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The steady natural-convection heat transfer in a tilted cylindrical envelope with constant but

different end temperatures (300 and 80 K) is investigated numerically with the lateral

surface being adiabatic. The inner diameter of the envelope is 27.8 mm and its

length=diameter ratio is 9. This is supposed to be a simplified model for the pulse tube in a

pulse-tube cryocooler when the pulse tube is positioned at different orientations. The pro-

blem studied is a typical nonlinear one in that the thermophysical properties of the working

fluid (helium) vary significant from the hot end to the cold end. Three-dimensional steady-

state governing equations are solved with fully variable thermal properties. The high

nonlinearity of the problem leads to many special characters of the convergence process,

and a very peculiar convergence process is found. Initial-field dependence is also revealed.

After quite a few preliminary computations, a series of convergence criteria are proposed.

Grid-independence examination is conducted for inclination angle of 110�. It is found that

the grid system of 20ðrÞ � 20ðwÞ � 80ðZÞ with grids in the z direction being nonuniformly

positioned can obtain a grid-independent solution. Preliminary computations are conducted

for the horizontal position with 70�C of end temperature difference. The predicted velocity

and temperature distributions are compared with available measured data. Good agreement

between the predicted and measured results provides strong support for the physical model

and numerical treatments developed in this article.
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1. INTRODUCTION

Natural convection in enclosures is a kind of classical problem in numerical
heat transfer, and many numerical and analytical studies have been performed [1–
14]. However, most of the previous investigations were based on the following
conditions. (1) The so-called Boussinesq assumption was adopted, which is valid for
limited value of temperature difference between hot and cold surfaces [15]. For
example, for air at the room temperature, the maximum temperature difference for
adopting this assumption is below 50�C. (2) As far as the geometric shape is con-
cerned, most studies were conducted for rectangular enclosures [4, 6, 8–10] or annuli
[1–3, 5, 7, 11, 12]. Very few investigations were conducted for a long cylindrical
envelope with an adiabatic lateral wall. The only two references known to the present
authors are [13, 14]. In [13], the fluid flow in a horizontal tube with two ends at
different temperatures was solved analytically. However, the flow was treated as a
forced convection with constant physical properties. The fluid flow in the pipe was
assumed to be composed of an upper portion and a lower portion which were
considered as identical except in direction. Obviously, such a flow picture cannot
represent the flow pattern in a practical tube because of the large temperature dif-
ference between the cold and warm ends. In [14] an asymptotic solution was obtained
for the velocity and temperature fields in a horizontal tube with warm and cold ends
and an adiabatic lateral surface. The Boussinesq assumption was adopted and the
asymptotic solution presented for the velocity and temperature field was valid only
for the limiting case where the Rayleigh number based on the end-to-end tempera-
ture difference approaches zero. It is evident that the velocity and temperature results
provided by [14] cannot describe the natural convection in a pulse tube. As far as
experimental work is concerned, the only publication related to the present study is
that of Kimura and Bejan [16]. They performed an experimental study of the natural
convection in a horizontal tube with the two ends at different but constant tem-
peratures. The Rayleigh number based on the tube diameter ranged from 108 to 109,
with the end temperature difference being around 80�C. Kimura and Bejan found
that at each cross section normal to the axial direction, the temperature depth

NOMENCLATURE

cp specific heat at constant pressure

D diameter

g gravitational acceleration

GM axial flow rate

k thermal conductivity

L length of the pulse tube

p pressure

pr Prandtl number

Q heat transfer rate

r radius

Re Reynolds number

S source term

T temperature

u; v;w velocity components

z axial coordinate

zw(n) axial interface position

b volume expansion coefficient

G nominal diffusion coefficient

Z fluid dynamic viscosity

y inclination angle

r fluid density

f general variable

j circumferential coordinate

Subscripts

c cold

cond conduction

h hot

m mean
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variation along the vertical diameter is almost linear. In addition, in the cross section
through the z–r plane, the measured velocity distributions show that the flow consists
of two thin jets, one flowing toward the cold end along the top surface and the other
flowing in the opposite direction along the bottom. Due to the viscosity–temperature
variation in the vertical direction, velocities in the upper (warm) jet are appreciably
larger than those in the lower (cold) jet. Although the test temperature difference of
[16] is much less than that of the present study, the Rayleigh number range of the two
studies is quite close, hence some comparisons will be made later in this article and in
the discussion of the companion article [24].

In order to have a better understanding of the peculiar characters of the natural
convection in a pulse tube, the working condition of a pulse-tube cryocooler is briefly
presented below. A schematic diagram of the pulse-tube cryocooler is presented in
Figure 1. The pulse-tube cryocooler is an attractive device of small cooling capacity
that is widely used in aerospace engineering and for military purposes because of its
inherent advantages such as no moving parts in the cold stage, low manufacturing
cost, reduced mechanical vibration, etc. As shown in Figure 1 the pulse tube itself is a
long tube with an inner diameter ranging from several millimeters to tens of milli-
meters; the ratio of its length to its diameter is usually around 10. Its two ends can be
regarded as two isothermal surfaces, with room temperature as the hot end and the
lowest temperature it can reach as the cold end. To improve the performance of the
pulse-tube cryocooler, the pulse tube is usually made of materials with low thermal
conductivity. As a first approximation, its outside surface can be regarded as being
adiabatic [17]. With present-day pulse-tube refrigerator technology, the cold-end
temperature ranges from 80 K to several degrees Kelvin. The pulse tube may be
connected with a pressure-wave generator by a long flexible tube with a length of
several meters, thereby reducing the interference noise from the compressor and
rotary valve to a negligible level. The flexible connectivity between the compressor
and the cold end also allows one to change the orientation of the pulse tube, which is
an attractive feature for application. The fluid flow in the pulse-tube system is os-
cillating, with frequency ranging from 2 Hz to tens of hertz. Different orientations of
the pulse tube leads to different relative positions of the hot and cold ends, which
may cause natural convection in the enclosure when the frequency is low. From a
heat transfer point of view, this is a natural convection in a long cylindrical envelope
with an adiabatic lateral wall. A tilted cylindrical envelope is described in Figure 2,

Figure 1. Schematic diagram of pulse tube refrigerator.
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where the origin of the Z coordinate is fixed at the hot end and y is the angle between
the axis of the pulse tube and the direction of gravity. When y¼ 0, the hot end is up
and the cold end is down; for y¼ 180, the situation is the opposite. Thummes et al.
[18] reported their experiments in this regard, and found a profound effect of the
natural convection in the pulse tube on the cooling capacity of a pulse-tube cryo-
cooler. They also adopted some available heat transfer correlations for the natural
convection in cylindrical enclosures at different orientations and estimated the heat
transfer rate by these correlations. They obtained the heat transfer rate of the natural
convection in the pulse tube from their experimental net cooling power and from the
prediction of the correlations. In the y range from 0 to 70�, and at y¼ 180�, they
obtained qualitative agreement, while in the range y¼ 70–180� the correlations they
adopted only roughly describe the observed variation of heat transfer rate. In the
present authors’ opinion, such an outcome may be expected since the correlations
they adopted are all based on small-temperature-difference cases, which cannot take
the effect of the severe variation in thermal physical properties into account. As
indicated before, the temperature difference between the hot and cold ends may be as
large as 220 K or more, the conventional Boussinesq assumption is by no means
applicable, and full consideration of the variable thermal properties must be taken
into account in the analysis of the natural convection.

The purpose of the present study is to perform three-dimensional numerical
simulation for the natural convection of helium in a simplified pulse-tube model: a
long cylindrical envelope with an adiabatic lateral surface and two isothermal end
walls (Figure 2). The flow in the envelope is assumed to be developed by the grav-
itational force only, because of the difference in the fluid density. As a first appro-
ximation, in the low-frequency region (say, several hertz), the natural-convection
and the forced-convection flow are assumed to be additive [18]. Hence, the oscillating
flow is neglected. This is a common practice in the heat transfer community in

Figure 2. Coordinates and geometry of the cylindrical envelope.
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studying mixed or combined convection. For example, for the combined free and
forced convection for external or internal flow, the total Nusselt number is expressed
as some summation of the natural (or free) convection and forced convection [19]. In
addition, the rationality of this practice is also supported by our numerical results of
the heat transfer rate between the hot and cold ends: the predicted variation pattern
of the heat transfer rate with inclined angle agrees well with the estimated curve
based on the test results in [18]. For the simulation of natural convection, we do not
adopt the Boussinesq assumption. According to [20], this is a two-part approxima-
tion: (1) it neglects all variable property effects in the governing equations, except for
the density in the momentum equations; and (2) it approximates the density differ-
ence term with a simplified equations of state,

rr � r ¼ rbðt� trÞ ð1Þ

where b is the volumetric coefficient of thermal expansion (for an ideal gas,
b¼ 1=Tr), and tr is a reference temperature. In our computation, the hot end is set at
300 K and the cold end at 80 K. The temperature difference is as large as 220 K. As
indicated above, for air it is generally required that the temperature difference be
below 50 K, and according to [21], the temperature difference should be less than
40 K, under which the Boussinesq approximation is valid [21]. Thus the above-
mentioned Boussinesq assumption is not acceptable, and the variations of the
thermal properties (including density) with temperature in all terms of the governing
equations should be taken into account. This was implemented by introducing curve-
fitting equations for l;Z; cp, and Pr in the code based on the data provided in [22],
and before every iteration the thermophysical properties were calculated from the
available temperature field. The gas density was determined by using the state
equation of a perfect gas. The length of the tube is 250 mm, and its inner diameter is
taken as 27.8 mm (L=D¼ 9.0). The average pressure in the tube is set at 18 bar,
corresponding to the average pressure in a practical pulse tube [23]. The curve-fitting
equations for the properties are as follows:

Z ¼ 2:00273� 10�6 þ 9:09908� 10�8 � T� 1:912514� 10�10 � T2

þ 3:4245� 10�13 � T3 � 1:68578� 10�16 � T4 ð2aÞ

k ¼ 1:27333 � 10�2 þ 8:3313� 10�4 � T� 3:1432� 10�6 � T2

þ 1:04193� 10�8 � T3 � 1:36503� 10�11 � T4 ð2bÞ

Pr ¼ 0:69224� 1:0539� 10�3 � Tþ 1:33212� 10�5 � T2

� 6:1066� 10�8 � T3 þ 9:3986� 10�11 � T4 ð2cÞ

Computations were conducted for every 10� increment starting from y ¼ 0�.
In the following presentation, the three-dimensional governing equations of the

physical problem will be presented first, followed by a brief description of the nu-
merical methods, including the discretization scheme of the convection and diffusion
term. Details will be provided about the convergence characteristics of the iteration
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process, including the dependence of the solution on the initial field assumption. A
series of convergence criteria will be presented. Then the grid independence of the
numerical solution will be examined. Finally, the results of a preliminary compu-
tation and comparison with available test data will be provided. Details of numerical
results, including the velocity and temperature distributions, are provided in a
companion article [24].

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

The three-dimensional governing equations for fluid flow and heat transfer in a
cylindrical envelope with variable thermal properties take the following form:

q
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where f is the general variable, representing u; v;w and T, G is the general diffusion
coefficient, and S is the general source term. For u; v;w, G¼Z, while for T, G ¼ Z=Pr.
For a case with variable thermophysical properties, the general source term takes the
following form for different variables:
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It can be seen from Eq. (4) that, apart from the pressure gradient term and the
gravitational term, numerous terms of second derivatives of velocities exist, making
the discretization and computational procedure very complicated. Actually, Eq. (4a)
may be rewritten as
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We now adopt an assumption here to simplify the computation: the values of
qZ=qz; qZ=qr; and qZ=qj are small, and the terms including them can be neglected.
Then, using the mass conservation law expressed by

qu
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r

q
qr

ðrvÞ þ 1

r

qw
qj

¼ 0 ð6Þ

the source terms for the three components of velocity may be simplified as follows:
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The boundary conditions are as follows. For u; v;w: at all solid walls, u ¼ v ¼ w ¼ 0;
at y ¼ 0 and y ¼ p; u ¼ 0; qv=qy ¼ qw=qy ¼ 0: For T: T ¼ Th at z ¼ 0; T ¼ Tc at
z ¼ L; at r ¼ R; qT=qr ¼ 0; at y ¼ 0 and y ¼ p; qT=qy ¼ 0:

In the above governing equations, the following features are worth noting. First,
the gravitational term is presented in the N–S equation as a source term, and it is the
only driving source that causes the fluid motion. Since we treat only the natural con-
vection in this article, the boundary conditions at z ¼ 0 and z ¼ L for the forced os-
cillating flow are not included. These two ends are regarded as two solid walls with
constant but different temperatures. Second, as indicated above, in the natural con-
vection the driving source of fluid motion is gravity acting on the temperature-
dependent density of the fluid. From this point of view the fluid is compressible.
However, the compressibility terms in the momentum and energy equations are
usually insignificant for the natural convection in an enclosure [21], and hence it is a
common practice that the mass conservation equation for incompressible flow is
adopted [25]. Third, the dependent variable in the governing energy equation is the
fluid temperature, and the corresponding general diffusion coefficient G ¼ k=cp ¼
Z= Pr. From this point of view, the fluid specific heat is taken as constant. However, the
variation of specific heat of helium with temperature is not so severe as thermal
conductivity or viscosity. In addition, in our computations the variation of Prandtl
number with temperature is taken into account, thus largely compensating the above
approximation.

The governing equations are discretized by the finite-volume method [26, 27].
The segregated solution algorithm, SIMPLEC, is adopted, where the momentum
equations are solved one by one, the pressure field is updated from the mass con-
servation equation, and the pressure correction is used to revise both the velocity
components and pressure. The energy equation is coupled with the momentum
equation via the source term, hence is solved simultaneously with the momentum
equations. The diffusion and convection terms are discretized by the power-law
scheme [26, 27]; the reasons for this choice will be presented later. The resulting
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algebraic equations are solved by the successive line underrelaxation method. The
grids are distributed uniformly in the radius and circumferential directions, while
nonuniform distribution is adopted in the axial direction, with more grids clustered
near the two end walls. The control-volume interface position in the z direction is
determined according to the following equation:

zwðnÞ ¼ n=N� sinð2pn=NÞ
2p

� �
L ð8Þ

where n is the serial number of the interface (n ¼ 0 to N) and N is the total number of
control volumes in the z direction.

The temperature gradients at the hot and cold walls are determined by a three-
point second-order-accurate discretized equation. The two-point formally first-order
discretization formulation is also used. Comparison showed that the numerical
difference between these two discretized expressions is very small, never larger than
1%. The grid number in three directions is 20ðrÞ � 20ðjÞ � 80ðzÞ. The three-
dimensional grid adopted in the computations is shown in Figure 3. To guarantee
the convergence of iteration, the relaxation factors for velocity components and
temperature were all taken as 0.01.

3. REPRESENTATION OF SOME SPECIAL FEATURES
OF THE ITERATIVE PROCEDURE

3.1. Variation Pattern of the Average Axial Flow Rate

The problem at hand is a highly nonlinear one in that the thermophysical
properties vary significantly along the axial direction. In Table 1 the values of
thermal conductivity et al. at 300 and 80 K are listed [23]. It can be seen that within
the envelope the thermal physical properties vary from 2.35 (thermal conductivity) to

Figure 3. Grid system used in computation.
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3.75 times (density). This makes the convergence of the iterative procedure very
difficult. After quite a few preliminary computations with different iteration num-
bers, it was found that axial flow rate of the fluid is an important index to judge
whether the convergence can be regarded as being reached or not. The average axial
flow rate is defined as follows:

GM ¼ 1

N

XN
k¼1

Z
Ok

rði; j; kÞ abs½wði; j; kÞ�r dr dj ð9Þ

where N is the number of sections in the axial direction (77 in total). It should be
noted here that the absolute values of the axial velocity w(i, j, k) were used in the
above integration. This is because in the control-volume approach the total mass
conservation for the flow in an enclosure can be satisfied at a very early stage of
iteration, thus if the algebraic values of w(i, j, k)were used in the integration, we
would get near-zero results in the early stages of iteration. Only by using the absolute
value does the integration gradually approach a constant when the iterative process
converges. Other characteristic parameters, such as rave½bLgðTh � TcÞ�1=2 (which has
the physical meaning of buoyancy force for unit volume fluid) is not sensitive to the
convergence situation, since all the included quantities are almost fixed during the
iteration. It was revealed by our numerical practice that the proposed parameter GM
is very sensitive to the iteration convergence. For any orientation of the envelope, the
value of GM first increases with iteration, reaches a maximum, and then decreases
and gradually approaches constant. The curve of GM versus iteration number ITER
for y¼ 100–180� with every 20� is presented in Figure 4. As can be seen there,
beyond the summit of the GM–ITER curve, for every inclination there is a short
period, ranging from hundreds to thousands of iterations, where GM remains almost
constant. However, beyond that region, if iteration is continued, the value of GM
gradually changes because of the high nonlinearity of the problem. And up to 40,000
iterations, no trend can be found that the value of GM is approaching constant. If
the transport process is of diffusion type, then this value will not change after a
certain number of iterations. The curves for y¼ 0–80� are presented in Figure 5,
where such characteristic variation can be clearly observed. Thus our first con-
vergence criterion is that the value of GM should be in the relatively constant region
beyond the summit of the GM–ITER curve for each inclination of the pulse tube.

3.2. Initial Field Dependency of the Numerical Solution

The solutions of highly nonlinear problems may be dependent on the initial
fields. That is the case here. A converged solution of the section averaged fluid

Table 1. Thermolphysical properties of helium

Property 300 K 80 K

Thermal conductivity, W=m K 1.505610�1 6.404610�1

Dynamic viscosity, kg=m s 1.987610�5 8.200610�6

Density, kg=m3 2.888 1.0836101

Prandtl number 0.6874 0.6658
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Figure 4. GM versus iteration number for y¼ 100–180�.
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temperature for tilted angle y¼ 120� is shown in Figure 6, where very steep tem-
perature gradients at the cold wall can be observed. For the case of y¼ 120�, the hot
wall is cooler than the cold wall, hence some natural convection occurs in the
envelope. And Figure 6 is a typical axial distribution of a convection-dominated
situation. This solution was obtained under a linear distribution for the initial
temperature field. Such a temperature variation pattern once was assumed as an
initial temperature field for the case of inclination angle 70�, in which the dominant
transport mechanism is diffusion. The resulting converged solution gives the tem-
perature distribution shown in Figure 7, which is very much like the one for the
convection-dominated situation. However, if we adopt a linear distribution of the
axial temperature for y¼ 70�, the resulting converged solution for the section
average temperature is as presented in Figure 8.

The heat transfer rates between the hot and cold ends of the two solutions were
also very different. The one from a linear initial distribution was 0.3067 W, while

Figure 4. Continued.
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Figure 5. GM versus iteration number for y¼ 0–80�.
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that from an initial field similar to the converged solution of 120� was as large as
5.15 W. It is obvious that the solution with a linear distribution is more reliable and
practical. Thus the solutions presented in this article and the companion one were all
obtained with a linear distribution of initial temperature. Multiple solutions of
nonlinear problems are often seen in the literature [31, 32]. For the cases studied, we
would not expect the solution with Z-type initial distribution to be manifested
experimentally, since the heat transfer rate is physically unrealistic.

3.3. Discussion of the Discretization Scheme

As indicated before, the power-law scheme was used in the computation. Be-
cause the power-law scheme is often treated as a low-order discretization scheme
[28], a rationale should be provided to argue for such a choice. Taking the inclination
angle of 120� as an example, it is found that when the section average flow rate
reaches its maximum, in about 12% of the control volumes the local grid Peclet

Figure 5. Continued.
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Figure 6. Section averaged axial fluid temperature for y¼ 120� with a linear initial distribution.

Figure 7. Section averaged axial fluid temperature for y¼ 70� with a Z-type initial distribution.

Figure 8. Section averaged axial fluid temperature for titled angle y¼ 70� with a linear initial distribution.
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number is larger than 140, with the maximum value being about 2,080. Thus, if we
use a conditionally stable scheme, such as central difference or QUICK, oscillation
will occur and lead finally to divergence of the solution procedure. The absolutely
stable character of the power-law scheme attracted the present authors to adopt it
for discretization. The heat transfer rate of the converged solution using the power-
law scheme is 7.221 W. To show the rationale for adopting this scheme, we also
tested such a combination: before the cross-section averaged flow rate reaches a
relatively constant region, the power-law scheme was used, and once this region was
reached the scheme was switched to central difference. The final converged solutions
for the total heat transfer rate were then compared. The total heat transfer of the
combination procedure is 7.144 W, having about 1.07% relative difference compared
to the solution of the power-law scheme. Since this difference is trivial, the com-
putational results from the power-law scheme were considered acceptable. It is in-
teresting to point out further that even in the relatively constant and low-flow-rate
region there is still 0.8% of the control volumes in which the local grid Peclet number
is larger than 140, with the maximum value being about 720. Our numerical simu-
lation showed that under such conditions the central difference for the convection
scheme can lead to a nonoscillating solution. This once again shows that the tra-
ditional analysis method for the stability of a convection discretization scheme, such
as the sign reservation rule proposed in [29], is applicable only qualitatively for
practical complex problems, and the actual critical grid Peclet number of the con-
ditionally stable scheme is problem-dependent [30].

4. CONVERGENCE CRITERIA

Based on many preliminary computations, the following conditions were found
to be suitable for the judging of iterative convergence.

The first condition is the approaching of a relatively constant value of GM
beyond the summit of the GM–ITER curve.

The second criterion is about the relative change of the mean heat transfer rate
at the hot and cold ends. It is required that between two successive iterations the
relative change of the mean heat transfer rate should be less than 107 4. The var-
iation of the relative thermal balance between the heat transfer rates at the hot and
cold ends for y¼ 60� and y¼ 100� is presented in Figure 9. It can be seen there that
only after the value of GM is beyond the summit of the GM–ITER curve can the
relative change of the average heat transfer rate in the envelope be less than a certain
desired small value.

Two more criteria are set up for mass conservation:

SMAX=GM � 1:� 10�4 ð10aÞ

AbsðSSUM=GMÞ � 1:� 10�6 ð10bÞ

where SMAX is the maximum absolute value of the control-volume mass residual,
while SSUM is the mass residual of the whole computation domain. Examples of the
variations of SMAX=GM and SSUM=GM with iteration number are shown in
Figures 10 and 11, for y¼ 120� and y¼ 180�, respectively.
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The variation of the relative thermal balance, defined as abs½ðQh �QcÞ=Qh�,
with the iteration is presented in Figure 12 for the above two inclination angles.
Such a variation pattern is representative for all inclinations. Again we see that the
outline of the relative thermal balance variation is more or less similar to that of
the GM. Only after the GM passes its summits, is it possible to find a region
where the relative thermal unbalance may be smaller than a desired tolerance. It
also can be seen that both SMAX and SSUM approach zero much sooner than the
relative unbalance in heat transfer rate. This is why we chose the parameter GM as
the first criterion for checking convergence. The average value of the heat transfer

Figure 9. Relative change in average heat transfer rate in the envelope.
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rates at the cold and hot walls are taken as the convective heat transfer loss of
the envelope.

Grid-independence examination of the numerical solutions was conducted
for y¼ 110�. The average heat transfer rate was taken as the index for judging
whether the grid system adopted may be considered fine enough for engineering
computations. Nine grid systems were examined: 13613648 (8,112 in total),
15615660 (13,500 in total), 18618664 (20,736), 19619674 (26,714), 20620
680 (32,000), 20620690 (36,000), 22622690 (43,560), 226226100 (48,400),
and 226226110 (53,200). The variation of the average heat transfer rate with

Figure 10. Variation of the relative maximum control volume mass flow residual with iteration number.
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grid point is presented in Figure 13. As can be seen there, the numerical solution
from the grid system with 20620680 grid points can be considered as a grid-
independent solution. Thus all the computations were conducted using this
grid system.

Note that for a given grid system, that the value of GM approaches constant
is the first criterion for checking convergence. However, for checking the grid
independence of the numerical solution, this condition was not used. This is because
with increase in the grid number in the z direction, the positions of cross sections
at which the terms in Eq. (9) are calculated also vary. It is obvious that if a cross
section is just across a center of a local vortex, the integral defined in Eq. (9) will

Figure 11. Variation of SSUM/GM with iteration number.
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be the largest. Departure from the center position of a local vortex will lead to
a lower value of the integral. Thus the variation of grid number in the z direction
leads to diverse numbers of the cross sections which go through the center of
local vortex, and the value of the GM does not vary consistently with the increase
of grid number in the z direction. Therefore the heat transfer rate was taken as the
major criterion for checking the grid independency.

Figure 12. Variation of relative unbalance in heat transfer rates at two ends with iteration number.

CONVECTION IN A CYLINDRICAL ENVELOPE, PART 1 393



5. PRELIMINARY COMPUTATION RESULTS

The three-dimensional code was first verified by computations of several
benchmark problems occurring in cylindrical coordinates, including the sudden ex-
pansion of laminar flow in a tube, natural convection in a horizontal annulus, and
natural convection in a vertical annulus. All the predicted flow patterns, temperature
contours, and some representative parameters agree well with the available solutions
or test results in the literature [33–35]. For example, for sudden expansion in a tube,
the predicted reattachment positions for Re¼ 50, 100, 150, and 200 agree with the
experimental results in [33] within a deviation of 2.1–5.3%. For natural convection in
a horizontal annulus, the predicted equivalent thermal conductivities for Ra¼ 1,000–
5,000 agree with the test results in [34] with a range of 7 0.56% to 2.57%. These
comparisons give strong support to verification of the developed code.

Preliminary computations were then conducted to verify the physical model
and numerical treatments developed in this article. Taking the experimental results in
[16] as the comparison basis, computation was conducted for the case of horizontal
position with a temperature difference between the two ends of 70�C. The working
fluid was helium. The predicted temperature and w-velocity component distributions
along the vertical diameter of the center cross section of the envelope are presented in
Figure 14. It can be seen that in the majority of the diameter the fluid temperature
varies almost linearly, indicating the existence of a stratified core in the tube. The
distribution of the w component shows that there are two major streams in the tube,
the upper stream which is going from the hot end to the cold end, and the lower
stream, going in the opposite direction. Such a flow pattern agrees qualitatively with
the measured result of [16] very well, providing strong support for the numerical
methods developed.

6. CONCLUSIONS

A three-dimensional steady model was established to predict the natural con-
vection in a cylindrical envelope with fully variable thermophysical properties. The
cylindrical lateral wall was assumed to be adiabatic. The two ends of the envelope

Figure 13. Grid-independence examination.
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were kept at constant but different temperatures. This model serves to simulate the
heat transfer process in a pulse tube working at low frequency. The peculiar char-
acters of the iterative solution procedure were revealed and a set of convergence
criteria were proposed. Discussion of the rationality of adopting the power-law
scheme was provided. Grid-independence examination was conducted for y¼ 110�,
and it was found that the grid system of 20620680 grid points with grids in the z
direction being nonuniformly positioned can yield a grid-independent solution.
Preliminary computation showed good qualitative agreement of the temperature and
velocity distribution along the vertical diameter in the center cross section.

Figure 14. Temperature and velocity distributions along vertical diameter at cross section of z¼ 0.119 m:

(a) temperature; (b) axial velocity.
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