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Abstract A comparative study is performed to reveal the convergence characteristics and the
robustness of four variants in the semi-implicit method for pressure-linked equations (SIMPLE)-
family: SIMPLE, SIMPLE revised (SIMPLER), SIMPLE consistent (SIMPLEC), and SIMPLE
extrapolation (SIMPLEX). The focus is concentrated in the solution at ®ne grid system. Four
typical ¯uid ¯ow and heat transfer problems are taken as the numerical examples (lid-driven cavity
¯ow, ¯ow in an axisymmetric sudden expansion, ¯ow in an annulus with inner surface rotating
and the natural convection in a square enclosure). It is found that an appropriate convergence
condition should include both mass conservation and momentum conservation requirements. For
the four problems computed, the SIMPLEX always requires the largest computational time, the
SIMPLER comes the next, and the computational time of SIMPLE and SIMPLEC are the least. As
far as the robustness is concerned, the SIMPLE algorithm is the worst, the SIMPLER comes the
next and the robustness of SIMPLEX and SIMPLEC are superior to the others. The SIMPLEC
algorithm is then recommended, especially for the computation at a ®ne grid system. Brief
discussion is provided to further reveal the reasons which may account for the difference of the
four algorithms.

Nomenclature
A = area of a cell faces
b = source term in a discretized

equation
d = ratio of area to momentum

coef®cient
E = time step multiple

[= a=(1 2 a)]
g = acceleration due to gravity
D = characteristic length of cavity
L = characteristic length of sudden

expansion

p = pressure
p* = intermediate pressure
p0 = pressure correction
qm = mass ¯ow rate
r = radial coordinate
Ra = Rayleigh number

[= gb(TH 2 TC)D 3=(an)]
Re = Reynolds number
RSMAX = the maximum residual of control-

volume mass ¯ow rate
T = temperature
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u, v = velocity components in the x and
y direction

u*, v* = intermediate velocities
u 0 , v 0 = velocity correction
x, y = spatial coordinates
a = underrelaxation factor
b = volumetric coef®cient of

expansion
r = density
e1, e2 = pre-speci®ed small values to

control convergence

Superscripts
* = intermediate value

Subscripts
e, w, n, s = cell faces
C = lowest temperature
H = highest temperature
IN = inlet diameter
m = mass
nb = neighbor points
OUT = out diameter

1. Introduction
Since the semi-implicit method for pressure-linked equations (SIMPLE)
algorithm was proposed by Patankar and Spalding (1972), it has been widely
applied to the ®elds of computational ¯uid dynamics (CFD) and numerical heat
transfer(NHT). Over the last three decades about ten variants (Acharya and
Moukalled, 1989; Date, 1986; Gjesdal and Lossius, 1997; Patankar, 1980, 1981;
Sheng et al., 1998; Van Doormaal and Raithby, 1984, 1985; Yen and Liu, 1993;
Yu et al., 2001) were proposed to improve the convergence performance, and
these algorithms consist the so-called SIMPLE-series or SIMPLE-family
solution algorithm. Today the SIMPLE-family is probably the most popular
algorithm for solving incompressible Navier-Stokes equations with primitive
variables. In the past decade, the SIMPLE-series algorithms were also
successfully extended to solving compressible ¯uid ¯ow (Demirdzic et al., 1993;
Karki and Patankar, 1989; Shyy et al., 1992). Among the different variants, the
most often used algorithms are SIMPLE, SIMPLE revised (SIMPLER). SIMPLE
consistent (SIMPLEC) and SIMPLE extrapolation (SIMPLEX). The SIMPLEST
algorithm (Spalding, 1980) is essentially the same as SIMPLE, with a difference
only in the discretization scheme for the convection term. By algorithm we
mean the way to deal with the coupling between the velocity and pressure, thus
we do not take it as a new variant of the SIMPLE-family.

A number of comparisons between the different variants of the SIMPLE-
family have been conducted (Barton, 1998; Jang et al., 1986; Latimer and
Pollard, 1985; McCuirk and Palma, 1993). The emphasis of these comparison
works is often concentrated on the convergence rate for solving some typical
problems, and the grid number used is usually in the range of 10 £ 10 to
30 £ 30: With the rapid advances in computer technologies and the constantly-
reduced prices of computers, nowadays even using a PC, people can easily deal
with a network with 100 £ 100 grids. Thus the convergence characteristics of
these algorithms remain an interesting subject for further study. To the authors
knowledge, only Moukalled and Darwish (2000) and Van Doormaal and
Raithby (1985) have clearly indicated the convergence characteristics of the
above algorithms at ®ne grids.
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When Van Doormaal and Raithby (1985) proposed the SIMPLEX algorithm,
they regarded that the SIMPLEX experienced an optimization in convergence
with grid re®nement when compared to the SIMPLEC method. Recently,
Moukalled and Darwish (2000) have made a uni®ed study about ten algorithms
belonging to the SIMPLE-series. In that article, the authors indicated that in all
SIMPLE-based methods, no care is taken to ensure that the rate of convergence
will not degrade with grid re®nement. This concern is addressed in SIMPLEX.
It is emphasized that the SIMPLEX algorithm has a lower degradation in the
rate of convergence with grid re®nement as compared to other SIMPLE-like
algorithms. And the following conclusion made in Van Doormaal and Raithby
(1985) was recited in Moukalled and Darwish (2000): for suf®ciently ®ne grids
SIMPLEX is more ef®cient than SIMPLE, SIMPLER and SIMPLEC. Since the
meaning of words ª®neº and ªcoarseº are only qualitative and relative, it is
necessary to reveal speci®cally what is the ®ne grid used in Van Doormaal and
Raithby (1985). It turns out that the so-called ®ne grid in Van Doormaal and
Raithby (1985) is just 25 £ 25 for 2D case. De®nitely, the grid system of
(25 £ 25) could not be regarded as a ®ne one today. So a question comes into
being as whether the statement made in Van Doormaal and Raithby (1985) and
Moukalled and Darwish (2000) is still applicable? In the present study, by ®ne
grid we mean a grid with grid number in the level of 100 £ 100 or so for 2D
case. We compare the convergence characteristics of the SIMPLE, SIMPLEC,
SIMPLER and SIMPLEX for four cases and get a conclusion different from that
of Van Doormaal and Raithby (1985).

In the following presentation, the major features of the four algorithms will
be very brie¯y reviewed at the staggered grid system, and then convergence
comparison by using the four algorithms will be conducted for the four selected
problems, including the forced convection and natural convection in three 2D
coordinates. Two criterias will be selected to judge the convergence: the
criterion of mass conservation and the criterion of both mass conservation and
momentum conservation. The robustness of the four algorithms will also be
compared. Finally, some conclusions will be drawn.

2. Mathematical formulation of the four algorithms compared
The problems we solve here are assumed to be at steady state with constant
properties. Thus for the simplicity of presentation, only the discretized mass
and momentum equations are dealt with. The governing equation of
temperature does not effect the algorithm we compared here, hence, will be
omitted. Furthermore, to show the major features of the different algorithms,
the pressure-correction equation is derived for a 2D incompressible ¯uid ¯ow
problem in Cartesian coordinates. For the details of the derivation, Patankar
(1981) and Tao (2001) may be consulted. The symbols used in Patankar (1981)
are adopted here.
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The discretized ¯ow governing equations are as follows:
Mass conservation:

(ruDy)e 2 (ruDy)w + (rvDx)n 2 (rvDx)s = 0 (1)

Momentum conservation:

aeue =
P

au
nbunb + bu + ( pP 2 pE )Ae

anvn =
P

av
nbvnb + b v + ( pP 2 pN )An

9
=

; (2)

The solution consequence is: guess velocity ®elds to evaluate the coef®cients of
the momentum equations; guess a pressure ®eld p* and solve the discretized
momentum equations to obtain temporary solutions of velocity denoted by u*,
v*. To improve u*, v* such that the improved velocity satisfy the mass
conservation condition, a pressure correction term p 0 and the corresponding
velocity correction terms u 0 , v 0 should be added to their current values. Then by
subtraction of the momentum equations for u*, v*

aeu*
e =

P
au

nbu
*
nb + bu + ( p*

P 2 p*
E )Ae

anv*
n =

P
av

nbv
*
nb + b v + ( p*

P 2 p*
N )An

9
=

; (3)

from the momentum equations for u = u* + u 0 ; v = v* + v 0

ae(u*
e + u0

e) =
P

au
nb(u

*
nb + u 0

nb) + bu + [( p*
P + p 0

P ) 2 ( p*
E + p0

E )]Ae

an(v*
n + v 0

n) =
P

av
nb(v

*
nb + v 0

nb) + b v + [( p*
P + p0

P ) 2 ( p*
N + p 0

N )]An

9
=

; (4)

we can yield the following expressions:

aeu
0
e =

P
au

nbu
0
nb + ( p 0

P 2 p 0
E )Ae

anv 0
n =

P
av

nbv
0
nb + ( p 0

P 2 p 0
N )An

9
=

; (5)

Equation (5) tells us that the velocity correction consists of two parts. One is the
pressure correction difference between two adjacent points which are in the
same direction as the velocity, and this part is the direct motive force bringing
the velocity correction. The other part is caused by the neighborhood velocity
correction which can be regarded as the indirect in¯uence of the pressure
corrections at nearby locations. The main approximation made in the SIMPLE
algorithm is to neglect the in¯uence of these nearby velocity corrections. This
hypothesis is equivalent to set coef®cients anb = 0 in equation

P
au

nbu
0
nb; then

we can get the velocity correction equation
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u 0
e = de( p 0

P 2 p 0
E ); de = Ae

ae

v 0
n = dn( p 0

P 2 p 0
N ); dn = An

an

9
>=

>;
(6)

Equation (6) is used to compute the velocity correction value in the SIMPLE
algorithm. And the resulting velocity u = u* + u 0 ; v = v* + v 0 are taken as
the solution of this iteration level. Substituting ue = u*

e + de(p 0
P 2 p 0

E ) and
vn = v*

n + dn( p0
P 2 p 0

N ) into the continuity equation (1), we obtain the pressure
correction equation

aPp 0
P =

X
anbp

0
nb + bP (7)

where aE = redeDy; aN = rndnDx; aP =
P

anb and bP = (ru*Dy)w
e +

(rv*Dx)s
n: In the SIMPLE algorithm, under-relaxation is needed for p 0 , since

it is considered that the value of p0 is exaggerated because of the neglect of the
nearby velocity corrections in equation (5).

The primary distinction between the SIMPLEX and SIMPLE and the
SIMPLEC and SIMPLE is the determination of the coef®cient d in equation (6).
Van Doormaal and Raithby (1984) take the following form for d:

de =
AeP

anb 2 ae

; dn =
AnP

anb 2 an
(8)

The subtraction of the diagonal coef®cient from the summation of coef®cients
of the neighboring velocities in the denominator of equation (8) greatly alleviate
the in¯uence of neglecting the nearby velocity corrections in equation (5). This
improvement leads to the SIMPLEC algorithm, and no underrelaxation is
needed for the pressure correction in the SIMPLEC algorithm.

In another development Van Doormaal and Raithby (1985) extend the
equation u 0

e = de( p 0
P 2 p 0

E ) = deDp 0
e to the computation of the neighborhood

velocity correction by supposing u 0
nb = dnbDp 0

nb: This practice is equivalent to
extrapolate the expression of the velocity correction at location studied to all
the nearby locations. The substitution of the above equation into the discretized
momentum equation (3), results in the equation

aedeDp 0
e =

X
anbdnbDp 0

nb + AeDp 0
e (9)

Further approximation is made in Van Doormaal and Raithby (1985) that
Dp0

e = Dp 0
nb: Substitution of this approximation into equation (9) leads to the

following equation for de

aede =
X

anbdnb + Ae (10)

The equation for dn, ds and dw can be obtained similarly. Because the
coef®cients of the discretized momentum equation for u and v are already
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calculated and available, the values of de and dn can be determined by solving
the algebraic equations on each iteration of the segregated solution procedure.
It is considered that the de and dn such determined have considered the
in¯uence of the nearby velocity corrections. To identify the use of the
extrapolation in determining d, the character X is appended to SIMPLE,
leading to a new variant SIMPLEX (Moukalled and Darwish, 2000). Obviously,
the pressure correction p0 in the SIMPLEX algorithm need not be underrelaxed
either. The SIMPLEX algorithm is implanted by executing the following
sequence of steps:

(1) guess a velocity ®eld, u0 and v0 to evaluate the coef®cients and the
constant of momentum equations;

(2) guess a pressure ®eld, p* ;

(3) compute the equations u, de, v and dn to get u*
e ; de, v*

n and dn equations;

(4) solve the pressure correction equation to acquire p 0 according to the
value of u*

e ; de, v*
n and dn;

(5) improve the velocity ®eld according to p0 , de and dn;

(6) using the improved velocity ®eld (u* + u0 ; v* + v 0 ) and the pressure
®eld ( p* + p 0 ); return to step 3. Repeat this cycle until convergence
is achieved. The velocity need to be underrelax ed except for the
pressure.

As far as the SIMPLER algorithm is concerned, its major difference from the
SIMPLE algorithm is that the pressure ®eld is solved from the previous
velocity ®eld, rather than assumed. And the pressure correction is only used to
correct the velocity ®elds, not the pressure.

The four algorithms discussed above have been implemented in this article.
The code developed is veri®ed through three benchmark problems (lid-driven
cavity ¯ow in rectangular coordinates, ¯ow in a 2D axisymmetric sudden
expansion and natural convection in a square cavity). The results agree well
with benchmark solutions available in the literature. Then the code is used to
perform the comparison study for the convergence characteristics. The results
are presented in the following section.

3. Results of comparison study
Four ¯ow and heat transfer problems (lid-driven cavity ¯ow, ¯ow in a 2D
axisymmetric sudden expansion, ¯ow in annulus with the inner wall rotating
about the axis and natural convection in a square cavity) are used to compare
the convergence rate and robustness. The four test cases are depicted
schematically in Figure 1. The governing equations for the four problems are
those for 2D incompressible ¯uid. For the natural convection, we adopt the
Boussinesq assumption. All of these are well documented in Patankar (1980)
and Tao (2001), and will not be restated here for simplicity.
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The comparisons for the convergence characteristics of the four algorithms are
conducted under two criteria for the iteration convergence. The ®rst one is the
maximum relative residual of control-volume (SMAX) in the continuity
equation which is less then a pre-speci®ed value.

RSMAX =
SMAX

qm
# emass (11)

where qm is the reference mass ¯ow rate. For the open system, such as ¯ow in a
2D axisymmetric sudden expansion (Figure 1(b)), we take the inlet mass ¯ow
rate as the referenced qm. For the closed system, for example lid-driven cavity
¯ow (Figure 1(a)) and natural convection in a square cavity (Figure 1(c)), we
make a numerical integration for the ¯ow rate along any section in the ®eld to

Figure 1.
Four problems for
performance study
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obtain the reference qm (Tao, 2001) by adopting the absolute value of the
velocity. The second criterion requires both the relative maximum mass
residual and the relative residual module in the momentum equations are also
less than pre-speci®ed small values. Thus apart from equation (11), following
condition is added

Á

node

X
(

aeue 2

"

nb

X
anbunb + b + Ae( pP 2 pE )

#)2!1=2,

ru2
m # emom (12)

We take the inlet momentum as the referenced momentum in the above
equation for the open system. For the closed system, ®rst we get the numerical
integral of the momentum along any section, then we adopt their average value
as the reference momentum.

3.1 Convergence comparison under the ®rst criteria
Under this condition, we compare the four algorithms for the two problems: lid-
driven cavity ¯ow and ¯ow in annulus with the inner wall rotating about the
axis. We adopted the underrelaxation factor of au;v = 0:8 for all the algorithm
compared and ap = 0:3 for the SIMPLE only. It was found that the SIMPLER
algorithm needs the least computation time but the results are inferior to all
others. The behavior of SIMPLEX is the opposite. The phenomenon becomes
severe with grid re®nement. The details are presented below.

Problem 1: Lid-driven cavity ¯ow. Figure 2 shows the velocity distributions
at the horizontal centerline together with the computational benchmark
solutions for Re = 1;000 (Ghia et al., 1982). In the abscissa of each ®gure the
required CPU time of a PC with 128 M memory and 400 MHz frequency is
indicated. It can be observed that the solution differences among the four
schemes are insigni®cant when the grids are not ®ne (82 £ 82); but the
differences increase with grid re®nement. Because of the space limitation only
the results of the ®nest grid system (202 £ 202) are provided. From the ®gure,
it can be seen that the solution accuracy of SIMPLER is the worst, and the
results of SIMPLEX is the best. As far as the CPU time is concerned,
the SIMPLER algorithm needs the least, while the SIMPLEX the most. The
phenomenon becomes more severe with grid re®nement. The solutions of
SIMPLEC is superior to that of SIMPLE but inferior to that of SIMPLEX at
®nest grid.

Problem 2: Flow in annulus with the inner wall rotating about the axis. For
this case, the analytical solution of the tangential velocity distribution along the
radius is adopted as the benchmark solution (Bird et al., 2002). The relative
results are shown in Figure 3. The behavior of the four algorithms is the same
as that in problem 1.
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Figure 2.
Comparison between
four algorithms under
®rst convergence
criterion for lid-driven
cavity ¯ow
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Figure 2.
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3.2 Convergence comparison under the second criterion
As indicated above, the second criterion includes the requirement for both mass
conservation and the momentum conservation. The underrelaxation factors
used are au;v = 0:8; aT = 0:8 and ap = 0:3: Computations are performed for
four problems mentioned above. Since the qualitative results are more or less
the same, to save the space, only the results for ¯ow in a 2D axisymmetric
sudden expansion and natural convection in a square cavity are provided here.
These two problems cover the forced convection and natural convection, and
also represent the Cartesian coordinates and cylindrical coordinates.

Problem 3: Flow in a 2D axisymmetric sudden expansion. The computational
results are presented in Table I. We can see there that the predicted value of the
representative parameter Lr=Din are almost identical under the same grid
density for the four algorithms compared. Such a uniformity in numerical
results are reasonable and expected. Since it is generally considered that

Figure 2.
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Figure 3.
Comparison between

four algorithms under
®rst convergence

criterion for ¯ow in an
annulus with inner

surface rotating
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Figure 3.

EC
20,3

332



the accuracy of a numerical solution mainly depends on the discretization
scheme and the grid ®neness, while the iteration convergence rate depends on
the algorithm dealing with the coupling between velocity and pressure
(Tao, 2001). The solution uniformity of the four algorithms also implies that

Figure 3.

Lr/DIN ( Re = 150) Time(s)

Grid SIMPLE SIMPLER SIMPLEC SIMPLEX SIMPLE SIMPLER SIMPLEC SIMPLEX

32 £ 12 6.510505 6.510505 6.510505 6.510505 0.200288 0.210302 0.280403 0.520748
52 £ 12 6.288261 6.288261 6.288261 6.288261 0.350504 0.420604 0.450648 1.321901
102 £ 18 6.709247 6.709247 6.709247 6.709247 1.682419 2.453528 1.542218 7.801218
152 £ 22 6.633205 6.633205 6.633205 6.633205 4.816926 7.240411 4.696754 26.11756
202 £ 42 6.628800 6.628800 6.628800 6.628800 51.88461 77.19099 52.36530 142.1244
Source: Macagno and Hung (1967) 6.5

Table I.
The predicted

values of Lr /DIN and
the computation

time with different
grid density
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the second criterion is more appropriate for the judging of convergence.
As far as the CPU time is concerned, the time spent by SIMPLEX is the most,
and secondly is the SIMPLER.

Problem 4: Natural convection in a square cavity. The results are listed in
Table II. Again we can see the uniformity of the four solutions. The expense of
CPU time of SIMPLEX is the most, and that of the SIMPLE is the least (except
for the 42 £ 42 case) while that of SIMPLEC is somewhere in between.

3.3 Comparison of algorithm robustness
It is, generally, considered that if an algorithm can lead to a convergence
solution within a wide rage of the relaxation factor, the algorithm possesses
good robustness. It is based on this understanding that we performed the
robustness comparison. In order to have a wide variation range, the so-called
time step multiple (Van Doormaal and Raithby, 1984) is used instead of the
underrelaxation factor. According to the above discussion, the second
convergence criterion is adopted here. The results are presented in Figures 4-6.
In the ®gures, the X-coordinate stands for the time step multiple
E (E = a=(1 2 a)); and the Y-coordinate is the computation time (TIME(s)).
The variation range of the time step multiple within which a convergence
solution can be acquired is regarded as the symbol of the robustness. The wider
the range, the better the robustness. From these ®gures, the same conclusion
can be made: the robustness of SIMPLE is always the worst whether the grid
are coarse or not. The SIMPLER behaves as the SIMPLEC and SIMPLEX in
coarse grid and experiences a degradation in convergence with grid re®nement.
The robustness of SIMPLEC and SIMPLEX are almost the same. These ®gures
also tells us that the SIMPLER and SIMPLEX need more computation time
than that of the SIMPLE and SIMPLEC.

4. Further discussion on the difference between the four algorithms
We have found that there are some differences among the four algorithms.
Following discussion tries to further reveal the reasons that account for
the difference. The main distinction among them is the determination of the
coef®cient de, dn except that the SIMPLER needs to solve the pressure equation.
The difference of d expression is listed in Table III. From our numerical

Nu (Ra = 10,000) Time(s)

Grid SIMPLE SIMPLER SIMPLEC SIMPLEX SIMPLE SIMPLER SIMPLEC SIMPLEX

22 £ 22 2.299 2.299 2.299 2.299 1.452088 1.81261 1.572261 2.443514

42 £ 42 2.258 2.258 2.258 2.258 4.296177 3.34481 4.556552 6.269014

82 £ 82 2.248 2.248 2.248 2.248 43.31228 50.3721 47.61847 61.38827

102 £ 102 2.247 2.247 2.247 2.247 112.672 132.009 121.8552 165.7884

Source: Yu et al. (2001) 2.245

Table II.
The results of the
average Nusselt
number and the
computation time
under different grid
density
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Figure 4.
Robustness comparison

for lid-driven cavity ¯ow
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Figure 5.
Robustness comparison
for ¯ow in a 2D
axisymmetric sudden
expansion
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Figure 6.
Robustness comparison

for natural convection in
a square cavity
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practices, we found that if we solve a problem under the same condition
(the same grid density, the same underrelaxation factors and the same
convergence criterion, etc.), the values of de, dn solved by SIMPLE and
SIMPLER are close to each other when the convergence solution is approached,
and the same applies to SIMPLEC and SIMPLEX. Tables IV-V show the value of
de of two arbitrary points in two test cases. We can see from the tables that the
value of de solved by the SIMPLEC and SIMPLEX is about ®ve times larger than
that of the SIMPLE and SIMPLER. Whether the de is the factor to affect the
robustness or not is open to discussion. Now that the value of de solved by the
SIMPLEC and SIMPLEX is nearly the same, while the SIMPLEC need not solve

Method Approximation de

SIMPLE
P

au
nbu

0
nb = 0 Ae/ae

SIMPLER
P

au
nbu

0
nb = 0 Ae/ae

SIMPLEC
P

au
nb(u

0
nb 2 u 0

e) = 0 Ae=(ae 2
P

anb)
SIMPLEX Dp 0

e = Dp 0
nb aede =

P
anbdnb + Ae

Table III.
The contrast of four
methods in
approximation

22 £ 22 42 £ 42

SIMPLE SIMPLER SIMPLEC SIMPLEX SIMPLE SIMPLER SIMPLEC SIMPLEX

du (10, 6) 1.135 1.135 5.676 5.634 0.5927 0.5927 2.964 2.928
du (20, 20) 1.183 1.183 5.916 6.060 0.5960 0.5960 2.980 2.979

82 £ 82

SIMPLE SIMPLER SIMPLEC SIMPLEX

du (10, 6) 0.2981 0.2981 1.490 1.474
du (20, 20) 0.2975 0.2975 1.488 1.488

Table V.
The value of de of
two arbitrary points
(natural convection
in a square cavity)

25 £ 25 42 £ 42

SIMPLE SIMPLER SIMPLEC SIMPLEX SIMPLE SIMPLER SIMPLEC SIMPLEX

du (12, 7) 2.500 2.500 12.50 12.52 1.929 1.930 9.643 9.525
du (22, 22) 2.064 2.064 10.32 8.593 1.874 1.873 9.368 9.265

82 £ 82

SIMPLE SIMPLER SIMPLEC SIMPLEX

du (12, 7) 0.9999 0.9999 4.999 4.976
du (22, 22) 0.9612 0.9612 4.803 4.798

Table IV.
The value of de of
two arbitrary points
(lid-driven cavity
¯ow)
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the d equations, the computation time by the SIMPLEC being less than that
of the SIMPLEX is the natural outcome. From the four problems computed, it
may be concluded that the SIMPLEC is superior to all others when ®ne grid
system is used.

5. Conclusions
In this paper, the convergence character and the robustness of four variants in
the SIMPLER-family are compared through four typical 2D ¯uid ¯ow and heat
transfer problems at ®ne grids (grid number being in the order of 100 £ 100).
The following conclusions can be made.

(1) The criterion for judging the iteration convergence of ¯uid ¯ow and heat
transfer problems is recommended to include both mass conservation
and momentum conservation requirements. The mass conservation
condition alone is not an adequate criterion, in that different algorithms
may lead to different numerical solutions with other conditions being the
same.

(2) For the four problems computed with the appropriate convergence
criterion, the SIMPLEX needs the largest CPU time, the SIMPLER comes
next, and the SIMPLE and SIMPLEC need the least computational time.

(3) Under the same conditions, the SIMPLE have the worst robustness and
the next is the SIMPLER. The robustness of the SIMPLEC and
SIMPLEX are almost the same and superior to that of the other two
algorithms.

(4) To sum up, the SIMPLEC algorithm is recommended for the solution of
incompressible ¯uid ¯ow and heat transfer problems, especially when
the grid density is ®ne, being in the order of 100 £ 100:
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