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ABSTRACT  In the finite volume approach for incompressible flow and heat transfer, the 
discretization of the convection term and the treatment of the coupling between velocity and pressure 
are the two major issues affecting solution stability, accuracy and convergence rate. In this keynote 
lecture, some recent advances made in the CFD/NHT & Enhanced Heat Transfer Center of Xi’an 
Jiaotong Univerity, China, are presented and their applications in the study of heat transfer 
enhancement are also briefly summarized. 
 
ADVANCES IN THE STUDY OF STABILITY OF DISCRETIZED CONVECTIVE TERM 
 
How to Judge a Discretizatized Convective Term Stable or Conditionally Stable  The 
convective term in the convection-diffusion equation, which is a partial derivative of first-order, can 
be discretized either by finite difference method or by finite volume method. For whatever method, 
the final result is an algebraic expression relating the values of field variables at several neighboring 
grid points. A very simple but useful criterion for judging whether the scheme is absolutely stable or 
conditionally stable is proposed in [1]. If the expression contains a value from the downstream 
stream grid point, the scheme will violate the transportive property and hence must be only 
conditionally stable. To get the critical Peclet number a very simple but useful rule, called sign 
preservation rule, was proposed in [1]. By the critical Peclet number we mean the value of /u xρ δ Γ  
beyond which a numerical solution will lead to oscillating results. The implementation procedure of 
the sign preservation rule is now briefly introduced as follows. 

 
First we discretize the 1-D model equation on a unifrom grid system shown in Fig. 1 
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by an explicit finite difference form into which the examined finite difference scheme is incorporated 
for the convective term and the central difference for the diffusion term. Assume that a steady-state 
solution 0iφ =  exists for all i. Then at an arbitrary time step n a disturbance iε δ=  is introduced at 
single grid point i with 0ε = at all other grids. The effect of this disturbance is then determined by 
the finite difference equation at time step (n+1) and grid points (i± 1). In order that a finite difference 
solution be physically realistic, it is required that the sign of the resulting disturbances at grid points 
(i 1) be the same as the disturbance imposed at grid i at time step n. The sign preservation ±
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requirement sets a limit for the conditions under 
which the finite difference equation is applicable. 
Via such analysis we can reveal whether the scheme 
is absolutely stable, and if not what is its critical 
Peclet number.    
 
 

Let us perform such an analysis for TUD. The discretized equation for u>0 reads:  

 
Fig. 1  1-D uniform grid system  
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At grid point (i-1) we have 
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This leads to: 

 
∆P 3.0u xρ ∆

= ≤
Γ  

It can be shown that at grid (i+1) this requirement is automatically satisfied. 
 
By such analysis we find that FUD and SUD are absolutely stable (i.e., ) and obtain 
following critical Peclet numbers for some widely used conditionally stable schemes: 

∆crP →∞

 
CD: ;   QUICK: ;   TUD: PP 2.0∆ = P 8 / 3∆ = 3.0∆ = ;   Fromm: P  4.0∆ =
 

The Critical Peclet Number Obtained by the Existing Analysis Methods is the Most Severe 
Condition  The existing stability analysis methods for the discretization scheme of a convective 
term include (1) The positive coefficient method proposed by Patankar [2]; (2)Exact solution 
analysis method presented by Gresho and Lee[3]; (3)Feedback sensitivity analysis method proposed 
by Leonard [4] and the sign preservation rule [1]. 
 
All these analysis methods are based on the following five assumptions: (1) one dimensional 
equation; (2) linear problem, both velocity and diffusivity are known and constant; (3) first kind 
boundary condition at the two boundaries, i.e., two-point boundary value problem; (4) uniform grid 
system; (5) no variable source term. Numerical practices show that any deviation from the above 
assumptions will enhance the stability. And the critical Pectlet number resulted from the existing 
analysis methods gives us the most severe condition. For example, the critical Pectlet number of the 
central difference scheme is usually known as 2. However, we may get a non-oscillating solution 
even if the local Peclet number is as large as 180 for some practical problems [5,6].  Thus how to 
obtain the critical Peclet number of those conditionally stable schemes when applied to complicated 
multi-dimensional problems remain unresolved.  
 
An Absolutely Stable and at Least Second Order Accuracy Scheme—SGSD  It is a common 
understanding in the computational heat transfer community that the stability and accuracy of the 
discretized convective term constitute a contradicting pair [7]. For example, the first upwind scheme 
is absolutely stable with severe false diffusion, while the 2nd order or 3rd order accurate schemes such 



as CD ,QUICK and TUD are only conditionally stable. This situation has been somewhat changed 
since the introduction of SGSD scheme in [8].  
 
A new scheme called SGSD(stability guaranteed second-order difference scheme) was proposed in 
[8] which is absolutely stable and possesses at least second-order accuracy. The scheme is based on 
another scheme called SCSD(stability controllable second-order difference scheme) proposed in [9]. 
In the SCSD scheme the general variables at the interfaces e and w are defined as follows: 
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where the superscripts CD and SUD refer to the central difference and second order upwind 
difference scheme. By changing the value of β  (between 0 and 1), the critical Peclet number of the 
SCSD scheme varies from 2 (when β =1) to infinite (when β =0). It is obvious that the selection of 
β is the key issue in applying SCSD. This issue has been successfully resolved in SGSD. In the 
SGSD scheme , the value of β  is automatically determined during the computation by following 
equation: 

  (4) 
where the grid Peclet number is defined as P∆

 x
u xP δ
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The accuracy of the SGSD is obviously at least of 2nd order, and it is easy to show that when 
3/ 4β = , it possesses 3rd order accuracy. Numerical computations for the lid-driven cavity flow with 

different schemes are compared with the benchmark solutions provided in [10], and the error 
analyses are presented in Tables 1 and 2. As far as the computational time is concerned, for a uniform 
grid system, SGSD may take 20-30 % more time than CD or QUICK, while for a non-uniform grid 
system, SGSD takes less computational time than CD and QUICK. Table 3 gives the comparison for 
the lid-driven cavity flow computations. 
 

 

  



 
 

Table 3 Comparison of  computational time for lid-driven cavity flow 

 
 
It can be easily shown by the sign preservation rule that with such defined β the scheme is 
unconditionally stable. Numerical computations for flow over a backward step show that when a 
solution with QUICK scheme is oscillating (Figure 3, Figure 4), the solution with SGSD is still 
physically reasonable(Figure 2, Figure 4).  
 
The above comparison study shows that SGSD is an attractive scheme for computational heat 
transfer. 

 
Figure 2 Velocity vector using SGSD(Re=300, Er=1.5, 62×32 uniform grid) 

 
 

 
         Figure 3 Velocity vector using QUICK (Re=300, Er=1.5, 62×32 uniform grid)  
 
 

  



 
Figure 4 The u-velocity component at the first control volume surface near the bottom 

wall(Re=300, 62×32 uniform grid) 
 

ADVANCES IN THE STUDY OF BOUNDEDNESS OF  
DISCRETIZED CONVECTIVE TERM 

 
Is Gaskell/Lau’s CBC sufficient and necessary?  Boundedness is an important numerical 
characteristic of a discretized scheme for the convection term when the problem being solved 
contains an abrupt change of field variables. In 1988 Gaskell and Lau proposed conditions for 
scheme to possess the boundedness, and it is called the convective boundedness criterion (CBC) 
[11]. 
 

In the finite volume approach, the scheme 
definition is the interpolation rule for the interface 
value, and for most schemes used in CFD/NHT it 
can be expressed as  

 

 
Figure 5 Interface and its related grid points 

( , , )U C Dfφ φ φ φ=  (6a) 
 
In terms of the normalized general variable defined 
by  

U

U D

φ φφ
φ φ
−

=
−  (7) 

where the subscripts U, D refer to the upstream and downstream points(Figure 5), Eq.(6a) is 
simplified as  
 ( )Cfφ φ=  (6b) 
 
Gaskell and Lau proposed that a continuous increasing function or a piecewise continuous increasing 
function ( )Cfφ φ= will possess the boundedness if following conditions are satisfied: 

 1. ( ) , for 0f C C Cfφ φ φ φ= = ≤  (8a) 

 2. ( ) , for 1f C C Cfφ φ φ φ= = ≥  (8b) 

  



 3. ( ) 1, for 0 1C C Cfφ φ φ≤ ≤ ≤ ≤  (8c) 
 
The CBC region can be expressed by the shaded area in Fig. 6, where fφ and Cφ serve as the 
ordinate and the abscissa . If the defining expression of a scheme is located in the shaded area, the 
scheme possesses the boundedness. This CBC is usually considered as both necessary and sufficient 
[11,12,13]. However, our study shows that this CBC is only sufficient, but is not necessary. To be 
specific, the first and second conditions are only sufficient, while the third one is both necessary and 
sufficient. Another region was outlined in [5] (Figure 7), and two more schemes were proposed 
whose definitions were located in the new region rather than in the CBC region proposed by 
Gaskell/Lau. In references [15,16] further discussion was conducted to refine the CBC from different 
points of view.  In the following the results of [15] are briefly presented. 

 
 
 

  

 
 
 
                                
 
  

 
 
 
 

 
Figure 6 The CBC region defined by

Gaskell/Lau 
 
 

Figure 7 The CBC region defined by Yu et al. 
 
 

Refinement of the CBC from the 
Smoothness of Interpolation Profile  
Apart from the necessary and sufficient 
issue another weakness of the G-L CBC is 
that not all the schemes which satisfy the 
CBC criterion can get physically reasonable 
solution. For example, if we take three 
points A,B,C in the Gaskell/Lau CBC 
region shown in Fig. 8, then the resulting 
profiles of the field variable variation are 
presented in Fig. 9. Obviously such 
variation patterns are quite odd and 
unrealistic.  

 
By careful consideration of the smoothness 
of the profile pattern of the normalized 
variable, a new CBC is proposed in [15], 

which says: For a continuous or piecewise continuous function ( )Cfφ φ= ,if following conditions 

are satisfied, the scheme represented by ( )Cf φ  possesses both  boundedness and high accuracy: 

 

 
Fig. 8 Three points A,B,and C in G/L CBC region 
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(b) Point B  
 
 
 
 
 
 
 
 
 
 
 (c) Point C 
 
 
 
 
 

 
 

Figure 9 Three unrealistic situations  
 
This criterion is presented in Figure 10 by the shaded area. Very fortunately, the resulting region of 
CBC is exactly the one found in [5], where this region was obtained by physical intuition. 
Furthermore in [14] different considerations are given to the interpolation value: the interfacial 
variable should have a positive response to the disturbance of variable at grid points and the 
transportive property should be kept. The resulted CBC region  coincides with the one 
presented in Fig. 10.  

[1,1.0]Cφ ∈

 



Up to date at least eleven higher-order composite schemes were proposed which possess the 
boundedness character. It is easy to show that all the existing higher-order bounded schemes are 
located in this new region (Table 4 ). 
 

 
 

Figure 10 CBC region of He et al.  
 
Table 4     Existing Bounded Composite Schemes 
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ADVANCES IN THE STUDY OF COUPLING BETWEEN V
 
The pressure-correction method is probably the most widely
incompressible flow problem. The first pressure-correction algori
Patankar and Spalding in 1972 [22]. The acronym SIMPLE stands f
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order to simplify the solution procedure, thus make the algorithm s
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The SIMPLER algorithm [23] successfully overcomes the first appr
the current CFD/NHT community. Even though there are more than
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Raithby in 1984 and 1985 [24,25,26], PISO by Issa in 1985 [27] and the revised versions by Connel 
and Stow in 1986 [28], Chatwani and Turan in 1991 [29], Lee and Tzong in 1992 [30], Yen and Liu 
in 1993 [31], Wen and Ingham[32] in 1993 , SIMPLESSEC, SIMPLESSE by Gjesdal and Lossius 
[33] in 1997, SIMPLET by Sheng et al. in 1998 [34] , MSIMPLER by Yu et al. in 2001 [35]. All 
these variants are usually called SIMPLE-like or SIMPLE-family algorithm. The character common 
to all these algorithms is that a pressure correction term is introduced to the segregated solution 
process to improve the velocity, and the effects of the pressure corrections of the neighboring grid 
points are neglected. Because of this basic feature, the improvement in the convergence rate of the 
above proposed variants are limited, usually in the order of tens of percent.  Recently, Moukalled 
and Darwish [36] made a comprehensive review and reorganization of the express format for all the 
pressure correction algorithms.   
 
The function of the pressure correction term in the SIMPLE-family algorithms is to improve the 
current pressure and velocity by adding their corresponding corrections such that the resulting 
improved velocity can satisfy the mass conservation condition at each iteration level. And this is of 
crucial importance to accelerate the iteration convergence, as has been clearly demonstrated in [37]. 
In [38,39] a new idea of improving velocity and pressure is proposed: the improved velocity and 
pressure of each iteration level are not determined by adding a correction term to their temporary 
solution; instead, they are directly solved from the momentum and continuity equations, genuinely 
avoiding the introduction of pressure correction term and velocity correction term. Thus the second 
approximation of the SIMPLE algorithm is totally discarded, making the algorithm fully implicit. 
The novel algorithm is named CLEAR, standing for Coupled & Linked Equations Algorithm 
Revised. Because of this key improvement, the convergence rate of the iterative procedure can be 
drastically increased, and the enhancement ratio ranges from several times to tens of percent. 
 

  

b

Brief Introduction to CLEAR Algorithm  Taking 2-D problem as an example, the resulting 
formulation of the discretization equation takes following form:  

 P P E E W W N N S Sa a a a aφ φ φ φ φ= + + + +  (10) 
Underrelaxation of the dependent variables is incorporated into the solution process of the algebraic 
equations, then Equation (10) becomes: 

 
01p
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a
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Pφ φ φ φ φ
α α

−
= + + + + + φ  (11) 

The denominator of the left hand side term and the last term at the right hand side of Eq.(11) are the 
outcome of this underrelaxation process.  

 
For velocity components, the pressure gradient term is usually separated from the source term b. 
With a pressure field solved from the velocity of the previous iteration, the temporary or intermediate 
velocity solution of the current iteration, u*,v*, can be expressed by equations (12a) and (12b). 
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where u0, v0 denote the solutions of u and v of the previous iteration.  
 

In the following presentation, we first briefly describe the computational process of SIMPLER 
algorithm, and introduce the main idea of CLEAR at some appropriate point.  

 
The intermediate values of velocity and pressure have to be modified so that the updated velocity 
satisfies the discretized continuity equation. In order to get an improved velocity field, velocity 



  

,u vcorrection terms, denoted by 
'
,and a corresponding pressure correction term, denoted by 

' 'p ,are 
introduced.  The improved pressure and velocities are expressed as follows : 
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The improved pressure and velocities are then substituted into the discretized momentum equation, 
Eq. (12a), yielding  
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Subtracting Eq .(12a) from Eq .(14), the equation of velocity correction  is obtained :  
'
eu
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Similarly for v component, we have: 
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From Eq.(15) and Eq.(16), it can be found that the velocity correction term includes two parts: the 
velocity correction in the vicinity of the control volume and the difference of pressure correction of 

two adjacent grid points. In SIMPLE-like methods, the term 
'

nb nba u∑  is neglected in order to make 
the final pressure correction equation manageable [2] . The final velocity correction are expressed in 
the following forms:      
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The improved velocities, , are substituted into the discretized continuity 
equation (19) 

* ' *,u u u v v v= + = + '
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the final pressure correction equation is obtained as follows : 
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In the SIMPLER algorithm, the pressure correction is only used to modify velocity. The pressure is 
determined by pressure equation, which is derived as follows. The u- momentum equation can be 
re-cast into   
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where  is called pseudo-velocity.  Similarly, for v component we have  eu

  (24) (nn n Pv v d p p= + −
Again substituting Eqs.(23), (24) into continuity equation (19), we obtain the pressure equation as 
follows:  
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From the above derivation, we can see that the intermediate value u*,v* satisfy momentum equation, 
and the  improved value  satisfy the continuity equation. The improved values are taken as 
the solution of the current iteration level to start the next iteration. Then the consistency condition is 
satisfied for the singular coefficient matrix of velocity, and the convergence rate can be accelerated 
[37]. The converged solution we are searching for is the one which satisfies both the momentum 
equation and the continuity equation. 

,e nu v

 
We now propose a new expression for improved velocity. In the correction stage, the temporary 
solution of the current iteration in the SIMPLER algorithm is expressed as  

  (27) 
* '(e e e P Eu u d p p= + −

Equation (27) is similar to equation (23) where the pseudo-velocity is introduced. And for the 
convenience of discussion equation(23) is re-written as follows: 

 (ee e Pu u d p p= + − )E  (28)  
Here eu  and  are at the same position, and term *

eu ( )P Ep p− and ' '( )P Ep p− play a similar role in 

the two equations. Hence we may assume that in the corrector step, the improved velocity, , 
and the improved pressure, p, can be related by the same format of equation:  

andu v

 
* (e e e P Eu u d p p= + − )  (29a) 

 
* (n n n P Nv v d p p= + − )  (29b) 

where the pseudo-velocity, * *,u v , are based on the temporary solution ,and can be determined 
after the momentum equations have been solved. Equations (29a) and (29b) are the expressions for 
the improved velocity in the new algorithm. As will be seen later, it is these new expressions that 
avoid neglecting some terms in deriving the equation for the improved pressure. 

* *,u v

 
In order to set an extra access for controlling the convergence process, in the determination of the 
new (or updated) pseudo-velocity an extra relaxation factor, β , is introduced, and the improved 
velocity is re-written as 

  



 

* *

*

1

( ) (
/

u
nb nb e e

u
e e P E e e P E

e u

a u b a u
u d p p u

a
)d p p

β
β

β

−
+ +

= + − = +
∑

−  (30a) 

 

* *

*

1

( ) (
/

v
nb nb n n

v
n n P N n n P N

n v

a v b a v
v d p p v

a
)d p p

β
β

β

−
+ +

= + − = +
∑

−  (30b) 

Hereafter β is called the second relaxation factor 
 
The improved velocity should satisfy the mass conservation condition. Thus substituting 
Eqs.(30a),(30b) into Eq. (19), we get the equation for the improved pressure:  

 P P nb nba p a p b= +∑  (31) 
where  

 P E W Na a a a aS= + + +  (32a) 

 ( )E ea Adρ=  ( )W wa Adρ=  ( )N na Adρ=   ( )Sa Ad sρ=  (32b) 

 
* * * *( ) ( ) ( ) ( )w e sb u A u A v A v Aρ ρ ρ ρ= − + − n  (32c) 

the coefficienta Ea  , , wa Na ,  are calculated based on the intermediate field u*,v* with the 
same expressions shown in Eq. (26b).  

Sa

 
Once the improved pressure is solved, the improved velocities can be determined by equations (29a), 
(29b), which satisfy the continuity condition. In the above derivation, we do not neglect any term, 
making the solution algorithm fully implicit. Compared with the SIMPLE-like algorithms, it can be 
stated that the effects of the neighboring grid points are totally taken into account by introducing the 
updated pseudo-velocity based on .  The above solution algorithm is called CLEAR. * andu *v

 
The solution procedure of the CLEAR algorithm is summarized as follows: 
 
Step 1: Assuming an initial velocity field u0,v0 ; 

Step 2: Calculating the coefficient of the discretized momentum equation and pseudo-velocity 0u , 

: 0v
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Step 3: Solving the pressure equation (25) and obtaining pressure field *p ; 
Step 4: Based on *p  , solving the momentum equation (12a), (12b), obtaining the  intermediate 
velocity field u*, v* ;  

Step 5: Recalculating the coefficient of momentum equation and the pseudo-velocity , *u *v based 
on the intermediate velocity solution : * *,u v
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Step 6: Solving Eq. (31) for the improved pressure field  ;   
Step 7: Improving the velocity with Eq. (29a),(29b) to obtain the solution of the present iteration. 
Step 8: Solving the discretization equations of the other scalar variables if necessary;  
Step 9: Returning to step 2 and repeat until convergence is reached.  
 
The Second Relaxation Factor  In determining the updated pseudo-velocity of step 5, we 
introduce the second relaxation factor β . This is based on the following consideration. As 
indicated above, the improved velocity and pressure are in full consistency. The good coupling 
between the pressure and velocity in the CLEAR algorithm can appreciably enhance the 
convergence rate. This implies that the changes of the velocity solution between two successive 
iterations are usually larger than those of the SIMPLER algorithm. For the iteration solution 
procedure of a non-linear problem, experiences show that too large variation of the dependent 
variables between two successive iterations may lead to diverge of the iteration process [40]. 
Therefore the second relaxation factor β  is introduced in step 5 to present an extra access for 
controlling the iteration process. From equations (30a), (30b) it can be observed that β appears in 
both the denominator and nominator. However, the relaxation part is usually not dominated 
compared to the other terms. Thus a larger value of β will lead to a larger value of the updated 
value of the pseudo-velocity, hence alleviates the burden of the pressure gradient term, and reduces 
the variation rate of the two successive iterations. Therefore the second relaxation factor may take 
values varying in a wide range. If  β >1, the updated pseudo-velocity is overrelaxed, while the 
pressure is somewhat underrelaxed;  if β <1, the situation is the opposite.  For simplicity, we set 
the following relation between the two relaxation factors β and α in the computations of the six 
examples presented below:  

 

0.5 0.5
1

α
β

α
≤⎧

= ⎨ ≤⎩

   0<
 

1     0.5<  (35 ) 
When underrelaxation of pressure is needed to ensure the convergence, β may take a value larger 
than 1.0. For cases where β >1 is used special description will be provided. 

 
Application Examples of CLEAR Algorithm  The CLEAR algorithm has been applied to solve 
six laminar fluid flow and heat transfer problems with available numerical solutions. Comparisons 
are made with the solutions from the SIMPLER algorithm under the same other conditions. The 
results of variation of iteration number and CPU time with the time step multiple E are shown in Figs. 
11~15, and the corresponding ratios in saving iteration number and CPU time are summarized in 
Table 5. From these results the superior performance of the CLEAR algorithm can be clearly 
observed. 
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Figure 11 Comparison of iteration numbers and CPU time for Re=1000 of example 1
(Lid-driven square cavity flow) 
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 Figure 12 Comparison of iteration number and CPU time for Re=200 of example 2 

(Heat transfer in a sudden enlarge tube) 
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Figure 13 Comparison of iteration number and CPU time for Re=1000 of example 3 
(Lid-driven annular cavity flow) 
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Figure 14 Comparison of iteration number and CPU time for Re=300 of example 4
(Flow over a rectangular back step)   
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(Natural convection in an annulus) 
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Figure 16 Comparison of iteration number and CPU time for Ra=10 of example 6 6

(Natural convection in a square cavity) 
  



Table 5 Comparison of Clear and SIMPLER algorithms for Six Examples 
 
No Geometry Parameters Ratio of 

iteration 
numbers 

Ratio of 
CPU time 

    β  

 1 

 

Re=100,1000 
52×52 uniform grid 

0.15 to 0.59; 
0.22 to 0.44 

0.19 to 0.82 
0.29 to 0.59 

Dashed 
line: 1.2 

 2 
 

  
 

Re=150,200; 
202 42 uniform 
grid 

×
0.28 to 0.69; 
0.25 to 0.69 

0.34 to 0.81; 
0.31 to 0.81 

 

 3                  

r
inR

ω
θ

δ

   

Re=350,100; 
52x52 uniform grid 

0.27 to 0.84 ;
0.30 to 0.72 

0.30 to 0.92; 
0.42 to 0.86 

Dashed 
line :1.5 

 4 

 
 

Re=100,300; 
122×62 

0.38 to 0.67: 
0.34 to 0.66  

0.43 to 0.83; 
0.40 to 0.84 

 

 5 
HT cT

δ

inR

/ 1.6inRδ =  

Ra=1000,10000; 
42×32 uniform grid 

0.26 to 0.48 ;
0.29 to 0.42 

0.36 to 0.57; 
0.38 to 0.56 

 

 6  

 
 

Ra=10000-,100000;
82×82 uniform grid 

0.19 to 0.33 
0.23 to 0.34 

0.22 to 0.39; 
0.28 to 0.41 

 

 
 
 
 

APPLICATIONS OF THE ABOVE ACHIEVEMENTS IN THE STUDIES OF HEAT 
TRANSFER ENHNCEMENT 

 
Heat transfer enhancement is an everlasting subject of the international heat transfer community and 
many techniques have been developed in the past half century. Yet up to the end of last century, even 
for the single phase convective heat transfer, no unified theory could reveal the common essence of 
the heat transfer enhancement. In 1998 Guo and his co-workers [41,42] proposed a novel concept of 
enhancing convective heat transfer for parabolic flow. They transformed the convective term into the 
form of dot product of velocity and temperature gradient, and integrated the energy equation over the 
thermal boundary layer. They indicated that the reduction of the intersection angle between velocity 
and temperature gradient can effectively enhance the heat transfer. This concept has been extended 
by Tao et al[43,44] to elliptic flow, and they pointed out that for fluid flow with Peclet number 
greater than 100, the integration of the convective term over the entire domain: 
 
 Int = = ( )pc U T dAρ

Ω

⋅∇∫ cospc U T dAρ θ
Ω

∇∫  (36) 

actually represents the convective heat transfer rate. Thus under some given condition, say, fixed 
flow rate and temperature difference between solid wall and the incoming fluid, the smaller the 

  



intersection angle the larger the heat transfer rate. This basic idea is called field synergy principle. 
For the simplicity of discussion, the intersection angle between velocity and temperature gradient 
will be call synergy angle hereafter. 
 
By applying numerical methods described above, we have demonstrated that the field synergy 
principle (FSP) can unify the three existing explanations for enhancing convective heat transfer. 
Furthermore FSP is a powerful tool o develop new enhanced surfaces. These results are now briefly 
presented below. 
 
Reducing the Thermal Boundary Layer Is Equivalent to Reducing Synergy Angle  Figure 17 
shows the numerical results for heat transfer over a flat plate with Reynolds number based on the 
plate length being 600. The ordinate represent the computed average synergy angle, local heat 
transfer coefficient and the value of Int at each cross section, with the streamwise coordinate being 
the abscissa.  It can be seen that the decrease of the thermal boundary layer is equivalent to the 
reduction of the intersection angle between velocity and temperature gradient. 
 
Increasing the Interruption within Fluid Leads to Deceasing the Synergy Angle  Figure 18 
shows a parallel plate channel with two-inserted blocks for enhancing convective heat transfer. 
Numerical results of Int, Nu and the average synergy angle are presented in Figs. 4, 5, 6. They 
definitely show that the increase of interruption within fluid is actually to decrease the intersection 
angle between velocity and temperature gradient. 
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Figure 17: The distributions of
Int, hx and synergy angle along
the flow direction  
  

                                    

                                  

e 18 Parallel plate duct with insertion Figure 19 Int vs. Re for ducts with(PPDB)  
or without insertions(PPD) 



  

 
 
                                               
 
 
 
 
 
 
        

 
 

Figure 20 Nu vs. Re of two ducts 

 
Increasing the Velocity Gradient near Solid W
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Figure 24 Nu vs. Re for two tubes 

 
 

 
 
 
 
 
 
 
 
 

                                      
Figure 21 Average synergy angle of two ducts
all Results in the Decrease of Synergy Angle 
ffect of increased velocity gradient near the solid 
l results are presented in Figs.17~19. For this case 
nnel and the center-blocked channel are the same. 
se in the near wall velocity gradient also leads to 
elocity and the temperature gradient.   

 

Figure 22 Circular tube with coaxially
inserted bar 
Figure 23 Int vs. Re for tube
without bar (ST)  and with bar
Figure 25 Intersection angle for two



FSP Is a Powerful Tool in Developing Heat Transfer Enhanced Surface  Numerical simulations 
were conducted for the four types of plate-fin and tube heat transfer surfaces shown in Fig. 26[45]. 
Among the four surfaces, one is plain plate fin and the others are slotted fin surfaces. Fin B and Fin C 
possess the same number of slits, but the positions of slits are different. In Fin B the slits are mainly 
in the front part of the surface, while in Fin C the slits are mainly in the rear part. The simulated 
results are presented in Figs. 27,28. It can be seen that Fin C possesses superior performance than Fin 
B. This finding is consistent with the experimental results provided by Kang and Kim[46].  
 
From the average synergy angle presented in Fig. 29, it can be seen that the synergy of velocity and 
temperature gradient in Fin C is better than that in Fin B. In order to further reveal the reason, the 
velocity and temperature field of the middle plane between  two adjacent plain plate fin surfaces 
(Fig. 30) are carefully examined , and following facts are found. In the front part of the fin surface, 
the local velocity is almost normal to local isothermal. This means that the local temperature gradient 
is almost parallel to the velocity, indicating a bad synergy between the two vectors. Thus from the 
point view of FSP, it is this place that techniques should be adopted to enhance the heat transfer. The 
position of slits in Fin C is consistent with this requirement, therefore Fin C possesses a better 
performance than Fin B. This gives us a useful hint: the slits of the slotted fin surface should be 
positioned in the fin surface according the rule of “front sparse and rear dense”[45]. 

 

      (a) Fin A             (b) Fin B             (c) Fin C              (d) Fin D 
 
 
                                                              

Figure 26  The four types of slit arrangement 
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slit arrangements  

 

Figure 27 Nusselt number of the 
four slit arrangements 
  



 

  

 

 
 
 
 
 
 
 
 
 

 
The above rule for positioning slits was adopted to design an efficient slotted fin surface for an air 
int r. By preliminary computations to search for slit position pattern which possesses a smaller 
synergy angle, three position patterns were selected. They are shown in Fig. 31. Numerical 
sim lation of heat transfer and flow filed are performed and the results are compared with the 
co esponding plain al pressure drop and 
identical pumping power. For all the three constraints, the three selected slotted fin surface have 
mu h be nd 3 in 
order.  
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Figure 29 Variations of intersection angle with Reynolds number  
 
 
 
 

(a) Velocity field                         (
 

Figure 30 Velocity and temperature fields in the middle plane between two adjacent
fin surfaces 

b) Isothermals 

 
 

ercoole

u
rr  plate fin under three constraints: identical flow rate, identic

c tter heat transfer performance, with slit 1 being the superior, followed by slit 2 a

The heat transfer rate of slit 1 is 112% to 48% higher than that of the plain plate fin surface. And slit 
1 always superior to slit 3 by about 10 percent in heat transfer rate, and slit 2 is somewhat in between. 
The synergy angle of the three slotted fin and the corresponding plain plate fin are presented in 
Figs.32~34. The results are in good consistency with FSP. 

 



         
 
                             
    

 

  

 

 

     (a) Plain plate fin                        (b) Slit 1 

 
 
 
 

      (c) Slit 2                            (d) Slit 3 
Figure 31 Design fo  the optimum slit arrangement 
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Figure 32 Comparison under identical flow rate  
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CONCLUSIONS 
 
Scheme and algorithm are the two major numerical issues in the solution of incompressible flow by 
the finite volume approach. Significant improvements are made during the past five years, making 
the approach more attractive and powerful for heat transfer engineering application. These include 
the SGSD scheme which is absolutely stable and possesses at least second-order accuracy, and the 
CLEAR algorithm which is fully implicit and can appreciably accelerate the convergence rate by a 
slight change of the existing code using SIMPLER. It is expected that both SGSD and CLEAR will 
be widely adopted in the solutions of fluid flow and heat transfer problems. 
 
Numerical experiments by the finite volume approach incorporated by the proposed scheme and 
algorithm are conducted to demonstrate that the field synergy principle can unify the three existing 
mechanisms of enhancing convective heat transfer. An example is provided to show that the field 
synergy principle is a very powerful tool in the designing of new enhancement surface.  
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