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Isothermal gas flows in microchannels is studied using the lattice Boltzmann method.
A novel equation relating Knudsen number with relaxation time is derived. The slip-
velocity on the solid boundaries is reasonably realized by combining the bounce-back
reflection with specular reflection in a certain proportion. Predicted characteristics in
a two-dimensional microchannel flow, including slip-velocity, nonlinear pressure drop,
friction factors, velocity distribution along the streamwise direction and mass flow rate,
are compared with available analytical and experimental results and good agreement is
achieved.
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1. Introduction

MEMS (Micro-Electro-Mechanical-Systems) devices are becoming more prevalent

in engineering applications and in scientific researches.1 Microchannels with dimen-

sions ranging from 100 microns to 1 micron have found many applications in areas

ranging from integrated cooling of electronic circuits and flow sensors, to complex

systems consisting of pumps, valves and other components.

Experimental studies for the flow measurements in microchannels have been

conducted and the results are quite contradictory. The measured friction factor by

Wu and Little2 are much higher than those predicted by the Moody chart, while

the friction factor measured in Refs. 3–5 are lower than the conventional ones. In

addition, Shih et al.
6 and Turner et al.

5 measured the local pressure distribution of

nitrogen and helium along the channel length and the nonlinear pressure distribu-

tions were clearly observed.

∗Corresponding author.

335



June 23, 2004 8:45 WSPC/141-IJMPC 00574

336 G. H. Tang, W. Q. Tao & Y. L. He

One reason accounting for the contradictory test results in the friction factor

is associated with the obvious measurement difficulties. Numerical analysis, how-

ever, provides an alternative and effective way for investigating the flow inside a

microchannel or a more complex geometry.

Arkilic et al.
7 developed a two-dimensional model for rarefied gas flow through

microchannels by solving the Navier–Stokes equations with a first-order slip-velocity

boundary condition. Chen et al.
8 numerically solved the two-dimensional, compress-

ible Navier–Stokes equations along with a first-order slip-velocity boundary condi-

tion for gaseous flow in a microchannel. For the case of Knudsen number larger than

0.1 in which slip flow approximation is not valid, the direct simulation-Monte Carlo

(DSMC) is used for investigating the flow characteristics in microchannels.9 Since

in the DSMC method the number of particles distributed in the field is directly

related to the number of molecules, the computational effort is usually very large.

Another numerical simulation method in the meso-scale level, the lattice Boltzmann

method, provides an alternative simulation tool for the microchannel flows covering

different flow regimes.

Since 1980s, the lattice Boltzmann method (LBM) has been widely used for

many kinds of continuum viscous flows that are difficult to deal with for conven-

tional numerical approaches.10 Unlike traditional kinetic methods and the DSMC

method, this model solves a simplified Boltzmann equation on regular lattices. The

LBM method has been mainly applied to the continuum flow regime since its birth.

Very recently, Nie et al.
11 and Lim et al.

12 have tried to use LBM to simulate

microflows and generated some promising results. In Ref. 11 a two-dimensional mi-

crochannel flow was simulated with bounce-back boundary treatment. Lim et al.
12

linked the relaxation time τ with the molecular free mean path λ based on an as-

sumption of λ = τ∆x, where ∆x is the lattice spacing. Therefore, the Knudsen

number can be computed as Kn = λ/H = τ/Ny, where Ny is the number of lattice

units in the y-direction.

The simulation of the microchannel flow by the lattice Boltzmann method is

in its infancy and many issues are worthy of further investigation. The aim of the

present paper is three-fold. First to investigate the relation between the Knudsen

number and the relaxation time from the basic consideration of gas kinematics,

and a new relation between Kn and τ is derived; second, the wall slip boundary

condition is treated by a combination of specular boundary and bounce-back treat-

ment based on some observable results of gas kinematics. Third, these two new

treatments of the lattice Boltzmann methods are used in a simulation of gas flow

in 2D microchannels and the results are compared with available experimental and

analytical data.

2. Lattice Boltzmann Model

The discrete lattice Boltzmann equation with the BGK collision approximation can

be written as13
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Fig. 1.  The D2Q9 lattice and particle distributions at boundaries
Fig. 1. The D2Q9 lattice and particle distributions at boundaries.

fi(r + ci∆t, t + ∆t) = fi(r, t) −
1

τ
[fi(r, t) − f eq

i (r, t)] . (1)

The parameter ci is the particle discrete velocity. For a square lattice D2Q9 model

as shown in Fig. 1, c0 = 0 corresponds to the distribution with zero velocity,

ci = (cos[(i−1)π/2], sin[(i−q)π/2])c for i = 1, 2, 3, 4, and ci = (cos[(i−5)π/2+π/4],

sin[(i− 5)π/2+π/4])c for i = 5, 6, 7, 8, where c = ∆x/∆t is the particle streaming

speed, and ∆x, ∆t are the lattice spacing and step size in time, respectively.

In Eq. (1) f eq
i (i = 0, 1, . . . , 8) stands for the equilibrium density distribution

function and for the D2Q9 lattice, one obtains the following form14

f eq
i = ρωi

[

1 +
3(ci · u)

c2
+

9(ci · u)2

2c4
−

3(u · u)

2c2

]

, (2)

where ω0 = 4/9, ωi = 1/9 for i = 1, 2, 3, 4, and ωi = 1/36 for i = 5, 6, 7, 8. The

macroscopic variables such as mass density and the momentum density are defined

by sums over the distribution functions fi(r, t)

ρ =
∑

i

fi , ρu =
∑

i

fici , p =
c2

3
ρ . (3)

In traditional lattice-BGK models, τ is chosen to be a constant. This is applica-

ble only for nearly incompressible fluids. In micro-flows, the density difference could

be quite large. Therefore, Nie et al.
11 replaced τ with τ ′ to include the dependence

of viscosity on density.

τ ′ =
1

2
+

1

ρ

(

τ −
1

2

)

. (4)

Application of the multi-scale technique (Chapman–Enskog expansion) yields the

Navier–Stokes equation with pressure p = ρkBT/m, where m = const represents

the particle mass, and dynamic viscosity

η =
c2(τ − 0.5)∆t

3
. (5)
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One can see Ref. 11 for detailed derivation of the dynamic viscosity. For a specific

computation, c, ∆t and τ remain unchanged, therefore, the dynamic viscosity of

the fluid simulated keeps constant which is required for most realistic fluids.

Nie et al.
11 defined the relation between the Knudsen number and the relaxation

parameter by the following form

Kn =
α(τ − 0.5)

ρNy

. (6)

The coefficient α was chosen to be 0.388 to best match the simulated mass flow rate

with experimental data for flow in a microchannel with a high aspect ratio. The

bounce-back boundary condition was implemented at the top and bottom plates.

It can be seen that the value of α in Nies’ model is empirical in nature. It is our

consideration that a more general expression between Kn and τ should be derived

based on the gas kinematics without introducing such empirical coefficient.

To proceed, let us review some basic concept of the gas kinetics. For gases,

the mean free path λ is the average distance traveled by molecules between colli-

sions. For an ideal gas modeled as rigid spheres, the mean free path is related to

temperature T and pressure p as follows15

λ =
kBT

√
2πpσ2

, (7)

where σ is the molecular diameter, and kB is the Boltzmann constant.

From the kinetic theory of gases, the mean free path is related to the dynamic

viscosity by

η =
1

2
λρῡm , (8)

where ῡm is the mean molecular speed which is calculated by

ῡm =

√

8kBT

πm
. (9)

The density is determined as

ρ =
mp

kBT
. (10)

From Eqs. (8)–(10), the following relation can be derived

λ =
η

p

√

πkBT

2m
. (11)

Therefore, the ratio of the mean free path to the characteristic length, i.e., the

Knudsen number, is

Kn =
λ

H
=

η

pH

√

πkBT

2m
. (12)

Since the Knudsen number changes along the microchannel in most cases, and the

outlet condition is known (usually at atmospheric condition), the channel outlet
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temperature and pressure are adopted. First we used another form of Eq. (4) for

perspicuity

τ ′ =
1

2
+

ρref

ρ

(

τ −
1

2

)

, (13)

where ρref is the constant referenced mass density. Then Eq. (5) becomes

η =
ρrefc

2(τ − 0.5)∆t

3
. (14)

Substituting Eq. (14) into Eq. (12) (since the idea behind the lattice Boltzmann

method is to construct a simplified molecular dynamics model that incorporates

many of the essential characteristics of the real microscopic process, the macro-

scopic averaged properties of the predicted results obey the desired macroscopic

equations,10 it is reasonable to relate the mean free path with the dynamic viscos-

ity in the discrete lattice Boltzmann equation), and assuming a uniform mesh and

isothermal flow, we yield the following result after a lengthy derivation

Kn0 =

√

π

24

(2τ − 1)ρref

ρ0Ny

or τ =
ρ0NyKn0

ρref

√

π/6
+

1

2
, (15)

where Kn0 is the Knudsen number at the outlet of the channel. It should be noted

that the derived constant coefficient of Eq. (15) differs from Eq. (6). This phe-

nomenon may be explained due to different boundary treatment methods discussed

in the following sections. Based on the isothermal assumption, the product of pres-

sure and Knudsen number should be constant along the channel. Then the local

Knudsen number is related to Kn0 as follows

Kn =
Kn0

P (x)
, (16)

where the local dimensionless pressure P (x) is defined as the ratio of the local

pressure to the outlet pressure.

Attention is now turned to the boundary condition treatment. In the lattice gas

automata, the so-called “nonslip” boundary condition, namely zero fluid velocity

at a given solid surface is obtained with bounce-back reflection. Free-slip boundary

condition applies to the case of smooth boundaries with negligible friction exerted

upon the flowing gas or liquid. In this case, the tangential motion of the fluid flow

on the wall is free and no momentum is to be exchanged with the wall along the

tangential component. Specular reflection is applied to obtain free-slip boundary

condition in lattice Boltzmann method. For real gas flow in microchannels, neither

pure no-slip bounce-backs nor pure free-slip specular reflections can appropriately

describe the momentum exchange and friction drag between the wall and the fluid.

Thus some combination of them is considered a better way to simulate the actual

boundary condition of gas flow in microchannels.

Another reason of this consideration stems from the experiment at the molec-

ular level described by Knudsen.15 In an experiment where molecules are directed



June 23, 2004 8:45 WSPC/141-IJMPC 00574

340 G. H. Tang, W. Q. Tao & Y. L. He

towards a wall at a fixed angle of incidence, he observed that the molecules are ran-

domly scattered in all directions. In the lattice gas automata, this would correspond

to a combination of specular and bounce-back reflections in equal proportions, i.e.,

rb = 0.5.

We define a reflection coefficient rb as the proportion of bounce-back reflections

in the interactions with the wall and 1 − rb represents the specular reflections

proportion. Therefore, rb = 1 corresponds to pure bounce-back reflection and rb = 0

to pure specular reflection. For the bottom and top wall, the boundary conditions

are given in the following forms (Fig. 1):

At bottom wall

f2(x, 0) = f4(x, 0) ,

f5(x, 0) = rbf7(x, 0) + (1 − rb)f8(x, 0) ,

f6(x, 0) = rbf8(x, 0) + (1 − rb)f7(x, 0) .

(17a)

At top wall

f4(x, H) = f2(x, H) ,

f7(x, H) = rbf5(x, H) + (1 − rb)f6(x, H) ,

f8(x, H) = rbf6(x, H) + (1 − rb)f5(x, H) .

(17b)

After the particle’s collision with the wall, the normal momentum component at

the bottom wall can be determined as follows:

Jy(x, 0) = f2 − f4 + f5 − f8 + f6 − f7 . (18)

By substituting Eq. (17a), we yield Jy(x, 0) = 0. This expression implies that the

normal velocity component vanishes, namely, no motion normal to the wall.

Due to the collapse of continuous assumption for the case of large Kn number,

a slip velocity appears even when the pure bounce-back reflection treatment is

adopted as indicated in Ref. 11, therefore rb = 0.5 seems to over-predict the slip

velocity. Compared with results from Arkilics’ model, rb = 0.7 is used to best

capture the slip-velocity on the solid–gas wall, which means that more fluid particles

will be reflected in the backward direction than the forward direction. Probably, the

value of rb is Kn number dependent. For the present Kn number range (0.055–0.16)

this value works well. Further work is underway in the authors’ group in order to

reveal the relation between Kn and rb. In our work, the pressure or density values

at the inlet and outlet are fixed, and velocity components are extrapolated from

downstream and upstream, respectively. Thus the three unknown distributions f1,

f5, f8 at the inlet and f3, f6, f7 at the outlet can be obtained.12

In the following sections, the isothermal microflows between two plane plates

are investigated with the lattice Boltzmann method mentioned above. The length

of the channel is 100 times of the height except for specially noted cases, and outlet

Knudsen number is 0.16 for helium and 0.055 for nitrogen at atmospheric outlet

condition. The corresponding channel height is 1.2 microns.
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Fig. 2. Pressure distributions in the channel.

3. Results and Discussion

Figure 2 shows the normalized pressure distribution along the channel (Pi =

1.94, Kn0 = 0.055). It can be seen that P is only dependent on normalized lo-

cation X , and it remains unchanged across the channel. Figures 3 and 4 illustrate

the tangential and normal velocity components normalized by the particle stream-

ing speed, respectively. From the figures, the following features may be noted. First

the slip-velocity at the wall and the centerline velocity increase markedly toward

the exit. This is required by the constraint of mass conservation since the pres-

sure decreases along the channel. Second, the U -velocity profile across the chan-

nel is of parabolic type and is symmetrical throughout. Third, the magnitude of

the V -velocity profile is of several orders smaller than that of U . These results

qualitatively agree well with those from previous studies (Arkilic et al.
7 and Lim

et al.
12).

Deviations from linear pressure drop (i.e., corresponding to incompressible

laminar flow) for different inlet pressures with the same outlet Knudsen num-

ber are shown in Fig. 5. Here the vertical coordinate of the plot is expressed as

P ′ = (p − plinear)/p0. We can observe that for the same outlet Knudsen number

Kn0 = 0.055, the increase in the inlet pressure, i.e., the increase in compressibility

within the channel, results in a larger deviation from the linear pressure distribution
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Fig. 3.  U-velocity distributions in the channel 

 

 

 

Fig. 3. U-velocity distributions in the channel.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  V-velocity distributions in the channel 

 

Fig. 4. V -velocity distributions in the channel.

expected in an incompressible channel flow. Furthermore, the location of maximum

deviation from linear pressure distribution moves toward the channel exit as the

inlet pressure increases. In Fig. 5, our results agree well with Arkilics’ model in the

locations of the maximum deviation from linear pressure.

The effects of different outlet Knudsen number are shown in Fig. 6. There Kn0 =

0.062 stands for argon flow in the channel at the same condition. For different Kn0

cases, it can be observed that the stronger the rarefaction effects, as indicated

by the larger value of Kn0, the smaller the deviation from the linear pressure

distribution. This means that the rarefaction effects serve to decrease the curvature

in the pressure distribution caused by the compressibility effect. Thus the effect of

the compressibility and the effect of the rarefaction on the pressure distribution are
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Fig. 5. Nonlinearity of pressure along the channel.
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Fig. 6. Nonlinearity of pressure for different Knudsen numbers.

contradictory. The final distribution of the pressure along the channel is somewhat

balance between these two effects. Generally speaking, the two effects are not equal,

resulting in a nonlinear pressure distribution.

The local Knudsen numbers along the streamwise direction are shown in Fig. 7.

As can be observed Kn is a function of the local pressure (see Eq. (14)). With the

decreasing pressure along the channel, the Knudsen number increases and reaches

its maximum value at the outlet. The results from our LBM analysis agree well

with the experimental ones in Ref. 6.
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Fig. 8.  Slip velocity distributions along the wall

Fig. 8. Slip-velocity distributions along the wall.

In Fig. 8, the variation of slip-velocity along the length of the wall is presented.

Due to the pressure drop along the channel, the local Knudsen number increases

correspondingly, resulting in an accompanying increase in the slip-velocity in the

streamwise direction. In our simulation results, the magnitude and variation trend

of the slip-velocity agree well with Arkilics’ model when rb = 0.7.

The comparisons of average friction factors predicted from the present LBM

analysis with those from other methods (including Arkilics’ model and experiments)

are presented in Fig. 9. The theoretical friction factor for fully developed incom-

pressible flow is used for normalizing C∗, C∗ = f/ftheory. The present results agree
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Fig. 10. Bulk u-velocities along the channel for nitrogen.

well with those predicted by Arkilics’ model. The predicted results for helium seem

to be more agreeable with Turners’ experiments while the predicted nitrogen results

are close to the experimental data of Pfahlers’.

Figure 10 shows the average velocity variations along the streamwise direction.

As the flow proceeds down the channel, the pressure drops and consequently, to

preserve mass continuity, the average velocity increases. The predicted results of

the present study and those of Arkilics’ are too close to be plotted as separated

curves.
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Fig. 11. Mass flow rates for different inlet pressure ratios.

Finally, we plot the mass flow rate as a function of the inlet to outlet pressure

ratio in Fig. 11 and compared it with Arkilics’ model and experiments. The height,

width and length of the channel in simulation are set to be 1.2 microns, 40 microns

and 3600 mm, respectively, which are the real parameters in Shihs’ experiments.6

The outlet Knudsen number is 0.055 for nitrogen and 0.16 for helium. As shown,

present model gives a good matching with the Arkilics’ model. The experimental

data scatter around the prediction line in a satisfaction degree within the range of

1 ≤ Pi ≤ 2.5 for nitrogen and within the range of 1 ≤ Pi ≤ 3.2 for helium.

4. Conclusions

The lattice Boltzmann method (LBM) is adopted with some modifications to sim-

ulate two-dimensional isothermal microchannel flow. A novel method relating the

Knudsen number Kn with the relaxation time τ is derived. In addition, to capture

the slip velocity on the solid boundaries more appropriately, a scheme of combin-

ing the bounce-back reflection with specular reflection is proposed and applied to

boundary condition treatment. Characteristics in the two-dimensional microchan-

nel flow including slip-velocity, nonlinear pressure drop, friction coefficient, aver-

age velocity along the streamwise direction and mass flow rate are compared with

those from Arkilics’ model and the available experimental data, and the agreements

are quite well, showing that the lattice Boltzmann method is a promising approach

for simulating the flow in microchannels.

The present model is verified to be more advantageous because we only need

to decide the proportion of bounce-back reflections rb and the predicted flow re-

sults are shown to be more close to the available data as well. Furthermore, the

present model together with the chosen rb = 0.7 is confirmed to have a fairly strong
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applicability to a wide range of Knudsen number (Kn = 0.055–0.16) and pres-

sure ratio (Pi = 1.0–3.0), which accord with the general encountered situations in

microflow applications.
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