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The interpolative reasonableness is analyzed and the conditions for the construction of

bounded, accurate scheme with interpolative reasonableness (BAIR) are presented. It is

required that the interfacial variable have a positive response to the disturbance occurring at

the main grid point and that the transportive property be kept (dynamic interpolate rea-

sonableness, DIR). A new high-order-accurate and bounded (HOAB) scheme based on the

BAIR is proposed for the calculation of incompressible flow. The new scheme, HOAB,

is tested by five problems: (1) pure convection of a stepwise profile in an oblique uniform

velocity field, (2) pure convection of a double-step profile in an oblique uniform velocity

field, (3) pure convection of an elliptical profile, (4) lid-driven cavity flow, and (5) turbulent

flow over a backward-facing step. The computational results are compared with the results

of five high-resolution schemes: Zhu and Rodi’s MINMOD scheme, Van leer’s CLAM

scheme, Chakravarthy and Osher’s OSHER scheme, Gaskell and Lau’s SMART scheme,

Darwish’s STOIC scheme, and exact solution=benchmark solution or experimental data.

The numerical tests show that the new scheme is capable of capturing steep gradients

while maintaining boundedness of solutions and is more accurate than the other five high-

resolution schemes.

INTRODUCTION

Upwind-based lower-order schemes such as the power-law scheme were pop-
ular because they are absolutely stable and possess boundedness. Physically plausible
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numerical results can be predicted by using them for strong convection computa-
tions. Recently, however, the lower-order schemes have received ever-increasing
criticism because of their well-known deficiency of being highly diffusive [1–3]. On
the other hand, high-order schemes such as the central difference scheme and the
QUICK scheme can provide higher-accuracy numerical solutions. Here by high-
order schemes we mean schemes which possess at least second-order accuracy of the
truncation error. They have been used more and more widely nowadays. However,
they often suffer from the drawbacks of oscillatory or overshoot=undershoot
behavior when grid Peclet number is larger than some limit or there exists a sharp
change of profile in the computational domain. In order to overcome these short-
comings of high-order schemes, many efforts have been made which led to the
development of high-resolution (HR) schemes. High-resolution schemes based on
convective boundedness criteria (CBC) proposed by Gaskell and Lau [4] can provide
numerical solution with high accuracy while removing overshoot=undershoot or
nonphysical oscillatory behavior. Therefore, how to construct a high-order-accurate
and bounded scheme becomes significant in the field of numerical heat transfer=
computational fluid dynamics (NHT=CFD). Many high-resolution schemes have
been proposed, such as MINMOD [5], CLAM [6], OSHER [7], SMART [4], STOIC
[8], andWACEB [9]. Especially the STOIC scheme was found to be the most accurate
high-order scheme without undue physical oscillations or numerical smearing.

Since Gaskell and Lau’s CBC can only guarantee the boundedness, without
any constraint to the accuracy, it is useful to consider further how to construct the
definition line(s) (hereafter, characteristic line for simplicity) in the normalized
variable diagram (NVD) such that the resulting scheme has both boundedness and
high accuracy.

The objective of this study is (1) to find the conditions for the construction of
a bounded, accurate scheme from the viewpoint of interpolation reasonableness

NOMENCLATURE

A coefficients in the discretized

equation

b source term

CIF convective influx

f relationship function

H step height in problem 5

k turbulent kinetic energy

L characteristic length

of cavity

S source term

Re Reynolds number

u, v velocity component in x and

y coordinates

x, y spatial coordinates

a variable parameter in Eq. (3)

G generalized diffusion

coefficient

Dx cell dimension

e dissipation of turbulent

kinetic energy

m dynamic viscosity

r density

f general dependent variable

Subscripts

C central grid point

D downstream grid point

e, w cell faces

EE, E, W, P, N, S main grid points

f cell faces

NB neighbor grid point

R reattachment

U upstream grid point

Superscript

^ a normalized variable
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(BAIR), (2) to propose a new high-order-accurate and bounded (HOAB) scheme
based on BAIR and compare the HOAB scheme with other high-resolution schemes
for both pure convection and laminar and turbulent convection-diffusion problems.

HIGH-ORDER SCHEMES IN NUMERICAL DISCRETIZATION
OF THE TRANSPORT EQUATION

For simplicity, a one-dimensional incompressible governing equation is
adopted to show numerical discretization of the transport equation. The extension to
two or three dimensions is simple and straightforward. A finite-volume method is
used to discretize the following transport equation on a uniform grid system as
shown in Figure 1:

qruf
qx

¼ q
qx

G
qf
qx

� �
þ S ð1Þ

where u is the velocity, f is any dependent variable, and r , G, and S are the density,
diffusion coefficient, and source term, respectively.

Integrating Eq. (1) over a control volume as shown in Figure 1, we have

ðruÞefe � ðruÞwfw

Dx
¼ Ge½ðfE � fPÞ=Dx� � Gw½ðfP � fWÞ=Dx�

Dx
þ Sp ð2Þ

In the above equation, the diffusive term is discretized by a second-order central
difference scheme. As for the convective term, some well-known high-order schemes
have been proposed to get higher accurate solution, such as the second-order upwind
difference scheme (SUD), the central difference scheme (CD), the Fromm scheme
[10], the QUICK scheme [11], and the third-order upwind difference scheme (TUD).
For the QUICK scheme,

For ue � 0; fþ
e ¼ �0:125fW þ 0:75fP þ 0:375fE

For ue < 0; f�
e ¼ �0:125fEE þ 0:75fE þ 0:375fP

ð3Þ

It is well known that the QUICK scheme is a third-order-accurate approximation,
OðDx3Þ, for the cell-face interpolation. By introducing a second-order curvature
compensation,

Figure 1. Uniform grid system.

NEW SCHEME FOR INCOMPRESSIBLE FLOW 21



For ue � 0; Curvþ ¼ aþe ðfw � 2fp þ fEÞ

For ue < 0; Curv� ¼ a�e ðfEE � 2fE þ fPÞ
ð4Þ

to the third-order-accurate approximation of fe in Eq. (3), a general form for all the
high-order schemes can be expressed as [4]

For ue � 0; fþ
e ¼ �ð0:125þ aþe ÞfW þ ð0:75þ 2aþe ÞfP þ ð0:375� aþe ÞfE

For ue < 0; f�
e ¼ �ð0:125þ a�e ÞfEE þ ð0:75þ 2a�e ÞfE þ ð0:375� a�e ÞfP

ð5Þ

where ae is a finite-variable parameter and the leading truncation error in Eq. (3) is
OðaeDx2Þ. Table 1 lists ae values for several well-known high-order schemes. The
accuracy increases with decrease of the absolute value of ae, and ae ¼ 0 is indicative
of the maximum accuracy obtainable, OðDx3Þ.

Similarly, we have

For uw � 0; fþ
w ¼ �ð0:125þ aþw ÞfWW þ ð0:75þ 2aþw ÞfW þ ð0:375� aþw ÞfP

For uw < 0; f�
w ¼ �ð0:125þ a�w ÞfE þ ð0:75þ 2a�w ÞfP þ ð0:375� a�w ÞfW

ð6Þ

where aw is the corresponding value of the variable a at the left-hand face of the
control volume centered at node P.

All these convection schemes can be written in a general compact form as
follows:

For ue � 0; fþ
e ¼ fP þ ðfþ

e � fPÞ

For ue < 0; f�
e ¼ fE þ ðf�

e � fEÞ
ð7Þ

Similarly, we have

For uw � 0; fþ
w ¼ fW þ ðfþ

w � fWÞ

For uw < 0; f�
w ¼ fP þ ðf�

w � fPÞ
ð8Þ

On the right-hand side of Eqs. (7) and (8), the first term is the first-order
upwind difference scheme (FUD) and the second term is the difference between the
adopted scheme and the first-order upwind scheme. The first term is used to form the
discretized equation coefficients and the second term is evaluated in the source term.
This approach was first reported by Khosla and Rubin [12] and is called as deferred-
correction technique. By using this technique, the resulting discretized equation is
diagonally dominant.

Substituting Eqs. (7) and (8) into Eq. (2) and rearranging the equation, we have

Ge

Dx
þ Gw

Dx
þmax½ðruÞe; 0� þmax½�ðruÞw; 0�

� �
fP

¼ Ge

Dx
þmax½�ðruÞe; 0�

� �
fE þ Gw

Dx
þmax½ðruÞw; 0�

� �
fW þ Sp Dx

�max½ðruÞe; 0�ðf
þ
e � fPÞ þmax½�ðruÞe; 0�ðf

�
e � fEÞ

þmax½ðruÞw; 0�ðf
þ
w � fWÞ �max½�ðruÞw; 0�ðf

�
w � fPÞ ð9Þ
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Considering mass conservation,

max½ðruÞe; 0� þmax½�ðruÞw; 0� ¼ max½�ðruÞe; 0� þmax½ðruÞw; 0� ð10Þ

we obtain the final discretized equation as follows:

APfP ¼ AEfE þ AWfW þ b ð11Þ

AE ¼ Ge

Dx
þmax½�ðruÞe; 0�; AW ¼ Gw

Dx
þmax½ðruÞw; 0�; AP ¼ AE þ AW

b ¼ SpD x þ
�max½ðruÞe; 0�ðf

þ
e � fPÞ þmax½�ðruÞe; 0�ðf

�
e � fEÞ

þmax½ðruÞw; 0�ðf
þ
w � fWÞ �max½�ðruÞw; 0�ðf

�
w � fPÞ

( )

It is noted that the second term in b results from the adoption of the deferred-
correction procedure.

CONVECTIVE BOUNDEDNESS CRITERIA (CBC)

The symbols U, C, D, and f in Figure 2 refer to the upstream, central,
downstream node, and cell face, respectively. Any convective scheme using the
values at the three nodes (U, C, and D) to interpolate the cell face value can be
written in the following general form:

ff ¼ f ðfU;fC;fDÞ ð12Þ

Introducing the normalized variable [13]

f̂ ¼ f� fU

fD � fU

ð13Þ

Eq. (13) becomes

Figure 2. Interface and its related grid points for defining a normalized variable.

Table 1. Values of a for various well-known high-order schemes

Scheme CD SUD QUICIK Fromm TUD

a 7 0.125 0.375 0 0.125 1=24

f̂f ¼ f ðf̂U; f̂C; f̂DÞ ð14Þ
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Noticing that f̂U ¼ 0; f̂D ¼ 1, Eq. (14) is simplified as

f̂f ¼ f ðf̂CÞ ð15Þ

Gaskell and Lau [4] proposed the convective boundedness criteria (CBC), which can
be expressed as

(i) f ðf̂CÞ is a continuous function or union of piecewise continuous functions, and

df ðf̂cÞ
df̂c

� 0 ð16Þ

ðiiÞ

f ðf̂CÞ ¼ 0 f̂C ¼ 0

f ðf̂CÞ ¼ 1 f̂C ¼ 1

f̂C 	 f ðf̂CÞ 	 1 0 < f̂C < 1

f ðf̂CÞ ¼ f̂C f̂C < 0; f̂C > 1

ð17Þ

The above conditions can be clearly represented in the NVD as shown in Figure 3a.
In this plot, the shaded area and the oblique line passing through points ð0; 0Þ and
ð1; 1Þ are the regions that satisfy the criteria.

The CBC has long been accepted as both sufficient and necessary condition for
a scheme possessing boundedness [4, 8]. Very recently, Yu et al. indicated that this is
not the case [14], and they provided another CBC region in the NVD as shown in
Figure 3b. By carefully examination of the two CBC regions, it can be seen that
within ef 2 ½0:; 1:0�, the shaded area of Figure 3a is the sufficient and necessary

Figure 3. The region of convective boundedness criteria.
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condition, while for ~f < 0 or ~f > 1 the Gaskell=Lau CBC is only sufficient, not
necessary. This means that the definition lines in the region of ~f < 0 or ~f >1 may
not coincide with the diagonal. Our numerical results show that the solution accu-
racy of a scheme depends mainly on the definition line within ~f 2 ½0:; 1:0�; therefore
in following discussion we will take the diagonal as part of the definition lines outside
~f 2 ½0:; 1:0�. Within ~f 2 ½0:; 1:0�, how to construct the scheme definition lines is of
great importance for the solution accuracy. Leonard [15] once demonstrated that if
the definition line of a scheme goes through the point Q ð0:5; 0:75Þ in the NVD, this
scheme must have at least second-order accuracy. This gives a hint to construct
a high-order scheme. However, more consideration is needed in order to delineate
a region in the NVD within the range ~f 2 ½0:; 1:0� such that any scheme with its
characteristic line within the newly delineated region is bounded and at least of
second-order-accuracy.

CONVECTIVE STABILITY

Stability of the discretized convective scheme is another important feature for
the computation of incompressible flow. It can be shown that the CBC can guarantee
the stability of a scheme. Actually, as shown in [16], the intersection between the
characteristic line and the ordinate of the NVD is the reciprocal of the critical Peclet
number of the scheme. Since the CBC requires that the characteristic line of a
bounded scheme should go through the original point of the NVD, the satisfaction
of the stability condition is embodied in the CBC, and will not be discussed sepa-
rately.

In the following, focus will be put on the interpolative reasonableness from the
viewpoint of an iterative solution procedure.

INTERPOLATIVE REASONABLENESS

For a bounded interpolation in the normalized variable diagram, ~ff should be
between ~fC and 1. This criterion gives the interpolative reasonableness with respect
to static interpolation characteristics and is necessary for computed boundedness.
The bounded interpolation is called static interpolative reasonableness (SIR) here.
As is well known, the numerical solution is an iterative procedure, and ~fC con-
verges toward the correct solution in the iterative procedure. As an interpolative
function of ~fC,

~ff should embody the variation of
~fC correctly to help the con-

vergence of the solution effectively. Concretely, as a reasonable response to the
change of ~fC for the interpolation, a small disturbance in

~fC should not generate an
opposite directional disturbance in ~ff. That is,

~ff should not decrease with
increasing ~fC. Corresponding to the SIR, this interpolation rule focuses on a rea-
sonable dynamic response and is called dynamic interpolative reasonableness (DIR)
here. We can clearly see that Eq. (15) in the CBC proposed by Gaskell and Lau [4]
does not necessarily embody the dynamic interpolative reasonableness. Since fC is
a normalized variable defined by Eq. (13), which is a function of fU at upstream
point U, fC at central point C, and fD at downstream point D, Eq. (15) does not
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provide the dynamic response of ff to the physical variable at a single grid point U,
C, or D concretely.

Now we see how the interpolation values fe at the cell face e and fw at the
cell face w, as shown in Figure 1, should respond correctly to the change of fP at
a single central node P. The method of discrete perturbation analysis [17] is used
to analyze the propagation characteristics of a localized disturbance. According to
this method, when a disturbance is introduced at node P, no disturbance at the
other two neighboring points W and E will be considered. Then the effect of this
discrete perturbation at point P on its neighboring grid points is examined. In
order that a finite-difference solution be physically realistic, it is required that the
sign of the resulting disturbances at nodes W and E, propagated by the convection
term and diffusion term indicated in Eq. (1), is the same as that of the disturbance
imposed at node P [18]. The sign preservation requirement sets a limit for the
conditions under which a reasonable interpolation is applicable. Therefore, it is
expected that the disturbances at cell faces e and w should have the same sign for
the correct propagation of the disturbance imposed at node P to the adjacent
nodes W and E. In other words, for a reasonable dynamic response, fe and fw

should increase or decrease when fP increases or decreases, respectively. Thus we
have

For u � 0;
qfþ

e

qfP

¼ ð0:75þ 2aþe Þ � 0;
qfþ

w

qfP

¼ ð0:375� aþw Þ � 0

For u < 0;
qf�

e

qfP

¼ ð0:375� a�e Þ � 0;
qf�

w

qfP

¼ ð0:75þ 2a�w Þ � 0

ð18Þ

In order not to violate the transportive property, the disturbance imposed on the
central node P should be propagated downstream by convection and diffusion and
upstream only by diffusion. Therefore, the disturbance at an upstream cell face is
expected to be less than or equal to that at a downstream cell face. Thus we have

For u � 0;
qðfþ

w � fþ
e Þ

qfP

¼ �0:375� ðaþw þ 2aþe Þ 	 0

For u < 0;
qðf�

e � f�
w Þ

qfP

¼ �0:375� ða�e þ 2a�w Þ 	 0

ð19Þ

Combining Eqs. (18) and (19), finally we have

� 0:125 	 a 	 0:375 ð20Þ

CONSTRAINTS FOR SCHEME WITH HIGH ORDER OF
ACCURACY AND BOUNDEDNESS

From the aforementioned analyses, the following conditions should be satisfied
in the NVD for the construction of a bounded, accurate scheme with interpolative
reasonableness;
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1. Convective boundedness criteria (CBC)
2. The scheme characteristics pass through point ð0:5; 0:75Þ for at least second-
order accuracy

3. The maximum absolute value of variable parameter a in Eqs. (5) and (6)
should be in the range of ½�0:125; 0:375� to satisfy the interpolative
reasonableness

The above three conditions are named BAIR (Boundedness, Accuracy, and
Interpolative Reasonableness) here, and the diagrammatic representation of BAIR is
shown in Figure 4. In this plot, the hatched region and two parts of the first-order
upwind line ðf̂c < 0 and f̂c > 1Þ represent the BAIR. This means that if the char-
acteristic line of a convection scheme is located within this hatched area for
f̂C 2 ½0; 1� and coincides with the first-order upwind line for f̂C =2 ½0; 1�, the scheme
possesses boundedness, at least of second-order accuracy and interpolative reason-
ableness. It is also noted that the BAIR region in the normalized variable diagram
(NVD) contains three bottleneck points, Oð0; 0Þ, Qð0:25; 0:75Þ, and Pð1; 1Þ, which
should be passed through for any high-resolution schemes.

Figure 4. The region of BAIR.
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HOAB SCHEME

Following BAIR, one may choose several characteristic lines in the normalized
variable diagram for high-resolution schemes. A number of high-resolution schemes
have been proposed. Five often-used high-resolution schemes are listed in Table 2.
From Table 2, it can be seen that in the NVD, any high-resolution scheme must be
represented by a set of characteristic lines (either straight or curved), and all the lines
fall into the BAIR region shown in Figure 5. When the scheme characteristic lines
are near the first-order upwind line, the scheme tends to be highly diffusive, and the
numerical diffusivity can be reduced by choosing the scheme characteristic line
farther away from the first-order upwind line. For the five high-resolution schemes
listed in Table 2, the recently proposed STOIC scheme with characteristic lines
farthest away from the first-order upwind line was found to be the most accurate
high-order scheme, and the MINMOD scheme with characteristic lines nearest the
first-order upwind line was just the contrary. Therefore, it is expected that a more
accurate bounded composite scheme could be found by further shifting the char-
acteristics lines away from the first-order upwind line in the BAIR region shown in
Figure 4. Based on this idea, a high-order-accurate and bounded scheme HOAB, is
proposed in the present work as follows:

Table 2. High-resolution schemes

High-resolution scheme Expression

MINMOD f̂f ¼ 1:5f̂C 0 < f̂C 	 0:5

f̂f ¼ 0:5f̂C þ 0:5 0:5 < f̂C < 1

f̂f ¼ f̂C elsewhere

CLAM f̂f ¼ f̂Cð2� f̂CÞ 0 < f̂C < 1

f̂f ¼ f̂C elsewhere

OSHER f̂f ¼ 1:5f̂C 0 < f̂C 	 2=3

f̂f ¼ 1 2=3 < f̂C < 1

f̂f ¼ f̂C elsewhere

SMART f̂f ¼ 3f̂C 0 < f̂C 	 1=6

f̂f ¼ 0:75f̂C þ 0:375 1=6 < f̂C 	 5=6

f̂f ¼ 1 5=6 < f̂C < 1

f̂f ¼ f̂C elsewhere

STOIC f̂f ¼ 3f̂C 0 < f̂C 	 0:2

f̂f ¼ 0:5f̂C þ 0:5 0:2 < f̂C 	 0:5

f̂f ¼ 0:75f̂C þ 0:375 0:5 < f̂C 	 5=6

f̂f ¼ 1 5=6 < f̂C < 1

f̂f ¼ f̂C elsewhere
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f̂f ¼ 3:5f̂C 0 < f̂C 	 1=6

f̂f ¼ 0:5f̂C þ 0:5 1=6 < f̂C 	 0:5

f̂f ¼ f̂C þ 0:25 0:5 < f̂C 	 0:75

f̂f ¼ 1 0:75 < f̂C < 1

f̂f ¼ f̂C elsewhere

ð21Þ

The scheme is represented in Figure 5. The above composite expressions can be
rewritten as

ff ¼ 3:5fC � 2:5fU 0 < ðfC � fUÞ=ðfD � fUÞ 	 1=6

ff ¼ 0:5fC þ 0:5fD 1=6 < ðfC � fUÞ=ðfD � fUÞ 	 0:5

ff ¼ �0:25fU þ fC þ 0:25fD 0:5 < ðfC � fUÞ=ðfD � fUÞ 	 0:75

ff ¼ fD 0:75 < ðfC � fUÞ=ðfD � fUÞ < 1

ff ¼ fC elsewhere

ð22Þ

Figure 5. NVD plot for the HOAB scheme.
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The differences between the HOAB scheme and the STOIC scheme are (1) in
the region 0:5 < f̂C 	 0:75, Fromm’s scheme [10] is used instead of the QUICK
scheme; (2) the region of the central difference scheme becomes a little wider; and (3)
the region of the downward scheme ðf̂f ¼ 1Þ also becomes a little wider. Although
the scheme characteristic lines can be further shifted away from the first-order
upwind line in the BAIR region, the NVD plot becomes very near the first-order
downwind NVD plot (the line f̂f ¼ 1Þ to make the scheme highly compressive. Our
numerical tests show that this type of scheme often flattens the round profiles of
physical variables and causes convergence problems. Thus the high-resolution (HR)
scheme defined by Eq. (21) or (22) is preferred in the present study.

TEST EXAMPLES

The HOAB scheme is applied to five test problems: (1) pure convection of a
stepwise profile in an oblique uniform velocity field; (2) pure convection of a double-
step profile in an oblique uniform velocity field; (3) pure convection of an elliptical
profile in a given velocity field; (4) lid-driven cavity flows and (5) turbulent flow over
a backward step. The first three problems are of pure convection, while the last two
are of convection-diffusion for laminar and turbulent flow, respectively. Following
are the performance comparisons of the HOAB scheme with the high-resolution
schemes listed in Table 2. The aforementioned deferred-correction technique is used
for the implementation of all the high-resolution schemes. The first-order upwind
scheme is used whenever an upstream node lies outside the computational domain.
A uniform grid with 21621 meshes is used for the first four problems. The com-
putational results are considered converged when the sum of the absolute residual
error given by Eq. (23) becomes smaller than 1076:

RES ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
APfP �

 P
NB¼E;W;N;S

ANBfNB þ b

!�����
�����
2

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

APfPð Þ2
q ð23Þ

Problem 1: Convection of a Stepwise Profile in an Oblique Uniform
Velocity Field

Figure 6 shows the flow configuration of a well-known pure-convection test
problem. This is the transportation of a scalar in a uniform oblique velocity filed.
The magnitude of the velocity is unit. The flow angle is 35+ . The boundary condi-
tions for the calculated scalar f are presented in Figure 6.

In order to compare the accuracy of different schemes quantitatively, we
defined the following deviation:

ERR ¼
X

all grid points

jfexact � fcomput:j ð24Þ

A comparison of the scalar profiles at the mid-vertical plane (x¼ 0.5) predicted
by the six high-resolution schemes is shown in Figure 7 along with the exact solution.

30 J.-J. WEI ET AL.



The MINMOD results in a relatively very diffusive f profile due solely to the
influence of artificial (numerical) diffusion, while the new proposed scheme HOAB
can capture steep change of f profile most accurately. Table 3 further gives the error
comparisons to assess the different schemes more accurately. Corresponding to the
prediction in Figure 7, it is seen that the error of HOAB scheme is the least and less
than half of the maximum error of MINMOD. The error decreases in the order
MINMOD, CLAM, OSHER, SMART, STOIC, and HOAB.

Problem 2: Pure Convection of a Double-Step Profile

Figure 8 presents the second test problem, consisting of pure convection of a
transverse double-step (up-step and down-step) profile imposed at the inflow
boundaries of a square computational domain. This test problem is very similar to
the first one. The major difference lies in that there exists a down step in the profile.
The flow angle is 45+ . Table 4 provides the error comparison [error defined by Eq.
(24)] for the six HR schemes. Figure 9 compares the predicted scalar profiles at the
mid-vertical plane (x¼ 0.5) with the exact solution. Similar to the test results
obtained in problem 1, the MINMOD cannot predict the sharp profile very well due
to its relatively high numerical diffusion, while the sharp gradient in f is again best
preserved by using the HOAB scheme. The error decreases in the order MINMOD,

Figure 6. Pure convection of a step profile in a uniform velocity.

NEW SCHEME FOR INCOMPRESSIBLE FLOW 31



CLAM, OSHER, SMART, STOIC, and HOAB. The error of the MINMOD is
more than twice that of the HOAB and STOIC schemes.

Problem 3: Convection of an Elliptical Profile

Both the former two test problems show that MINMOD is the most diffusive,
and the numerical diffusion could be reduced by the HR schemes with characteristics
lines farther away from the first-order upwind line in the BAIR region shown in
Figure 4, and the most accurate result is obtained by the new proposed HOAB
scheme, the characteristics line of which is the farthest away from the first-order
upwind line. However, by doing this, the NVD plot becomes near to the first-order
downwind NVD plot (the line f̂f ¼ 1), making the scheme highly compressive, which
may flatten the round distribution of physical variables due to substantial false
compression, as pointed out by Darwish [8]. The step distribution in the former two
tests cannot test this effect. Thus, in test problem 3, pure convection of an elliptical
profile in a given velocity field is calculated. Figure 10 shows the problem schema-
tically. Figure 11 compares the calculated scalar profiles at the outlet vertical plane
(x¼ 1). Although a slight flattening of the profile can be observed in the HOAB and
STOIC schemes, the two schemes give better predictions than the other four schemes
and the HOAB gives the closest resemblance of its f profile to the exact solution

Figure 7. Scalar profiles at the mid-vertical plane (x¼ 0.5) for problem 1.

Table 3. Error comparison for problem 1

Scheme HOAB STOIC SMART OSHER CLAM MINMOD

ERR 11.35 12.47 16.02 19.88 19.86 25.02
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profile. Therefore, the new proposed HOAB scheme may be a reasonable compro-
mise between diffusive and compressive performance.

Problem 4: Lid-Driven Flow in a Square Cavity

The former three test problems with pure convection are for examining the
relative performance of the numerical approximations of the HOAB scheme. The
problem with both convection and diffusion should be tested, since it is general in
CFD=NHT. Despite its simple geometry and boundary conditions, driven flow in a
square cavity is widely used as a test case because of its complex flow pattern. The
problem is depicted schematically in Figure 12. Calculations are carried out for
Reynolds numbers of 100, 1,000, and 5,000. The Reynolds number is defined as
Re ¼ rU0L=m, where L is the length of the cavity and U0 is the velocity at the top
moving wall. Figure 13 shows the comparison of the vertical velocity profiles along
the horizontal cavity centerline. The benchmark solutions of Ghia et al. [19] are also

Figure 8. Pure convection of a double-step profile in a uniform velocity.

Table 4. Error comparison for problem 2

Scheme HOAB STOIC SMART OSHER CLAM MINMOD

ERR 21.88 24.69 34.64 41.83 43.68 54.03

NEW SCHEME FOR INCOMPRESSIBLE FLOW 33



Figure 9. Scalar profiles at the mid-vertical plane (x¼ 0.5) for problem 2.

Figure 10. Pure convection of an elliptical profile.
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shown. This example shows for the small Reynolds number of 100, all the schemes
have similar accuracy, with the HOAB scheme slightly more accurate. For the
moderate Reynolds number of 1,000 and the high Reynolds number of 5,000, the
HOAB scheme has superior accuracy to the other five HR schemes. As is expected,
the accuracy of the MINMOD scheme is the lowest. Since lid-driven square cavity
flow has strong elliptical character, the test results also show that the HOAB scheme
is very good for elliptical problems.

In all the above calculations, a coarse 21� 21 mesh is used. We also checked
the effect of the grid numbers. Using a 41� 41 mesh, the same conclusion is
obtained. For brevity, we do not present those results here.

Problem 5: Turbulent Flow over a Backward-Facing Step

The two-dimensional flow over a backward-facing step is a typical flow field
that contains the basic separation-reattachment characteristics. Despite the simple
geometry, the flow behind the backward-facing step is quite complex and contains
many basic features of scientific and engineering interest. Therefore, it has been
widely selected for the evaluation of numerical methods and turbulence models. To
evaluate the performance of the new proposed scheme HOAB, a turbulent case is
used for comparison. A schematic of the problem is shown in Figure 14. The expansion
ratio is 1.5 and the step height H is 3.5 cm. Inlet bulk velocity Uin¼ 75 m=s. The inlet
location is at 4H upstream of the step corner and the exit is at 16H of the step.
Numerical computations are performed with standard k�e turbulence model on the
40� 30 uniform grids.

Figure 11. Scalar profiles at the outlet vertical plane (x¼ 1.0) for problem 3.
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The reattachment length is the most important parameter in backward-facing
step flow, and comparisons of the predictive dimensionless reattachment length,
xR=H, are listed in Table 5. The prediction of Chao and Liu [20] with a hybrid
scheme and prediction with a first upwind scheme are also shown in Table 5. When
compared with the experiment data, xR=H¼ 7.33, the result by the new proposed
HOAB scheme is the most accurate. It is noticed that all the schemes underpredict
the reattachment lengths by a large amount. The origin of these discrepancies may
come from the uncertainty of the experimental measurement, the inadequacy of the
k�e model in the recirculation zone, and insufficient grid number. Eaton [21] found
that the reattachment length is underpredicted by all k�e models by about 20%
(xR=H¼ 5.86), due to the lack of sensitivity of the k�e model to the streamline
curvature.

Figure 15 shows the comparison of dimensionless x-directional velocity distri-
bution at various locations x=H¼ 0.73, 5.13, 7.33, and 10.23. Due to the limited
capability of the standard k�e model, all the predicted velocity distributions in the
recirculation zone lag behind the experimental data. Despite this, all the high-order
schemes predict the velocity distribution much better than did the first upwind
scheme. Corresponding to the prediction of reattachment length, the predicted result

Figure 12. Lid-driven flow in a square cavity.
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Figure 13a–b. Vertical velocity profile along the cavity horizontal centerline (y=L¼ 0.5) for problem 4: (a)

Re¼ 100; (b) Re¼ 1,000.
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Figure 13c. Vertical velocity profile along the cavity horizontal centerline (y=L¼ 0.5) for problem 4: (c)

Re¼ 5,000.

Figure 14. Schematic of backward-facing step.
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accuracy increases in the order MINMOD, CLAM, OSHER, SMART, STOIC, and
HOAB. Since the differences of the predicted results for all the high-order schemes
are small, for clarity, only the results of HOAB, MINMOD, and the first upwind
schemes are given in Figure 15. The other results lie in between those of HOAB and
MINMOD.

This test shows that the new proposed HOAB scheme is also the most accurate
for the computation of complex turbulent flow among the six high-order schemes in
this study.

CONCLUSIONS

From the viewpoint of iterative procedure, a constraint for designing a dis-
cretization scheme of convective terms is proposed: the interfacial variable should
have a positive response to the disturbance of variable at grid points and the
transportive property should be kept (called dynamic interpolative reasonableness,
DIR). Combining this constraint with the CBC and the requirement of going
through the point Q, a new set of conditions for designing a bounded and accurate
scheme with interpolative reasonableness (BAIR) is proposed which can guarantee
the scheme to be bounded and at least of second-order accuracy.

Figure 15. Comparison of velocity distribution for problem 5.

Table 5. Comparison of reattachment length on the 40630 grid

Scheme HOAB STOIC SMART OSHER CLAM MINMOD Hybrid FUD

xR=H 5.405 5.396 5.377 5.369 5.357 5.304 4.820 4.607
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A high-resolution convective scheme based on the conditions of BAIR,
HOAB, is formulated for the calculation of incompressible steady-state trans-
port problems. The accuracy of the scheme is verified for five test problems.
Numerical experiments show that the proposed scheme yields more accurate
results than any other high-resolution scheme compared (MINMOD, CLAM,
OSHER, SMART, and STOIC). In addition, no nonphysical oscillation was
predicted by the scheme.
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