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In Part I of this article a novel algorithm, CLEAR, was introduced. In this article the

relative performance of the CLEAR algorithm and the SIMPLER algorithm is evaluated

for six incompressible fluid flow and heat transfer problems with constant property. The six

examples cover three two-dimensional orthogonal coordinates. Comprehensive comparisons

are made between the two algorithms on the subject of iteration number for obtaining a

converged solution, and the consumed CPU time. It is found that CLEAR can appreciably

enhance the convergence rate. For the six problems tested, the ratio of iteration numbers of

CLEAR over that of SIMPLER ranges from 0.15 to 0.84, and the ratio of the CPU time

from 0.19 to 0.92.

INTRODUCTION

In Part I of this article [1] a novel algorithm was introduced. The new algo-
rithm is called CLEAR (Coupled and Linked Equations Algorithm Revised). It
differs from all SIMPLE-like algorithms in that it solves the improved pressure
directly, rather than by adding a correction term, and no term is dropped in the
derivation of the pressure equation. Thus the effects of the neighboring velocity
values are fully taken into account. The coupling between velocity and pressure is
therefore fully guaranteed, greatly enhancing the convergence rate of the iteration
process.

In this article the CLEAR algorithm is applied to solve six fluid flow and heat
transfer problems with available numerical solutions. Comparisons are made with
the solutions from the SIMPLER algorithm. In the following, the comparison
conditions and the convergence criterion are described first, followed by detailed
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presentations of the computational results of the six examples. Finally, some con-
clusions are drawn.

NUMERICAL COMPARISON CONDITIONS

In order to make a meaningful comparison between SIMPLER and CLEAR,
the numerical treatments of all other aspects should be the same. These include:

NOMENCLATURE

a fluid thermal diffusivity

A surface area

D diameter

E time step multiple

flowch characteristic (reference)

flow rate

g gravitational acceleration

H1, H2 height defined in Figure 18

L length of square cavity

L1, LR, L2 dimensions defined in

Figure 18

Lin, Lx length defined in Figure 8

r radius

R radius of tube wall

Ra Rayleigh number

Re Reynolds number

Rscv relative mass flow rate unbalance

of control volume

u; v velocity component in x, y

directions

u�; v� temporary velocity

U,V dimensionless velocity in two

coordinates

Ulid moving velocity of lid

x, y coordinates

X,Y dimensionless coordinates

a underelaxation factor

b relaxation factor

d gap width

DT temperature difference

r fluid density

m fluid dynamic viscosity

n fluid kinetic viscosity

6 angular velocity

Subscripts

in inlet; inner

max maximum

mean averaged

out outlet

Figure 1. Definition of reference flow rate for fluid flow in an enclosure.

20 W. Q. TAO ET AL.



Figure 2. Predicted velocity distributions for Re¼ 100 in Problem 1.
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Figure 3. Predicted velocity distributions for Re¼ 1,000 in Problem 1.
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1. Discretization scheme: For the stability of solution procedure and the
simplicity of implementation, the absolutely stable scheme, power-law
scheme [2], is adopted.

Figure 4. Comparison of iteration numbers and CPU time for Re¼ 100 in Problem 1.
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2. Solution method of the algebraic equations: The algebraic equations are
solved by the alternative direction implicit method (ADI) incorporated by
the block-correction technique [3].

3. Underrelaxation factor: For both the SIMPLER and CLEAR algorithm,
the same value is adopted for the underrelaxation factor a. For the
convenience of presentation, the time step multiple, E, is used in the
following presentation, which relates to the underrelaxation factor a by

Figure 5. Comparison of iteration numbers and CPU time for Re¼ 1,000 in Problem 1.
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Eq. (1) [4]:

E ¼ a
1� a

ð0 < a < 1Þ ð1Þ

Figure 6. Ratios of iteration number and CPU time of CLEAR versus SIMPLER.
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Some correspondence between a and E is presented in Table 1. It can be seen
that with the time step multiple, we have a much wider range in which to show the
performance of the algorithm in the high-value region of the underrelaxation factor.

As far as the second relaxation factor of the CLEAR algorithm is concerned,
usually it takes values according to the following relation:

b ¼
0:5 0 < a � 0:5

1 0:5 < a � 1

(
ð2Þ

For cases where a larger value of b is used, special description will be provided.
4. Convergence criterion: From the presentation of the SIMPLER and the

CLEAR algorithms in Part I, it can be seen that when the solution
approaches convergence, the temporary solution of velocity from the
momentum equation, u�, v�, should satisfy the mass conservation condition.
This is taken as the convergence criterion, which is expressed as

Rscv ¼ MAX
cv

ðru�AÞw � ðru�AÞe þ ðrv�AÞs � ðrv�AÞn
flowch

� �
� 5:0� 10�8 ð3Þ

where Rscv is the maximum relative mass flow rate unbalance of all the
control volumes in the computational domain; flowch is the characteristic (or
reference) flow rate of the problem studied. For problems with inflow and
outflow boundaries, flowch takes the mass flow rate at the inflow boundary;
for fluid flow in an enclosure, flowch is defined by Eq. 4 [5] (Figure 1):

flowch ¼
Z b

a

r uj j dy flowch ¼
Z b

a

r vj j dx ð4Þ

Figure 7. Laminar flow over an annular backward step.

Table 1. Some correspondence between a and E

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

E 0.111 0.25 0.428 0.66 1 1.5 2.33 4 9 19
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5. Grid system: Grid system character is specified individually. For each
problem the same grid system is used for execution of both the SIMPLER
and CLEAR algorithms.

The SIMPLER and CLEAR algorithms are applied to six two-dimensional
problems of fluid flow and heat transfer. They are (1) lid-driven cavity flow in a

Figure 8. Comparison of iteration number and CPU time for Re¼ 150 in Problem 2.
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square cavity; (2) laminar fluid flow over an annular backward step; (3) lid-driven
cavity flow in a polar cavity; (4) laminar fluid flow over a rectangular backward-
facing step; (5) natural convection in an annulus enclosure; and (6) natural
convection in a square cavity. These six problems cover the three 2-D orthogonal
coordinates. The number of iterations for obtaining a converged solution, the CPU

Figure 9. Comparison of iteration number and CPU time for Re¼ 200 in Problem 2.
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time, and the robustness of the algorithms are compared. To save space, the gov-
erning equations of each problem are omitted. All of the six problems are based on
the following assumptions: laminar, incompressible, steady-state, and constant fluid
property.

Figure 10. Ratios of iteration numbers and CPU time for Problem 2.
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NUMERICAL EXPERIMENTS

Problem 1: Lid-Driven Cavity Flow in a Square Cavity

Calculations are conducted for Re number ¼ 100 and 1,000. A uniform grid of
52652 is employed. The Reynolds number is defined by

Re ¼ UlidL

n
ð5Þ

In Figures 2 and 3 the velocity distribution along the two centerlines are shown, and
the benchmark solutions from [6] are also presented, where X and Y are non-
dimensional coordinates, normalized by the cavity height. It can be seen that the
solutions from the SIMPLER and the CLEAR are almost identical.

The number of iterations and the consumed CPU time are plotted in Figure 4
(Re¼ 100) and Figure 5 (Re¼ 1,000). In Figure 6, the ratios of iteration number and
CPU time of CLEAR over that of SIMPLER are presented. In the figures, the part
shown by the dashed lines is obtained by taking b ¼ 1:2, i.e., here underrelaxation of
the improved pressure must be taken in order to get a converged solution because the
intermediate velocity is predicted by a large value of the underrelaxation factor
(around 0.9). It can be seen that for Re¼ 100 the ratio of iteration number ranges
from 0.15 to 0.59 and that of CPU time from 0.19 to 0.82; and for Re¼ 1,000, the
two ranges are 0.22–0.44 and 0.29–0.59, respectively. The saving of iteration number
and CPU time is appreciable.

Problem 2: Laminar Fluid Flow over an Annular Backward Step

The computational configuration is shown in Figure 7, where Lx=Din ¼ 30,
Lin=Din ¼ 5, and Dout=Din ¼ 2. Macagno and Hung [7] carried out experimental and

Figure 11. Lid-driven cavity flow in a polar cavity.
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Figure 12. Predicted stream function in Problem 4 (Re¼ 350).
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Figure 13. Predicted stream function in Problem 4 (Re¼ 1,000).
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numerical study of this problem and provided the following results: the ratios of the
reattachment length over inlet diameter, LR=Din, as 6.5 and 8.8 for Re numbers 150
and 200, respectively. In the present study a grid system of 202642 is adopted. The

Figure 14. Comparison of iteration number and CPU time for Re¼ 350 in Problem 3.
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domain extension method is used: the inlet step region of the solid is treated as a
special fluid with very large viscosity [5]. The inlet velocity distribution is supposed to
be fully developed:

Figure 15. Comparison of iteration number and CPU time for Re¼ 1,000 in Problem 3.
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u ¼ umax 1� r2

R2
in

� �
Rin ¼ Din

2
umax ¼ 2umean ð6Þ

The fully developed boundary condition is assigned to the outflow boundary.
The predicted LR=Din from the two algorithms is the same: 6.62 for Re

number¼ 150, and 8.85 for Re number¼ 200.

Figure 16. Ratios of iteration numbers and CPU time for Problem 3.
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The iteration number and CPU time of the two algorithms are displayed in
Figures 8 and 9 for the two Re numbers. The ratios of iteration number and CPU
time are presented in Figure 10. For Re¼ 150, the ratio of the iteration number
ranges from 0.28 to 0.69, that of the CPU time ranges from 0.34 to 0.81. For Re
number¼ 200, the two ranges are from 0.25 to 0.69 and from 0.31 to 0.81, respec-
tively. The maximum saving in CPU time is up to 69%.

Problem 3: Lid-Driven Cavity Flow in a Polar Cavity

The configuration is presented in Figure 11 (y ¼ 1 radian, d=Rin ¼ 1). This
example was studied by Fuchs and Tillmark using both experimental and numerical
methods [8]. The Reynolds number is defined as

Re ¼ Ulidd
n

ð7Þ

where Ulid is the circumferential velocity of the moving lid, Ulid ¼ Rin � o.
Our computations are conducted on a grid system of 52652. The predicted

stream functions for the two Re numbers (350 and 1,000) from the two algorithms
are almost identical and are shown in Figures 12 and 13, respectively, where the
results of [8] are also presented for reference.

In Figures 14 and 15, the comparisons are presented. Again the dashed lines
are obtained with a b value greater than 1 (here it is 1.5). It can be observed from
Figure 16 that the new algorithm performance is highly superior to that of the
SIMPLER algorithm. The iteration number and CPU time of the CLEAR are only
0.27–0.84 and 0.30–0.92, respectively, of that of the SIMPLER for Re¼ 350, and
0.30–0.72 and 0.42–0.86, respectively, for Re¼ 1,000.

Problem 4: Laminar Fluid Flow over a Rectangular Backward Step

The problem is shown schematically in Figure 17. Computations are conducted
for Re¼ 100 and 300. The geometric parameters are taken from Kondoh et al.
[9]: H2=H1 ¼ 2, L1=H1 ¼ 5, L2=H1 ¼ 30. The inlet velocity distribution is fully
developed:

Figure 17. Flow over a rectangular backward step.
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X ¼ 0 1 < Y <
H1 þH2

H1
U ¼ 1:5 1� Y� 0:5 H2=Hð Þ � 1

0:5 H2=H1ð Þ

� �� �

V ¼ 0

ð8Þ

Figure 18. Comparison of iteration number and CPU time for Re¼ 100 in Problem 4.
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At the outflow boundary, fully developed condition is assumed. The Reynolds
number is defined as

Re ¼ umeanH1

n
ð9Þ

where umean is the mean velocity at the inlet section. A grid system of 122662 is used.
In the domain 0 < X < L1=H1, 0 < Y < 1, the domain extension method [5] is used
to deal with the solid region.

Figure 19. Comparison of iteration number and CPU time for Re¼ 300 in Problem 4.
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The compared results shown in Figures 18, 19, and 20 once again show the
superior performance of the CLEAR to that of the SIMPLER. The two ratios are as
follows:

For Re¼ 100, from 38% to 67% (ITER), from 43% to 83% (CPU time)
For Re¼ 300, from 34% to 66%(ITER), from 40% to 84%(CPU time)

Figure 20. Ratios of iteration numbers and CPU time for Problem 4.
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Problem 5: Natural Convection in an Annulus Enclosure

The fifth problem tested is laminar natural convection between two horizontal
concentric cylinders, depicted in Figure 21. Two cases are tested, Ra¼ 103 and 104,
where Rayleigh number is defined as

Ra ¼ rgbd3DT
am

ð10Þ

The Boussinesq assumption is adopted. Computations are conducted on a
uniform grid system with 42632 mesh.

Figure 22 shows the numerical results including flow field and temperature
field, where the results of [10] are also provided for comparison. Figures 23 and 24
show the comparison results of iteration number and CPU time. Obviously, the
performance of the CLEAR is much better than that of the SIMPLER. The aug-
mentation of convergence rate is shown in Figure 25. For Ra¼ 103, the ratio of the
iteration number varies from 0.26 to 0.48, and the CPU time ratio varies from 0.36 to
0.57, which means about half the time is saved. And for Ra¼ 104 the two ratios
range from 0.29 to 0.42 and from 0.38 to 0.56, respectively.

Problem 6: Natural Convection in a Square Cavity

The square cavity has two adiabatic walls (top and bottom), with its two
vertical walls being maintained at constant but different temperatures. Computations

Figure 21. Natural convection in an annular space.
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Figure 22. Predicted isothermals and stream functions for Ra¼ 104.
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are performed for Ra¼ 104 and 106 based on the Boussineq assumption. The Ray-
leigh number is defined by

Ra ¼ rgbL3DT
am

ð11Þ

Figure 23. Comparison of iteration number and CPU time for Ra¼ 103 in Problem 5.
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A uniform grid of 82682 is applied.
The benchmark solution [11] of the cavity average Nusselt numbers for

Ra¼ 104 and 106 are 2.238 and 8.903, respectively. In the present study the corre-
sponding values are 2.24 and 9.08, showing good agreement. The variations of the
iteration number and CPU time with the time-step multiple of the two algorithms are
shown in Figures 26 and 27 for Ra number¼ 104 and 106 respectively. The ratios of
the iteration number and the CPU time of the two algorithms are: for Ra¼ 104, from
0.19 to 0.33 (ITER), from 0.22 to 0.39 (CPU time); for Ra¼ 106, from 0.23 to 0.34
(ITER), and from 0.28 to 0.41 (CPU time) (Figure 28). Significant saving can be
obtained by using the CLEAR algorithm.

Figure 24. Comparison of iteration number and CPU time for Ra¼ 104 in Problem 5.
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Discussion

Through the above six examples, it is demonstrated that the CLEAR algorithm
can greatly improve the convergence rate of the iterative process compared with the
SIMPLER algorithm. We notice that the ratio of iteration numbers is smaller than
that of the CPU time. This is because in one iteration of the CLEAR algorithm,
extra computational effort is needed to compute the coefficients of the discretized
momentum equation with the temporary velocity without solving the equation

Figure 25. Ratios of iteration numbers and CPU time for Example 5.

44 W. Q. TAO ET AL.



thereafter. Hence for each iteration the CPU time required in CLEAR is a bit larger
than that in SIMPLER.

For the six tested problems, generally speaking, the total iteration numbers for
CLEAR are about 15% to 84% of the SIMPER algorithm, and the proportion of
CPU time is about 19–92%. We also noticed that for problems 1 and 3, in the region

Figure 26. Comparison of iteration number and CPU time for Ra¼ 104 for Problem 6.
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of high value of a, the robustness of the CLEAR algorithm is a bit weaker than that
of the SIMPLER algorithm. For example, for the case of Re¼ 350 of problem 3,
the SIMPLER algorithm can get a converged solution within the range of E
from 10 to 20 (a¼ 0.952), while the CLEAR algorithm with b¼ 1.5 works within

Figure 27. Comparison of iteration number and CPU time for Ra¼ 106 for Problem 6.
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E� 10 (a¼ 0.909). Seemingly this presents a weakness of the CLEAR algorithm.
However, this will not affect the application of the CLEAR algorithm, simply
because in the region of E � 10 the convergence rate of the CLEAR algorithm is
much faster than that of the SIMPLER in the region of E¼ 10–20.

Figure 28. Ratios of iteration numbers and CPU time for Problem 6.
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CONCLUSION

In this article, comprehensive numerical experiments have been conducted for
the CLEAR algorithm proposed in [1] and the SIMPLER algorithm. The six tested
incompressible laminar fluid flow and heat transfer problems cover three 2-D
orthogonal coordinates. Numerical experiments definitely demonstrate that the
CLEAR algorithm can significantly enhance the convergence rate of the iteration
process compared with the SIMPLER algorithm. For the six problems tested, the
CLEAR algorithm can reduce the iteration number by 16–85%, and the CPU time
by 8–81%. Because of the good coupling of the CLEAR algorithm, the maximum
value of the velocity underrelaxation factor for some situations may be a bit smaller
than that of the SIMPLER algorithm, but this will not affect the application of the
CLEAR algorithm, because of its very fast convergence rate in the normal region of
the underrelaxation factor.

Extension of the CLEAR algorithm to problems of turbulent flow, the collo-
cated grid system, and compressible fluid flow are now underway in the authors’
group.
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