms.

The SIMPLER and CSIMPLER algorithms are applied to seven two dimensional
problems of fluid flow and heat transfer. They are:

(1) lid-driven flow in a square cavity;

(2) flow in a tube with sudden expansion;

(3) natural convection in a square cavity;

(4) natural convection in a horizontal annulus;

(5) natural convection in a vertical annulus;

(6) nature convection in a square cavity with an internal isolated plate; and

(7) natural convection in a horizontal annulus with a slotted inner cylinder.

These seven problems cover the three 2D orthogonal coordinates. For saving space, the
governing equations of each problem are omitted. For all the seven examples,
numerical or experimental results are available in the literatures. Our computational
results using the CSIMPLER and SIMPLER are almost identical and agree with the
available results. For simplicity, in the following the comparisons with the available

Figure 2.
Lid-driven flow in a

square cavity
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data are omitted, and only some results (stream-line pattern or isothermal contour
pattern) and the iteration numbers for obtaining converged solutions are presented.
Since in the CSIMPLER algorithm the extra computational effort for execution of one
iteration is only spent for the explicit computation of the d-coefficients and the pressure
correction, the saving in computational time is almost the same as the saving in the
iteration numbers.

Comparison examples
The lid-driven cavity flow. The simulations are carried out for Reynolds number of 103

with two different uniform grid systems. The predicted streamlines are shown in
Figure 2(b) and the iteration numbers required for convergence are listed in Table II. It
can be seen that in a wide rage of the under-relaxation factor, the CSIMPLER algorithm
has a faster convergence rate, especially for the cases with low values of the
under-relaxation factor (Ghie et al., 1982) (Figure 2(a)).

Flow in a tube with a sudden expansion. The simulations are conducted for Re ¼ 103

with two different grid systems. The simulated flow pattern is shown in Figure 3(b)
and the iteration numbers are compared and listed in Table III. It can be observed that
for this case, CSIMPLER does not offer benefit, however, the convergence rate of the

E 0.25 0.5 1 3 5 7 9 11 15
a 0.200 0.333 0.500 0.750 0.833 0.875 0.900 0.917 0.938

Re ¼ 103; 42 £ 42 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 1,670 1,040 612 237 140 134 120 114 619
CSIMPLER 1,466 947 574 230 140 126 119 142 Div

Re ¼ 103; 102 £ 102 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 5,019 3,218 2,071 899 646 427 378 353 Div
CSIMPLER 4,530 2,856 1,890 867 561 401 358 Div Div

Table II.
Required iteration
numbers for case 1

Figure 3.
Flow in a tube with a
sudden expansion
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CSIMPLER is not worse than that of the SIMPLER algorithm (Macagno and Hung,
1967) (Figure 3(a)).

Natural convection in a square cavity. The computations are conducted for Pr ¼ 0.7
and Ra ¼ 104 with two different systems. Ra number is defined as Ra ¼
r 2gbDTL 3Pr=h 2: Figure 4(b) and (c) show the streamlines and the isothermals.
Table IV lists the iteration numbers for CSIMPLER and SIMPLER algorithms.
Obviously, the CSIMPLER can enhance the convergence rate (Barakos and Mitsoulis,
1994) (Figure 4(a)).

Natural convection in a horizontal annulus. The computations are carried out for
Ra ¼ 104 with two different grid systems. In Figure 5(b) and (c) the predicted
streamlines and isothermal are provided. The required iteration numbers are listed in
Table V (Kuehn and Goldstein, 1969) (Figure 5(a)).

Natural convection in a vertical cylinder annulus. The computations are carried out
for Ra ¼ 104 and Pr ¼ 0.7 with two different grid systems. Figure 6(b) and (c) show the
streamline and isothermal distribution patterns for Ra ¼ 104. Table VI presents the
required iteration numbers for the CSIMPLER and SIMPLER methods. For the cases
with low values of under-relaxation factor, the CSIMPLER has some benefit
(Eisherbiny, 1983) (Figure 6(a)).

Natural convection in a square enclosure with an internal isolated vertical plate. The
inner plate and the bounding wall of the enclosure are maintained at uniform but
different temperatures. The computations are carried out for Ra ¼ 104 and 106 and
Pr ¼ 0.7 with two respective grid systems. The predicted fields for Ra ¼ 104 are
shown in Figure 7(b) and (c), which agree with (Wang et al., 1994) very well. The
required iteration numbers for CSIMPLER and SIMPLER are compared in Table VII
(Wang et al., 1994) (Figure 7(a)).

Natural convection in horizontal annulus with a slotted inner cylinder. As shown in
Figure 8(a), the inside and outside walls have constant but different temperatures. The
computations are carried out for Ra ¼ 105 and 106 (Pr ¼ 0.7) with two different grid
systems. The predicted results for Ra ¼ 105 are shown in Figure 8(b) and (c). Table VIII
compared the required iteration numbers for the CSIMPLER and SIMPLER methods
(Yang and Tao, 1992) (Figure 8(a)).

Discussion on the comparison results
The above comparison results display the following features.

. For almost all cases considered under different conditions and with different
coordinates systems, the iteration numbers using CSIMPLER algorithm are less

E 0.25 0.5 1 3 5 7 9 11 15
a 0.200 0.333 0.500 0.750 0.833 0.875 0.900 0.917 0.938

Re ¼ 103; 32 £ 22 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 450 257 162 99 99 96 97 94 101
CSIMPLER 449 257 162 99 99 96 94 93 98

Re ¼ 103; 62 £ 42 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 1,460 834 510 185 150 127 Div Div Div
CSIMPLER 1,442 826 506 185 152 Div Div Div Div

Table III.
Required iteration

numbers for case 2

A simple method
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E 0.25 0.5 1 3 5 7 9 11 15
a 0.200 0.333 0.500 0.750 0.833 0.875 0.900 0.917 0.938

Ra ¼ 104; 32 £ 32 meshes; Ssum # 5 £ 1028 and S max # 5 £ 1028

SIMPLER 3,752 2,460 1,498 625 407 305 246 207 158
CSIMPLER 3,296 2,260 1,420 611 401 302 244 205 157

Ra ¼ 104; 62 £ 62 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 8,924 6,674 4,394 1,908 1,286 971 660 505 376
CSIMPLER 5,791 5,725 4,025 1,879 1,257 950 653 501 374

Table IV.
Required iteration
numbers for case 3

Figure 4.
Natural convection in a
square cavity (Ra ¼ 104,
Pr ¼ 0.7)
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Figure 5.
Natural convection in a

horizontal annulus
(Ra ¼ 104, Pr ¼ 0.7)

E 0.25 0.5 1 3 5 7 9 11 15
a 0.200 0.333 0.500 0.750 0.833 0.875 0.900 0.917 0.938

Ra ¼ 104; 32 £ 32 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 2,514 1,721 1,076 463 306 232 228 Div Div
CSIMPLER 2,155 1,572 1,020 454 302 230 Div Div Div

Ra ¼ 104; 62 £ 62 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 2,471 2,986 2,346 1,177 805 621 Div Div Div
CSIMPLER 2,181 1,790 2,054 1,130 787 611 Div Div Div

Table V.
Required iteration

numbers for case 4

A simple method
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than or at worst equal to those using SIMPLER. To different problems,
CSIMPLER can enhance the rate of convergence to different degree.

. When the value of the under-relaxation factor is lower, the enhancement of the
CSIMPLER is more appreciable. With the increase in the under-relaxation factor,
however, its enhancement function gradually disappears. It should be noted that
the larger under-relaxation factor (larger than 0.9) is seldom used in the
computation for actual engineering problem and the factor less than 0.5 is often

Figure 6.
Natural convection in a
vertical annulus
(Ra ¼ 104, Pr ¼ 0.7)
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used in the cases of strongly coupled problems and it is for such cases that
acceleration of the convergence rate is especially desired. Therefore those
numerical methods which show benefits at the low under-relaxation factor do
make sense for engineering computations.

. The robustness of CSIMPLER algorithm is seemingly a bit worse than that of the
SIMPLER algorithm in that for some examples, at the very high value region of
the under-relaxation factor, usually larger than 0.9 or more, CSIMPLER may lead
to diverge while SIMPLER can still get converged solution.

But this would not affect the application of the CSIMPLER algorithm. Apart from the
reason mentioned above, this is because of following two factors. First, as it can be seen
from Tables V and VIII, this situation usually occurs at the relatively coarse grid;
second, the difference between the variation ranges of the under-relaxation factor
within which the converged solution can be obtained is quite small.

Finally attention is turned to the relaxation of the pressure correction term. From
our practices the pressure correction term can even be overrelaxed, i.e. the value of apin
equation (14) can be larger than 1. Numerical tests have been performed and the results
are presented in Table IX for comparison. It can be seen that for all the cases tested the
overrelaxation of pressure correction is of advantage to enhance the rate of solution
convergence, and the larger relaxation factor the more advantage. To give a precise
description of the overrelaxation of the pressure correction term, following two facts
should be added. First, the robustness of the algorithm will be a bit deteriorated while
overrelaxation of the pressure correction is adopted; second, too large value of the
over-relaxation factor may lead to divergence of the solution procedure. Our practices
show that the relaxation factor larger than 5 may lead to such an outcome, although the
accurate value is problem dependent.

Conclusion
The CSIMPLER algorithm is proposed based on the SIMPLER algorithm by modifying
the coefficients of the velocity correction and pressure correction equations and
correcting pressure by the pressure correction term. Seven numerical examples show
that the CSIMPLER algorithm can enhance the convergence rate for almost all cases
tested and especially appreciable when the under-relaxation factor is low. The
robustness of the CSIMPLER is nearly as good as that of SIMPLER algorithm. For the
seven examples tested, the pressure correction term even can be overrelaxed to further
enhance the convergence. The adoption of the CSIMPLER algorithm for any existing
code based on the SIMPER is very simple and easy.

E 0.25 0.5 1 3 5 7 9 11 15
a 0.200 0.333 0.500 0.750 0.833 0.875 0.900 0.917 0.938

Ra ¼ 104; 32 £ 32 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 2,515 1,705 1,063 455 299 226 183 154 119
CSIMPLER 2,261 1,588 1,016 446 295 224 181 153 468

Ra ¼ 104; 62 £ 62 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 3,631 4,121 2,863 1,321 887 676 550 465 Div
CSIMPLER 3,239 3,373 2,608 1,272 865 664 542 460 Div

Table VI.
Required iteration

numbers for case 5

A simple method
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Figure 7.
Natural convection in a
square cavity with an
internal isolated plate
(Ra ¼ 104, Pr ¼ 0.7)

E 0.25 0.5 1 3 5 7 9 11 15
a 0.200 0.333 0.500 0.750 0.833 0.875 0.900 0.917 0.938

Ra ¼ 104; 42 £ 42 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 845 758 728 722 725 726 726 725 724
CSIMPLER 724 756 725 719 722 724 724 724 723

Ra ¼ 106; 82 £ 82 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 1,826 1,655 1,125 1,166 1,185 1,196 1,203 1,208 1,211
CSIMPLER 1,779 1,346 1,022 1,138 1,165 1,181 1,191 1,197 Div

Table VII.
Required iteration
numbers for case 6
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E 0.25 0.5 1 3 5 7 9 11 15
a 0.200 0.333 0.500 0.750 0.833 0.875 0.900 0.917 0.938

Ra ¼ 105; 32 £ 32 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 1,102 1,142 1,041 1,090 1,122 1,136 1,145 1,158 1,186
CSIMPLER 1,100 1,048 1,040 1,089 1,120 1,135 1,143 1,149 Div

Ra ¼ 106; 62 £ 62 meshes; Ssum # 5 £ 1028 and Smax # 5 £ 1028

SIMPLER 5,726 5,947 6,557 7,572 7,882 8,033 Div Div Div
CSIMPLER 5,080 5,791 6,424 7,497 7,833 7,997 Div Div Div

Table VIII.
Required iteration

numbers for case 7

Figure 8.
Natural convection in a

horizontal annulus with a
slotted inner cylinder

(Ra ¼ 105, Pr ¼ 0.7)

A simple method
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