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Implementation of the CLEAR algorithm on a collocated grid system is conducted. Detailed

discussion of the previous momentum interoperation method (MIM) is given to analyze the

condition to get a unique converged solution that is independent of relaxation factor for

steady flow. Six numerical examples on nonstaggered grids of forced-convective fluid flow

and natural convection are provided to compare the convergence performance between

CLEAR and SIMPLER. The domain extension method, widely used on staggered grids to

deal with mildly irregular domains, is further refined to meet the requirement of collocated

grids. It is shown that on a collocated grid the CLEAR algorithm can also greatly enhance

the convergence rate, based on iteration number and CPU time consumed, compared with

the SIMPLER algorithm with similar robustness.

INTRODUCTION

The pressure-correction method that belongs to the segregated algorithm is an
approach widely employed for numerically solving the Navier-Stokes equations for
fluid flow and heat transfer problems. The SIMPLE algorithm, proposed by
Patankar and Spalding [1] in 1972, was the first such algorithm widely used in lit-
erature. Since then several variants have been reported to enhance its convergence
rate, among which are SIMPLER [2], SIMPLEC [3], SIMPLEX [4, 5], and PISO [6].
In addition, Yen and Liu [7] presented the explicit correction step method to
accelerate the convergence rate. Sheng et al. [8] added a term of temperature cor-
rection into the velocity correction to enhance convergence rate for buoyancy-driven
fluid flows. Recently, Yu et al. [9] modified the SIMPLER algorithm to artificially
change the underrelaxation term to match the variable to be solved. The revised
method was called MSIMPLER. All the above-mentioned methods are usually
called SIMPLE-like or SIMPLE-family algorithms. Moukalled and Darwish [10] did
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a comprehensive review and give a unified reorganization expression form for all the
pressure-correction algorithms. The common characteristic of these algorithms is
that a pressure-correction term is introduced to the calculation procedure of each
segregated solution step to improve the velocity, which is solved from a momentum-
discretized equation as the intermediate value. The pressure-correction term in the
SIMPLE-family algorithms is used to improve the intermediate velocity solved from
the momentum equation such that the modified velocity can satisfy the mass con-
servation condition for each control volume at each iteration level, which is critical
for iteration convergence, as indicated in [11]. In the derivation of the pressure-
correction equation, the effects of the pressure corrections of the neighboring grid
points are neglected, which will not affect the final solution when the iterative process
converges [12], but does affect the convergence rate as described in [13]. Because of
this neglect, all the above-mentioned algorithms are of semi-implicit type. Very
recently, the present authors [14, 15] proposed a fully implicit segregated algorithm,

NOMENCLATURE

aP; aE; aW; coefficients in the discretized

aN; aS equation

A surface area

b source term

B source term

def; dnf diffusion conductivity of the

interface velocity

dP dE diffusion conductivity of the main

node velocity

D diameter

E time step multiple

flowch characteristic (reference) flow rate

g gravitational acceleration

H1, H2 height defined in Figure 18

L length of square cavity

L1;LR;L2 dimensions defined in Figure 18

Lin, Lx length defied in Figure 15

p pressure

p� temporary pressure

p0 pressure correction

r radius

R radius of tube wall

Ra Rayleigh number

Re Reynolds number

Rscv relative mass flow rate unbalance

of control volume

Sf source term

T temperature

u; v velocity component in x and y

directions

ûu; ûu� pseudo-velocity

v̂v; v̂v� pseudo-velocity

U, V dimensionless velocity in two

coordinates

Ulid moving velocity of lid

x, y coordinates

X, Y dimensionless coordinates

a underelaxation factor

b relaxation factor

G nominal diffusion coefficient

d gap width

dx; dy distance between two adjacent grid

points in x and y directions

Dx;Dy control volume width in x and y

directions

e convergent criteria

Z fluid dynamic viscosity

l thermal conductivity coefficient

r fluid density

f general variable

Superscripts

u; v refers to u, v momentum equation

0 resolution of the previous

iteration

Subscripts

e;w; n; s cell surface

f interface

in inlet; inner

max maximum

mean averaged

nb neighboring grid points

out outlet

P;E;N;

S;W grid points
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CLEAR (Coupled and Linked Equations Algorithm Revised), for incompressible
fluid flow and heat transfer. The CLEAR algorithm avoids introducing pressure-
correction and velocity-correction terms, discarding the basic assumption of the
SIMPLE-series algorithms. The new algorithm is tested with six examples on a
staggered grid system, and it is proved that it can enhance convergence rate to a great
extent.

In this study, the CLEAR algorithm is extended to a collocated grid system to
test its feasibility. To fulfill the fundamental requirement for eliminating the
decoupling problem between velocity and pressure and making the solution inde-
pendent of underrelaxation factor, detailed investigation is made to previous related
methods. For some mildly irregular computation domain, the domain extension
method [16] is applied, and is further formulated in this study to meet the special
requirement on the acollocated grid to treat the solid region in the computational
domain. Based on the above preliminary research, the calculation procedures of
SIMPLER and CLEAR on acollocated grids are presented for comparison. Six 2-D
numerical examples with available solutions are computed to investigate the per-
formance of the CLEAR and SIMPLER algorithms on a collocated grid system.

SOME DISCUSSION ON MIM

The staggered grid is widely employed in computational fluid dyna-
mics=numerical heat transfer literature because it can efficiently guarantee the cou-
pling between velocity and pressure. However, it shows that it is inconvenient for
code development in unstructured grid and curvilinear body-fitted grids, especially
for 3-D computation. On nonstaggered grids, such complications can be greatly
alleviated. The crucial issue in using nonstaggered grids is how to eliminate the
decoupling between pressure and velocity. In the 1980s the momentum interpolation
method (MIM) on nonstaggered grid was first presented by Rhie and Chow [17] to
avoid the decoupling problem. It was subsequently reformulated by Peric [18] and
Majumdar [19]. Later, Majumdar [20] and Miller and Schmidt [21] pointed out that
Rhie and Chow’s method has the weakness that the solution is underrelaxation
factor-dependent to some extent, despite removing the false pressure field. To
remedy this unpleasant deficiency, a few schemes have been proposed lately. An easy
technique by Kobayashi and Pereira [22] is to set the underrelaxation factor to a ¼ 1
before momentum interpolation is implemented, but this may decrease the robust-
ness of the algorithm to some extent. Hence, we can see that in order to make a
reliable and efficient computation on a nonstaggered grid, the following three aspects
should be guaranteed: (1) the algorithm should avoid the checkerboard pressure
distribution; (2) the converged resolution should be independent of the under-
relaxation factor; (3) the algorithm should possess the required robustness. In order
to develop a computation scheme on a collocated grid, which possesses the above-
mentioned three features we first briefly review the existing implementation proce-
dures on collocated grids, take advantage of some successful practices, and then
propose a new implementation scheme for this study.

In the following, a brief description of the governing equations and the dis-
cretization procedure will be presented. For simplicity of presentation, we take 2-D
incompressible laminar steady fluid flow in Cartesian coordinates as an example. The
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system for a nonstaggered grid is depicted in Figure 1. The governing equations are
as follows.
Continuity equation:

qðrufÞ
qx

þ qðrvfÞ
qu

¼ 0 ð1Þ

Momentum equation:

qðrufuÞ
qx

þ qðrvfuÞ
qy

¼ � qp
qx

þ Z
q2u
qx2

þ q2u
qy2

� �
þ Su ð2Þ

qðrufvÞ
qx

þ qðrvfvÞ
qy

¼ � qp
qy

þ Z
q2v
qx2

þ q2v
qy2

� �
þ Sv ð3Þ

Energy equation:

q
q
ðrufTÞ þ

q
qx

ðrvfTÞ ¼
q
qx

l
qT
qx

� �
þ q
qy

l
qT
qy

� �
þ ST ð4Þ

The above four equations can be expressed in a general form:

q
q
ðruffÞ þ

q
qx

ðrvffÞ ¼
q
qx

G
qf
qx

� �
þ q
qy

G
qf
qy

� �
þ Sf ð5Þ

where uf and vf refer to the interface velocity whose interpolation scheme is the major
issue on the nonstaggered grid. Equation (5) is discretized with the finite-volume

Figure 1. Control volumes of nonstaggered grids in 2-D Cartesian coordinates.
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method [16, 23] (FVM) on a nonstaggered grid system and the source term Sf is
linearized as

Sf ¼ SC þ SPfP ðwith SP � 0Þ ð6Þ

By taking out the pressure gradient from the Sf in Eq. (5) for the u component, the
final discretization equation for the u component takes the following form, into
which underrelaxation is incorporated:

aP
au

uP ¼ aEuE þ aWuW þ aNuN þ aSuS þ bP þ Dyðpw � peÞP þ 1� au
a

u

aPu
0
P

¼ aEuE þ aWuW þ aNuN þ aSuS þ BP þ Dyðpw � peÞP ð7Þ

where

BP ¼ bP þ 1� au
au

aPu
0
P bP ¼ SC DxDy ð8Þ

The two terms ð pwÞP and ð peÞP are linearly interpolated from the neighboring nodes:

ðpwÞP ¼ f þ
w pP þ ð1� f þ

w ÞpW ð9Þ

ðpeÞP ¼ f þ
e pE þ ð1� f þ

e ÞpP ð10Þ

where

f þ
w ¼ DxW

2dxw
f þ
e ¼ DxP

2dxe
ð11Þ

Similar expressions can be formulated for velocity component vP and the related
terms ð pnÞP, ð psÞP, and the interpolation coefficients f þ

s , f þ
n . From Eq. (7), we can

get

uP ¼ au

P
anbunb þ BP

aP

� �
P

þ auDyðpw � peÞP
ðaPÞP

ð12Þ

uE ¼ au

P
anbunb þ BP

ap

� �
E

þ auDyðpw � peÞE
ðapÞE

ð13Þ

To eliminate the checkerboard pressure field, Rhie and Chow [17] proposed
that the interface velocity should be determined by the same format equation as the
main-grid point velocity. Now, mimicking Eqs. (12) and (13), we express the inter-
face velocity at the cell surface as follows:

ue ¼ au

P
anbunb þ BP

aP

� �
e

þ auDyðpP � pEÞ
ðaPÞe

ð14Þ

The notable feature of Eq. (14) is that the 1� d difference of pressure, i.e., pP � pE, is
introduced as in the staggered grid, and this is the reason why coupling between
pressure and velocity can be ensured. If a checkerboard pressure distribution occurs,
use of an equation such as Eq. (14) for the interface velocities will produce some
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pseudo sources or sinks of mass flow rate of each control volume and the continuity
equation will reject it as an acceptable solution. The termsP

anbunb þ BP

aP

� �
e

and
1

ðaPÞe

are linearly interpolated from the corresponding values of Eqs. (12) and (13), that is,P
anbunb þ BP

aP

� �
e

¼ f þ
e

P
anbunb þ BP

aP

� �
E

þð1� f þ
e Þ

P
anbunb þ BP

aP

� �
P

¼ f þ
e

P
anbunb þ bP þ ð1� auÞ=au½ � aPu0P

aP

� �
E

þ ð1� f þ
e Þ

P
anbunb þ bP þ ð1� auÞ=au½ �aPu0P

aP

� �
P

¼ f þ
e

P
anbunb þ bP

aP

� �
E

þ f þ
e

1� au
au

u0E

þ ð1� f þ
e Þ

P
anbunb þ bP

aP

� �
P

þð1� f þ
e Þ 1� au

au
u0P ð15Þ

1

ðaPÞe
¼ f þ

e

1

ðaPÞE
þ ð1� f þ

e Þ 1

ðaPÞP
ð16Þ

Substituting Eqs. (15) and (16) into Eq. (14), we obtain

ue ¼ au

f þ
e

P
anbunb þ bP

aP

� �
E

þ 1� f þ
e

� � P
anbunb þ bP

aP

� �
P

þ f þ
e

1

ðaPÞE
þ ð1� f þ

e Þ 1

ðaPÞP

� �
DyðpP � pEÞ

8>>>>><>>>>>:

9>>>>>=>>>>>;
þ ð1� auÞ f þ

e u0E þ ð1� f þ
e Þu0P

	 

ð17Þ

We define

uMIM� ¼ f þ
e

P
anbunb þ bP

aP

� �
E

þð1� f þ
e Þ

P
anbunb þ bP

aP

� �
P

þ f þ
e

1

ðaPÞE
þ ð1� f þ

e Þ 1

ðaPÞP

� �
DyðpP � pEÞ

¼
P

anbunb þ bP
aP

� �
e

þDyðpP � pEÞ
ðaPÞe

ð18Þ
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uLN ¼ f þ
e u0E þ ð1� f þ

e Þu0P ð19Þ

where uMIM� represents the momentum interpolation, which does not include the
underrelaxation factor of velocity, hence it is obviously independent of the under-
relaxation factor. The term uLN is the liner interpolated one. Then we get

ue ¼ auuMIM� þ ð1� auÞuLN ð20Þ

Thus it can be seen that when the underrelaxation factor is incorporated into
the solution procedure of the momentum equations, the interpolation proposed by
Rhie and Chow, Eq. (14), is actually a mixing interpolation composed of
momentum and linear interpolation terms that is obviously affected by the
underrelaxation factor. To develop an appropriate interpolation scheme which can
discard this weakness of Rhie and Chow’s scheme, we reformulate Eqs. (12) and
(13) as follows:

uP ¼ au

P
anbunb þ bP

aP

� �
P

þ au Dyðpw � peÞP
ðaPÞP

þ ð1� auÞu0P ð21Þ

uE ¼ au

P
anbunb þ bP

aP

� �
E

þ au Dyðpw � peÞE
ðaPÞE

þ ð1� auÞu0E ð22Þ

Hence the interface value ue can be expressed as

ue ¼ au

P
anbunb þ bP

aP

� �
e

þ au DyðPp � pEÞ
ðaPÞe

þ ð1� auÞu0e

¼ auuMIM� þ ð1� auÞu0e ð23aÞ

It is worth noting that by reformulating Eqs. (12) and (13) into the form of Eqs.
(21) and (22), respectively, the terms ð1� auÞu0P and ð1� auÞu0E are separated
explicitly, and the mimicking of Eqs. (21) and (22) leads to Eq. (23a), which is dif-
ferent from the original MIM of Rhie and Chow, in which the term uLN is replaced
by u0e . When iteration converges, ue and u0e approach the same value, and Eq. (23a) is
equivalent to ue ¼ uMIM� , which is independent of the underrelaxation factors. For
comparison, Eq. (23a) is rewritten as follows:

ue ¼ auuMIM� þ ayuLN þ ð1� auÞu0e � auuLN

¼ au

P
anbunb þ BP

aP

� �
e

þ au DyðpP � pEÞ
ðaPÞe

þ ð1� auÞu0e � au f þ
e u0E þ ð1� f þ

e Þu0P
	 


ð23bÞ

Equation (23a) or (23b) is the modified momentum interpolation method
(MMIM) by Majumdar [20], which is later reprovided by Choi [24] for unsteady
flow. Yu et al. [25] gave a detailed discussion of the role of interface velocity, and
recommended that all the interface velocities should be obtained with the momentum
interpolation method in the overall calculation process of uf and vf, and Eq. (23a)
will be used in this study for the interpolation.
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GENERAL REVIEW OF SIMPLER ALGORITHM

For the implementation of the SIMPLER algorithm on the collocated grid, the
discretized momentum equation is expressed by Eq. (7). In order to derive the
pressure equation, Eq. (23a) can be rewritten for the u component as

ue ¼ au

P
anbu

0
nb þ bP

aP

� �
e

þð1� auÞu0e þ
au DyðpP � pEÞ

ðaPÞe

¼ bu0eu0e þ defðpP � pEÞ ð24Þ

where

bu0eu0e ¼ au

P
anbu

0
nb þ bP

aP

� �
e

þð1� auÞu0e

¼ au f þ
e

P
anbu

0
nb þ bP

aP

� �
E

þð1� f þ
e Þ

P
anbu

0
nb þ bP

aP

� �
P

� �
þ ð1� auÞu0e ð25aÞ

def ¼
au Dy
ðaPÞe

¼ f þ
e

1

ðaPÞE
þ ð1� f þ

e Þ 1

ðaPÞP

� �
au Dy ð25bÞ

Similarly, we can get the following equations for the v component:

vn ¼ av

P
anbv

0
nb þ bP

aP

� �
n

þð1� avÞv0n þ
au DxðpP � pNÞ

ðap̂pÞn

¼ bv0nv0n þ dnfðpP � pNÞ

ð26Þ

where

bv0nv0n ¼ av

P
anbv

0
nb þ bP

aP

� �
n

þð1� avÞv0n

¼ av f þ
n

P
anbv

0
nb þ bP

aP

� �
N

þð1� f þ
n Þ

P
anbv

0
nb þ bP

aP

� �
P

� �
þ ð1� avÞv0n ð27aÞ

dnf ¼
av Dx
ðaPÞn

¼ f þ
n

1

ðaPÞN
þ ð1� f þ

n Þ 1

ðaPÞP

� �
av Dx ð27bÞ

Substituting Eqs. (24) and (26) into the following discretized form of the continuous
equation,

ðruÞeAe � ðruÞwAw þ ðrvÞnAn � ðrvÞsAs ¼ 0 ð28Þ

we have the following equations for pressure:

aPp
�
P ¼

X
anbp

�
nb þ b ð29Þ
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where

aP ¼ aE þ aW þ aN þ aS ð30Þ

aE ¼ ðrAdÞef aW ¼ ðrAdÞwf aN ¼ ðrAdÞnf as ¼ ðrAdÞsf ð31aÞ

b ¼ ðr bu0u0AÞw � ðr bu0u0AÞe þ ðrbv0v0AÞs � ðrbv0v0AÞn ð31bÞ

The coefficients (aE; aW; aN; aS) are determined by the previous interface value u0f , v
0
f .

In the actual implementation, the pressure equation can be incorporated with
pressure underrelaxation factor aP, and the final pressure equation becomes

aP
aP

p�P ¼
X

anbp
�
nb þ bþ 1� aP

aP
app

0
P ð32Þ

Similar to the derivation process in the staggered grid of the corrector step, the
improved velocity can be expressed as

ue ¼ u�e þ defðp0P � p0EÞ ð33Þ

vn ¼ v�n þ dnfðp0P � p0NÞ ð34Þ

and the interface velocity-correction terms are

u0e ¼ defðp0P � p0EÞ ð35Þ

v0n ¼ dnfðp0P � p0NÞ ð36Þ

Substituting Eqs. (33) and (34) into the discretized continuous equation, Eq. (28),
yields

aPp
0
P ¼

X
anbp

0
nb þ b ð37Þ

where

aP ¼ aE þ aW þ aN þ aS ð38Þ

aE ¼ ðrAdÞef aW ¼ ðrAdÞwf aN ¼ ðrAdÞnf aS ¼ ðrAdÞsf ð39aÞ

b ¼ ðru�AÞw � ðru�AÞe þ ðrv�AÞs � ðrv�AÞn ð39bÞ

It is noted that Eq. (39a) is identical to Eq. (31a), while in Eq. (39b), the intermediate
velocity is used instead of the initial pseudo-velocity in Eq. (31b).

Similarly, the velocity in the main-grid point is also corrected, and the
improved value is expressed as

uP ¼ u�p þ du
Pðp0w � p0eÞP ð40Þ

vP ¼ v�E þ dv
Pðp0s � p0nÞP ð41Þ
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where

duP ¼ au Dy
ðaPÞP

ð42Þ

dvP ¼ av Dy
ðaPÞP

ð43Þ

The pressure-correction values in the interface are linearly interpolated as

ð p0wÞP ¼ f þ
w p0P þ ð1� f þ

w Þp0W ð44Þ

ð p0eÞP ¼ f þ
e p0E þ ð1� f þ

e Þp0P ð45Þ

ð p0sÞP ¼ f þ
s p0P þ ð1� f þ

s Þp0S ð46Þ

ð p0nÞP ¼ f þ
n p0N þ ð1� f þ

n Þp0P ð47Þ

The computational steps of the SIMPLER algorithm on the collocated grid are
summarized as follows.

Step 1. Assume the initial field of the main node and interface velocities u0P, v
0
P,

u0f , v
0
f .

Step 2. Calculate the descritization coefficient of the momentum equation and
pseudo-velocity bu0eu0e [Eq. (25a)] and bv0nv0n [Eq. (27a)] to determine the source
term for the pressure equation, Eq. (32), based on the previous interface
and main-grid point velocities u0P, v

0
P, u

0
f , v

0
f .

Step 3. Calculate the coefficients def [Eq. (25b)] and dnf [Eq. (27b)] of the pressure
equation, Eq. (32), with u0f , v

0
f .

Step 4. Solve the discretized forms of the pressure equation and obtain the
pressure field p�.

Step 5. Based on p�, solve the discretized forms of the momentum equation,
obtaining the intermediate velocity field u�P, v

�
P.

Step 6. Calculate the interface velocity with MMIM based on u�P, v
�
P, p

�, and the
previous discretized momentum equation coefficients derived from u0f , v

0
f ,

obtaining the intermediate interface velocities u�f , v
�
f to determine the

source term of the pressure-correction equation.
Step 7. Solve the pressure-correction equation, Eq. (37), obtaining the pressure

correction value p0.
Step 8. Correct the interface velocity with Eqs. (33) and (34), and correct the

main-grid point velocities with Eqs. (40) and (41).
Step 9. Solve the discretization equations of the other scalar variables if neces-

sary.
Step 10. Return to step 2 and repeat until convergence is reached.

From the above procedure we can see that a checkerboard pressure field, if it
occurs, will be damped out due to the introduction of MMIM, and the solution will
be underrelaxation-independent.
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MATHEMATICAL FORMULATION OF CLEAR ALGORITHM

As indicated in [14, 15], the main difference between SIMPLER and CLEAR is
the way to obtain the improved velocity, which satisfies the mass conservation
condition. In the SIMPLER algorithm, this improved velocity is obtained by adding
a correction term to the intermediate velocity, while in the CLEAR algorithm the
improved velocity is obtained directly from an improved pressure field.

Similar to the expression for the revised velocity on the staggered grid of the
CLEAR algorithm [14, 15], the improved velocities on a collocated grid are
expressed as

ue ¼ bu

P
anbu

�
nb þ bP

aP

� �
e

þð1� buÞu�e þ
bu DyðpP � pEÞ

ðaPÞe
ð48Þ

vn ¼ bv

P
anbv

�
nb þ bP
aP

� �
n

þð1� bvÞv�n þ
bv DxðpP � pNÞ

ðaPÞn
ð49Þ

The terms P
anbu

�
nb þ bP

aP

� �
e

and

P
anbv

�
nb þ bP
aP

� �
n

in the interface are interpolated from the neighboring main-grid points. The para-
meter b is called the second relaxation factor as defined in [14, 15], and its value is
recommended as

bûu ¼ bv̂v ¼ b ¼
0:5 0 < a � 0:5

1 0:5 < a � 1

(
ð50Þ

It is noted that Eqs. (48) and (49) have the same form as the MMIM, Eq. (23a),
so the interface velocities defined by Eqs. (48) and (49) are also independent of
relaxation factor b when iteration converges.

In order to derive the equation for improved pressure on a collocated grid, we
define:

bu�eu�e ¼ bu

P
anbu

�
nb þ bP

aP

� �
e

þð1� buÞu�e

¼ bu f þ
e

P
anbu

�
nb þ bP

aP

� �
E

þð1� f þ
e Þ

P
anbu

�
nb þ bP

aP

� �
P

� �
þ ð1� buÞu�e ð51aÞ

def ¼
bu Dy
ðaPÞe

¼ f þ
e

1

ðaPÞE
þ ð1� f þ

e Þ 1

ðaPÞP

� �
bu Dy ð51bÞ

bv�nv�n ¼ bv

P
anbv

�
nb þ bP
aP

� �
n

þð1� bvÞv�n

¼ bv f þ
n

P
anbv

�
nb þ bP
aP

� �
N

þð1� f þ
n Þ

P
anbv

�
nb þ bP
aP

� �
P

� �
þ ð1� bvÞv�n ð52aÞ
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dnf ¼
bv Dx
ðaPÞn

¼ f þ
n

1

ðaPÞN
þ ð1� f þ

n Þ 1

ðaPÞP

� �
bv Dx ð52bÞ

Equations (48) and (49) are rewritten for simplicity as

ue ¼ bu�eu�e þ defðpP � pEÞ ð53Þ

vn ¼ bv�nv�n þ dnfðpP � pNÞ ð54Þ

Equations (53) and (54) are substituted into the continuous equation, Eq. (28) to get

aPpP ¼
X

anbpnb þ b ð55Þ

where

aP ¼ aE þ aW þ aN þ aS ð56Þ

aE ¼ ðrAdÞef aW ¼ ðrAdÞwf aN ¼ ðrAdÞnf aS ¼ ðrAdÞsf ð57aÞ

b ¼ ðr bu�u�AÞw � ðr bu�u�AÞe þ ðrbv�v�AÞs � ðrbv�v�AÞn ð57bÞ

The coefficients aE, aW, aN, aS are calculated based on the intermediate field u�f , v
�
f . In

the numerical implementation for the present study, it is found that the improved
pressure equation should also be underrelaxed to enhance the robustness. The
equation is then expressed as

aP
aP

pP ¼
X

anbpnb þ bþ 1� aP
aP

aPp
�
P ð58Þ

The parameter b is the relaxation factor for the updated interface pseudo-velocity.
The larger the value of b, the larger the variation of the interface pseudo-velocity,
and the smaller the relative change between the improved and the previous pres-
sure. And for a case with high value of au, the improved pressure should be highly
underrelaxed, to guarantee the convergence of the solution procedure, and this can
be done by setting a larger value of b, sometimes even greater than 1. Hence, due
to the good coupling of velocity and pressure in the CLEAR algorithm, the
improved pressure should be underrelaxed. There are two approaches to under-
relax the improved pressure: one is to give a larger second relaxation factor b, the
other is to incorporate a pressure underrelaxation factor aP to the improved
pressure equation. Our practice shows that the value aP may be taken within the
range 0.7–1.0.

For the improved velocity on the main-grid point, Eq. (21) is rewritten with
intermediate values as

uP ¼ bu

P
anbu

�
nb þ bP

aP

� �
P

þ bu Dyðpw � peÞP
ðaPÞP

þ ð1� buÞu�P ð59Þ
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Defining:

cu�Pu�P ¼ bu

P
anbu

�
nb þ bP

aP

� �
P

þð1� buÞu�P ð60aÞ

du
P ¼ bu Dy

ðaPÞP
ð60bÞ

then Eq. (59) can be recast into

uP ¼ cu�Pu�P þ du
Pðpw � peÞP ð61Þ

Similarly, we can get the improved main-grid point velocity for the v component:

vP ¼ bv�Pv�P þ dv
Pðps � pnÞP ð62Þ

where

bv�Pv�P ¼ bv

P
anbv

�
nb þ bP
aP

� �
P

þð1� bvÞv�P ð63aÞ

dv
P ¼ bv Dy

ðaPÞP
ð63bÞ

The solution procedure of the CLEAR algorithm on a collocated grid is
summarized as follows.

Step 1. Assume the initial field of the main node and interface velocities u0P, v
0
P,

u0f , v
0
f .

Step 2. Calculate the descritization coefficient of the momentum equation and
pseudo-velocities bu0eu0e [Eq. (25a)] and bv0nv0n [Eq. (27a)] to determine the source
term for the pressure equation, Eq. (32), based on the previous interface
and main node velocities u0P, v

0
P, u

0
f , v

0
f .

Step 3. Calculate the coefficients def [Eq. (25b)] and dnf [Eq. (27b)] of the pressure
equation with u0f , v

0
f .

Step 4. Solve the pressure equation and obtain pressure field p�.
Step 5. Based on p�, solve the discritized forms of the momentum equation,

obtaining the intermediate velocity field u�P, v
�
P.

Step 6. Calculate the interface velocity with MMIM based on u�P, v
�
P, p

�, and the
previous discretized momentum equation coefficient, which is derived
from u0f , v

0
f , obtaining the intermediate interface velocity u�f , v

�
f .

Step 7. Based on the intermediate interface velocities u�f , v�f , recalculate the
momentum equation coefficients and obtain the improved pseudo-
velocities bu�eu�e [Eq. (51a)] and bv�nv�n [Eq. (52a)] by the intermediate main
node velocity to determine the source term of the improved pressure
equation.

Step 8. Calculate the coefficients def [Eq. (51b)] and dnf [Eq. (52b)] of the
improved pressure equation, Eq. (58), with u�f , v

�
f .
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Step 9. Solve the improved pressure equation and obtain the updated pressure
field p.

Step 10. Update the interface velocity with Eqs. (53) and (54), correcting the
main-grid point velocities with Eqs. (61) and (62).

Step 11. Solve the discretization equations of the other scalar variables if neces-
sary.

Step 12. Return to step 2 and repeat until convergence is reached.

From the above solution procedure, we can see that the first six steps are the
same for the two algorithms. In the CLEAR algorithm the pressure equation is
solved twice—the first time it is solved to determine the source term of momentum
equation, and the second time it is solved to gain the improved pressure to correct
the intermediate velocity—so the number of the solved equations is equal to SIM-
PLER, while in step 7, the coefficient of discretized moment equation is recalculated
without solving, which leads to a bit longer CPU time for the new algorithm in one
iteration.

Before going into the details of application examples, three issues will be
addressed in regard to the CLEAR algorithm. First, the meaning of the adopted
word ‘‘couple’’ is explained. It is a widely accepted concept that in incompressible
flow the momentum and continuity equations, or the velocity and pressure, are
coupled [26–28], and it is in this sense that the word is used in the acronym of
CLEAR, even though the word ‘‘couple’’ may have another meanings—for
example, the coupling between momentum and energy equations—the simulta-
neous solutions of the discretized velocity and pressure equations, etc. In our
context, however, it refers to the inherent interrelationship between velocity and
pressure. Second, as indicated above, the CLEAR algorithm differs from all
SIMPLE-like algorithms in that no correction terms are introduced in the solu-
tion procedure of CLEAR. Taking the PISO algorithm as an example, PISO is
actually an extension of SIMPLE [28, 29] in that PISO is a two-step algorithm: in
the first step the calculation procedure is exactly the same as SIMPLE, and in the
second step a further correction in pressure is introduced to make the satisfaction
of the continuity condition better. Thus it is quite clear that CLEAR and PISO
are totally different in this sense. Third, as far as the theoretical aspect is con-
cerned, the solution oscillation on the collocated grids may be analyzed by the
Fourier analysis method [30]. The focus of this article, however, is in the
implementation of a collocated grid. Therefore such analysis is not conducted. As
far as the extensions of CLEAR to 3-D and curvilinear coordinates are con-
cerned, study is now underway in the authors’ group and the results will be
reported elsewhere.

SIX TYPICAL NUMERICAL EXAMPLES

To verify the feasibility of the CLEAR algorithm on the collocated grid, six
typical numerical examples with available solutions are computed. The iteration
number and CPU time consumed are compared between the SIMPLER and
CLEAR algorithms with variation of time-step multiple. The time-step multiple is
defined by Eq. (64) [23]:
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E ¼ a
1� a

ð0 < a < 1Þ ð64Þ

The convergence criterion is

Rscv ¼ MAX
cv

ðru�AÞw � ðru�AÞe þ ðrv�AÞs � ðrv�AÞn
flowch

� �
� e ð65Þ

where Rscv is the maximum mass residual of each control volume and flowch is the
characteristic flow rate defined in [15]. The value of e is individually defined in each
example. The pressure underrelaxation factor is 0.85 for the first four examples and
0.95 for the last two as the default value. For cases where a larger value of b and or a
smaller aP is used, special description will be provided.

Tests of Forced-Convective Fluid Flow

Example 1: Lid-driven cavity flow. The calculations are carried out for
Re¼ 100. A uniform grid of 52652 is applied with e ¼ 5:0� 10�8. The Reynolds
number is defined by

Re ¼ UlidL

n
ð66Þ

The velocity distribution along the two centerlines compared with the benchmark
solution from [31] are presented in Figure 2 to verify the accuracy of the new
algorithm, where X and Y are nondimensional coordinates, normalized by the
cavity height. It can be seen that the solutions from SIMPLER and CLEAR are
almost identical. The iteration number and the CPU time consumed are displayed
in Figure 3. In Figure 4, the ratios of iteration number and CPU time of CLEAR
over that of SIMPLER varied with time-step multiple are presented. In these
figures, the part shown by the dashed lines is obtained by taking b ¼ 1:3,
aP ¼ 0:8 for a velocity underrelaxation factor of 0.9. Here underrelaxation of the
improved pressure is treated simultaneously in two ways: adding the second
relaxation factor and decreasing the pressure underrelaxation factor. It can be
seen that the ratio of iteration number ranges from 0.16 to 0.65 and that of CPU
time ranges from 0.19 to 0.77. The saving of iteration number and CPU time is
appreciable.

Example 2: Lid-driven cavity flow in a polar cavity. Figure 5 shows the
configuration of the polar cavity (y ¼ 1 rad, d=Rin ¼ 1). Fuchs and Tillmark [32]
have studied the problem experimentally and numerically. The Reynolds number
is defined as

Re ¼ Ulidd
n

ð67Þ

where Ulid is the circumferential velocity of the moving lid, Ulid ¼ R0 � o. A
uniform grid system, 52� 52, is used in our computation (e ¼ 5:0� 10�8). The
predicted streamfunctions for a Re number of 350 from the two algorithms are
nearly the same, as shown in Figure 6. In Figures 7 and 8, the comparisons are
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presented. Again, for the high underrelaxation factor (0.9), the b value is greater
than 1 (here it is 1.3), and the corresponding pressure underrelaxation factor is
0.75, presented by the dashed lines. It can be found that the new algorithm per-
forms superiorly to SIMPLER. The iteration number and CPU time of the
CLEAR are 14–67% and 19–90%, respectively, of that of the SIMPLER for
Re¼ 350.

Figure 2. Predicted velocity distributions for Re¼ 100 of Example 1.
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Tests with Natural Convection

Example 3: Natural convection in a square cavity. The square cavity has
two adiabatic walls (top and bottom), and its two vertical walls are maintained at
constant but different temperatures. We use a uniform grid of 82682 for
computation with Ra¼ 104, e ¼ 2:0� 10�7 based on the Boussinesq assumption.

Figure 3. Comparison of iteration numbers and CPU time for Re¼ 100 of Example 1.
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The second relaxation factor b ¼ 1:2 for a ¼ 0:9. The Rayleigh number is defined
by

Ra ¼ rgbL3 DT
am

ð68Þ

The cavity average Nusselt number is 2.238 from the benchmark solution of [33].
The value from the present study is 2.24, which is in good agreement with the
benchmark solution. Figure 9 shows the variation of the iteration number and CPU
time with the time-step multiple for the two algorithms. The ratio of the iteration

Figure 4. Ratios of the iteration number and the CPU time of CLEAR versus SIMPLER.

Figure 5. Lid-driven cavity in a polar cavity.
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number ranges from 0.31 to 0.39 and the value of the CPU time is from 0.37 to 0.45
(Figure 10).

Example 4: Natural convection in an annular enclosure. The diagram of
the laminar natural convection between two horizontal concentric cylinders is
depicted in Figure 11. The case studied is for Ra¼ 104, where Rayleigh number is
defined by

Ra ¼ rgbd3 DT
am

ð69Þ

Figure 6. Predicted stream function of Example 2 (Re¼ 350).
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Computations were conducted on a uniform grid system with 42� 32 meshes with
e ¼ 2:0� 10�7. Figure 12 shows the numerical results including flow field and
temperature field with the CLEAR algorithm, where the results of [34] are also
provided for comparison. The performance comparison results are displayed in
Figures 13 and 14, and the dashed line in the figure represents b ¼ 1:3 for a ¼ 0:9.
The ratio of the iteration number varies from 0.1 to 0.3 and the CPU time ratio
varies from 0.12 to 0.38. Obviously, the saving in CPU time is enormous.

Figure 7. Comparison of iteration number and CPU time for Re¼ 350 of Example 2.
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Tests of Fluid Flow with Solid Region inside in the
Computation Domain

On a staggered grid, it is easy to deal with heat transfer and fluid flow
problems of conjugated type, in which the solid exists in the computation
domain. If the solid geometry is not very complicated and not isolated from the
domain, the domain extension method [16] can be used to treat the solid part by
giving the viscosity coefficient a very large value, while for the case with isolated
solid region, the large coefficient method [35] can be employed. On a non-
staggered grid, however, the above-mentioned numerical techniques are not
enough to get a converged solution. This is because on the staggered grid, the
interface of the main grid is the location where the velocity component is posi-
tioned, and for the conjugated case, the velocity component value at the interface
can be easily treated as zero by the above-mentioned techniques. In the collo-
cated grid, the velocity components sit at the same locations as the main grid
points, and to guarantee that the velocity at the control volume interface, i.e., the
solid=fluid interface, is zero, additional steps must be adopted. In the present
study, a refined domain extension method on the collocated grid is proposed by
which the solid region can be treated in a uniform way no matter whether it is
isolated or not from the computational boundary and the velocity components in
the solid region, including at its boundaries, will always be zero. There are two
approaches for numerical computation of a conjugated problem: (1) separate
computations of the fluid and solid regions and then coupling at the interface
boundary; (2) simultaneous computation of both the fluid and solid regions by
treating the solid region as a special part of the fluid. Numerical practices often
show that the second approach is computationally more efficient [16]. In order to
implement the second approach successfully, there are three aspects that should
be fully taken into account: (1) It is important to make the velocity in the solid

Figure 8. Ratios of iteration numbers and CPU time of Example 2.
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region zero (or almost zero) in the whole iteration process. (2) The interface
velocity between solid and fluid should also be always kept at zero in the
iteration. (3) In the conjugated computation, the pressure values in the solid
region are meaningless and they should not affect the fluid pressure field. In
calculating the source term of the momentum equation of the fluid control
volume adjacent to the interface, the interface pressure value is interpolated from
the fluid side.

Figure 9. Comparison of iteration number and CPU time for Ra¼ 106 of Example 3.
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The following two numerical examples are concerned with this kind of
problem; and the solid part is treated by the above-mentioned techniques to get the
converged solution.

Example 5: Laminar fluid flow over an annular backward step. The
computation domain is depicted in Figure 15. The specific dimensions are

Figure 10. Ratios of iteration numbers and CPU time of Example 3.

Figure 11. Natural convection in an annular space.
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Figure 12. Predicted isothermals and stream functions for Ra¼ 104.

88 Z. G. QU ET AL.



Lx=Din ¼ 30 Lin=Din ¼ 5 Dout=Din ¼ 2 ð70Þ

The inlet velocity distribution is supposed to be fully developed, which satisfies

u ¼ umax 1� r2

R2
in

� �
Rin ¼ Din

2
umax ¼ 2umean ð71Þ

Figure 13. Comparison of iteration number and CPU time for Ra¼ 104 of Example 4.
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The outflow boundary condition is assumed to be fully developed. The result
obtained by Macagno and Hung [36] by both experimental and numerical methods is
the ratio of the reattachment length over inlet diameter, LR=Din, as 8.8 for Re¼ 200.
In the present study, we adopt a uniform 202642 grid (e ¼ 1:0� 10�6). The pres-
sure-equation underrelaxation factor is 0.95 for the low convergent rate of the case.
The present predicted ratio of LR=Din from the two algorithms is identical (8.5) for
the predicted Re number. The iteration number and CPU time of the two algorithms
are shown in Figure 16. The ratio of iteration number and CPU time are presented in
Figure 17. The variation range of the iteration number ratio is from 0.07 to 0.76, and
from 0.1 to 0.96 for CPU time. The maximum saving in CPU time is up to 90%.

Figure 14. Ratios of iteration numbers and CPU time of Example 4.

Figure 15. Laminar flow over an annular backward step.
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Example 6: Laminar fluid flow over a rectangular backward step. The
problem is presented schematically in Figure 18. The fluid flow for Re¼ 300 is
simulated numerically. The geometry parameters are taken from Kondoh et al.
[37], and include

H2

H1
¼ 2

L1

H1
¼ 5

L2

H1
¼ 30 ð72Þ

Figure 16. Comparison of iteration number and CPU time for Re¼ 200 of Example 5.
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The inlet velocity distribution is fully developed in dimensionless form:

X ¼ 0 1 < Y <
H1 þH2

H1
U ¼ 1:5 1�

Y� 0:5 H2

H1

� �
� 1

0:5 H2

H1

� �
24 358<:

9=;
2

V ¼ 0 ð73Þ

At the outflowQ2 boundary, fully developed condition is assumed. The Reynolds
number is defined as Re ¼ umeanH1=n. In the present study, the grid number is

Figure 17. Ratios of iteration numbers and CPU time of Example 5.

Figure 18. Flow over a rectangular backward step.
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162662 with e ¼ 1:0� 10�6. In the solid region of 0 < X < L1=H1, 0 < Y < 1, the
domain extension method is used to deal with solid parts. The compared results
shown in Figures 19 and 20. Again we can see that CLEAR perform better than
SIMPLER. The ratios of iteration number and CPU time are from 0.045 to 0.68 and
from 0.054 to 0.81, respectively.

Figure 19. Comparison of iteration number and CPU time for Re¼ 300 of Example 6.
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CONCLUSION

In this article, the implementation of fully implicit algorithm CLEAR is pro-
posed on the collocated grid system. Six typical numerical examples with available
solutions are applied to compare the CLEAR and SIMPLER algorithms. It is
revealed that the CLEAR algorithm possesses good convergent performance on
collocated grids with similar robustness compared to the SIMPLER algorithm for
various applications, showing the feasibility of the new algorithm.

For conjugated problems solved by the domain extension method, special care
must be taken on the collocated gird to guarantee the zero velocity in the solid region
and at the boundary of the solid part.
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