
A NEW STABILITY-GUARANTEED SECOND-ORDER
DIFFERENCE SCHEME

Z. Y. Li and W. Q. Tao
School of Energy and Power Engineering, Xi’an Jiaotong University,

Xi’an Shaaxi, People’s Republic of China

Based on the stability-controllable second-order difference (SCSD) scheme, a new stability-
guaranteed second-order difference (SGSD) scheme is proposed whose merits are absolutely
stable and adaptive. Its numerical accuracy is at least no less than that of the central dif-
ference (CD) and second-order upwind difference (SUD) schemes and sometimes higher
than that of the QUICK scheme. The SGSD scheme can automatically choose a different
difference scheme according to the available local � eld information in difference space or
time. It automatically approaches the central difference scheme where or when diffusion is
dominant, and approaches the second-order upwind difference scheme where or when
convection is dominant. Computations for two benchmark problems using the SGSD and
the other three schemes show its feasibility in engineering computations.

1. INTRODUCTION

When numerically solving convective-di� usive equations, discretization of the
convective terms is one of the most challenging and interesting tasks, since dis-
cretization schemes for the convective terms in the Navier-Stokes equations and
scalar transport equations are connected directly to the solution accuracy, e� ciency,
and convergenece. To make reference to all past works in connection with di� erence
schemes for convection terms would be a task for the introduction of a book rather
than of the present article. Here we focus our attention on the numerical simulation
of conventional ¯uid ¯ow and heat transfer problems. By ``conventional’’ we mean
those problems in which no sharp gradient (such as sharp gradients of a shock) exists
in the computational domain. A close look at some previous comparison studies
[1±6] indicates that the choice of a scheme which performs well in all situations is
rather di� cult, if not impossible. This situation is related directly to the following
fact: for most existing schemes used in computing conventional ¯uid ¯ow and heat
transfer problems, the requirements for numerical stability and computational
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accuracy are often contradictory. Lower-order schemes such as ®rst-order upwind
are stable but often lead to severe false di� usion. Second-order schemes such as
central di� erence (CD) and higher-order schemes such as QUICK eliminate false
di� usion but may produce wiggles and often fail to converge [7]. Taking the central
di� erence scheme as an example, it is well known that the CD is prone to oscillation
when a grid Peclet (or Reynolds) number is beyond a speci®c value. Even though
recent study has shown that the one-dimensional stability analysis methods (such as
[8]) give only the most severe critical Peclet numberÐfor practical multidimensional
cases CD may work well even if the local grid Peclet number is as large as 180 [9]Ð
the presence of the Peclet number limit beyond which oscillation will occur is still an
undesirable feature of the scheme. A signi®cant amount of research e� ort has been
directed toward convective discretization schemes, and many remedies have been
proposed [5, 10±13]. For example, in [5] it is shown that, compared to the CD, the
second-order upwind di� erence scheme (SUD) performs better and its imple-
mentation method in discretization is recommended. From stability considerations,
the SUD is perfect since it is absolutely stable; however, our numerical practice has
shown that it is somewhat di� usive [14]. Thus, as concluded in [7], the matter is far
from being solved, and the need for a de®nitive study of the formulation of con-
vection and di� usion still remains.

Before going into the detail of the construction of a new scheme, we shall
brie¯y discuss the essence of discretization of the convective term. Inspection of the
discretization process of the convective term, written in a nonconservative form
…u qf=qx†i, we can see that actually we encounter two kinds of quantities, i.e.,
convective velocity u and the scalar derivative qf=qx. The physical mechanism of
convective ¯ow is totally directional in that only the information upstream can be
transferred downstream, not vice versa. From this regard it is better to adopt
directional discretization schemes such as ®rst-order upwind or second-order

NOMENCLATURE

ap; aN;E;W;S coe� cients in discretization

equation

D di� usive conductance, for example,

De ˆ Ge Dy=…dx†e

Er channel expansion ratio

F ¯ow rate at the interface, for

example, Fe ˆ …ru†e Dy

PDx; PDy grid Peclet number in x and y

directions, respectively

R residual of discretization equation

Re Reynolds number

S nominal source term

u; v velocity components in x and y

directions, respectively

U; V nondimensional velocity compo-

nents in x and y directions,

respectively

U0 sliding velocity of the lid

x coordinate
b parameter indicating the

percentage of central di� erence

G nominal di� usion coe� cient
dx; dy distance between two neighboring

grid points in x and y directions,

respectively

Dx; Dy distance between two neighboring

interfaces in x and y directions,

respectively
n ¯uid kinetic viscosity

f general dependent variable

Subscripts

e; n; s; w interfaces

E; N; S; W near neighboring grid points

EE; NN; far neighboring grid points

SS; WW
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upstream schemes. However, from the ®rst-order derivative itself, approximations
with equal points at the two sides of position i are better than bias approximations in
that the information at the two sides may be equally taken into account, especially
when di� usion is the dominant mechanism. Thus we may expect that an approxi-
mation combining symmetry and nonsymmetry structures of di� erence formulations
with their percentage being adjusted automatically will give better performance. This
is our basic consideration in constructing a new discretization scheme for the con-
vection term.

Starting from this point, the following schemes, which are combinations of
several existing schemes, caught our attention. These are second-order hybrid
(SHYBRID) [13] and stability-controllable second-order di� erence (SCSD) schemes
[15]. In [13], the CD, QUICK, and SUD are organized in a general form SHYBRID.
In [15] the CD and SUD are combined to generate the SCSD scheme. Because of its
simplicity of de®nition, in this article we take SCSD scheme as our starting point,
and a further re®nement will be made to make the scheme self-adaptive in that the
percentage of central di� erence can be automatically adjusted according to
the problem itself. In such a way we shall formulate a new scheme whose stability is
guaranteed with at least second-order accuracy. It is named stability-guaranteed
second-order di� erence (SGSD).

In the following the details of the construction of the scheme, and its perfor-
mance comparison with CD, SUD, and QUICK for lid-driven cavity ¯ow and ¯ow
over a back-facing step will be presented. In the numerical simulation the di� usion
term is always discretized by the second-order CD schemes, hence the di� erence in
numerical solutions is from the convection term.

2. DERIVATION OF THE DIFFERENCE SCHEMES
FOR CONVECTIVE TERMS

The general di� erential equations for a steady-steady convection-di� usion
problem for the general variable f can be written in a conservative form as

q…rujf†
qxj

ˆ q

qxj
Gf

qf

qxj

³ ´
‡ Sf …1†

where r is the density of the ¯uid, uj is the jth component of the velocity, Gf is the
di� usion coe� cient, and Sf is the source term for the variable f.

For discretization of the above equation, the ®nite-volume method is adopted
here. A typical control volume is shown in Figure 1. For two-dimensional problems,
after integration over the control volume, the discretized equation can be obtained as
follows:

Fefe ¡ Fwfw ‡ Fnfn ¡ Fsfs ˆ Sf Dx Dy ‡ De…fE ¡ fP† ¡ Dw…fW ¡ fP†

‡ Dn…fN ¡ fP† ¡ Ds…fS ¡ fP† …2†

The variables fn;e;w;s at control-volume interfaces can be determined using an
interpolation or extrapolation involving the values of the neighboring grid points.
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In the ®nite-volume method, the choice of interpolation or extrapolation method is
the scheme problem.

2.1. SGSD Scheme in Uniform Grid System

To complete the discretization, the interface values of f are ®rst interpolated
by the SCSD scheme [15]. For example, the value of variable f on the east surface is
interpolated as

fe ˆ bfCD
e ‡ …1 ¡ b†fSUD

e …0 µ b µ 1† …3†

where the superscripts CD and SUD designate the central di� erence and the second-
order upwind di� erence, and the quantity b is a prespeci®ed parameter. Obviously,
the scheme is of second-order accuracy. And when b ˆ 0, it becomes SUD, and CD
for b ˆ 1. Further, it can be easily shown that when b ˆ 3=4, it leads to QUICK.

By the one-dimensional stability analysis method [8], it can be shown that when

PDx ˆ
u dx

G
µ

2

b
PDy ˆ n dy

G
µ

2

b
…4†

the scheme is stable. Thus, by selecting the value of b we can control its stability.

Figure 1. Schematic of the control volume.
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Although the stability of the SCSD scheme is controllable, the value of the
factor b is given before starting the iteration. For a given problem, all information of
the physical ®eld exists objectively. No matter what algorithms and di� erence
scheme are employed, no change can be made to the existing physical ®eld. More-
over, the interaction of convection and di� usion is di� erent in a di� erent direction or
space in the physical ®eld of a given convective-di� usive problem: somewhere the
convection is dominant and elsewhere not. For example, for the ¯ow in a straight
duct the convection is dominant in the main ¯ow direction, while the interaction of
convection and di� usion may be of counterbalance on the cross section. We expect
to employ the central di� erence scheme where the di� usion is dominant and to use a
nonsymmetric structure formulation such as the second-order upwind di� erence
scheme where the convection is very strong. In this way, the physical problems may
be predicted more objectively.

According to the statement above, the factor b should not be given beforehand
but should be obtained interactively from the iterative results. It is di� cult to con-
struct an accurate function for b. However, one-dimensional model analysis indi-
cates that the critical grid Peclet number of the SCSD scheme is 2=b. Thus, we may
select a simple function as follows:

b ˆ 2

2 ‡ jPD j …5†

where PD is the grid Peclet number.
As indicated above, one-dimensional stability analysis gives the most severe

stability condition, and for many practical cases a conditionally stable di� erence
scheme is inclined to oscillate beyond the critical grid Peclet number predicted by
the one-dimensional model. However, since at present we have no way to obtain
the stability condition for multidimensional practical problems, to be on the
safe side we prefer to use the most severe condition to construct our new
scheme. Thus the de®nition of the interface variable (taking fe as an example) is
as follows:

fe ˆ bfCDS
e ‡ …1 ¡ b†fSUD

e b ˆ
2

…2 ‡ jPDj† …6†

It can be easily shown that the scheme de®ned by Eq. (6) is absolutely stable.
It is a stability-guaranteed second-order di� erence scheme (SGSD). The most
attractive feature of the SGSD is that the percentage of CD and SUD is self-
adaptive. In practical computations, information from previous solutions is used to
determine the Peclet number for every grid point in such coordinate. When the
local velocity is large, the related grid Peclet will be large too, and hence the
percentage of the CD will be small. Thus not only for every grid point but also for
every direction of coordinates, the percentage of CD and SUD in the discretization
of the convection terms is automatically adjusted in each iteration, leading to
better consistency between the discretization scheme and the physical problem
itself, which we believe will enhance the accuracy and robustness of the numerical
solution.
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2.2 Implementation of SGSD Scheme on the Nonuniform Grid System

For stability of the iteration procedures, the deferred-correction method is
adopted, which was proposed in [16] and latter enhanced in [17]. In the deferred-
correction method, the interpolation for the interface variable is expressed as the
sum of a low-order (such as ®rst-order upwind) di� erence scheme and a correction
term corresponding to the scheme employed. Thus Eq. (3) may be written as
follows:

fe ˆ fFUD
e ‡ f‰bfCD

e ‡ …1 ¡ b†fSUD
e Š ¡ fFUD

e gold …7†

where the superscript FUD designates the ®rst-order upwind di� erence and old
designates the previous iterative results.

Using Patanakar’s notation [18], Eq. (2) can be written in the form

aPfP ˆ aEfE ‡ aWfW ‡ aNfN ‡ aSfS ‡ b ‡ Sad

aP ˆ aE ‡ aW ‡ aN ‡ aS ¡ SP Dx Dy b ˆ Sc Dx Dy

…8†

aE ˆ De ‡ ‰j ¡ Fe; 0jŠ aW ˆ Dw ‡ ‰jFw; 0jŠ

aN ˆ Dn ‡ ‰j ¡ Fn; 0jŠ aS ˆ Ds ‡ ‰jFs; 0jŠ
…9†

Sad ˆ ¡Sad;e ‡ Sad;w ¡ Sad;n ‡ Sad;s …10†

where Sad is the additional source term generated by employing the deferred-cor-
rection method.

The above discretization procedure applies for both uniform and nonuniform
grid systems and for any kind of discretization scheme of the convection term. To get
practical expressions for Sad, the grid system and the scheme de®nition have to be
speci®ed. Since a nonuniform grid system is widely used in numerical heat transfer,
in the following we extend the de®nition of SGSD to a nonuniform grid system.

Figure 2 shows a one-dimensional nonuniform grid system. Employing the
Lagrange interpolation method, the variable f at the east and west interfaces can be
obtained:

Figure 2. 1-D nonuniform grid system.
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fe ˆ fP ‡ b
xe ¡ xP

xE ¡ xP
fE ‡ xE ¡ xe

xE ¡ xP
fP

³ ´µ

‡…1 ¡ b† xe ¡ xW

xP ¡ xW
fP ¡ xe ¡ xP

xP ¡ xW
fW

³ ´
¡ fP

¶
…ue > 0† …11a†

fe ˆ fE ‡ b
xe ¡ xP

xE ¡ xP
fE ‡ xE ¡ xe

xE ¡ xP
fP

³ ´µ

‡…1 ¡ b† xEE ¡ xe

xEE ¡ xE
fE ¡ xE ¡ xe

xEE ¡ xE
fEE

³ ´
¡ fE

¶
…ue < 0† …11b†

fw ˆ fW ‡ b
xP ¡ xw

xP ¡ xW
fW ‡

xw ¡ xW

xP ¡ xW
fP

³ ´µ

‡…1 ¡ b† xw ¡ xWW

xW ¡ xWW
fW ¡ xw ¡ xW

xW ¡ xWW
fWW

³ ´
¡ fW

¶
…uw > 0† …11c†

fw ˆ fP ‡ b
xP ¡ xw

xP ¡ xW
fW ‡

xw ¡ xW

xP ¡ xW
fP

³ ´µ

‡…1 ¡ b† xE ¡ xw

xE ¡ xP
fP ¡ xP ¡ xw

xE ¡ xP
fE

³ ´
¡ fP

¶
…uw < 0† …11d†

Similar expressions can be obtained for the variable f at the north and south
interfaces. For simplicity of presentation, we de®ne

F ‡
i ˆ Fi ‡ jFij

2
F ¡

i ˆ Fi ¡ jFij
2

…i ˆ e; w; n; s† …12†

where F designates the ¯ow rate at the control-volume surfaces. The additional
source terms at the control-volume surfaces are

Sad;e ˆ F ‡
e b

xe ¡ xP

xE ¡ xP
fold

E ‡ xE ¡ xe

xE ¡ xP
fold

P

³ ´µ

‡…1 ¡ b† xe ¡ xW

xP ¡ xW
fold

P ¡ xe ¡ xP

xP ¡ xW
fold

P

³ ´
¡ fold

P

¶

‡ F ¡
e b

xe ¡ xP

xE ¡ xP
fold

E ‡ xE ¡ xe

xE ¡ xP
fold

P

³ ´µ

‡…1 ¡ b† xEE ¡ xe

xEE ¡ xE
fold

E ¡ xE ¡ xe

xEE ¡ xE
fold

EE

³ ´
¡ fold

E

¶
…13a†
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Sad;w ˆ F ‡
w b

xP ¡ xw

xP ¡ xW
fold

W ‡ xw ¡ xW

xP ¡ xW
fold

P

³ ´µ

‡…1 ¡ b† xw ¡ xWW

xW ¡ xWW
fold

W ¡ xw ¡ xW

xW ¡ xWW
fold

WW

³ ´
¡ fold

W

¶

‡ F ¡
w b

xP ¡ xw

xP ¡ xW
fold

W ‡ xw ¡ xW

xP ¡ xW
fold

P

³ ´µ

‡…1 ¡ b†
xE ¡ xw

xE ¡ xP
fold

P ¡
xP ¡ xw

xE ¡ xP
fold

E

³ ´
¡ fold

P

¶
…13b†

Sad;n ˆ F ‡
n b

yn ¡ yP

yN ¡ yP
fold

N ‡ yN ¡ yn

yN ¡ yP
fold

P

³ ´µ

‡ …1 ¡ b† yn ¡ yS

yP ¡ yS
fold

P ¡ yn ¡ yP

yP ¡ yS
fold

P

³ ´
¡ fold

P

¶

‡ F ¡
n b

yn ¡ yP

yN ¡ yP
fold

N ‡ yN ¡ yn

yN ¡ yP
fold

P

³ ´µµ

‡ …1 ¡ b† yNN ¡ yn

yNN ¡ yN
fold

N ¡ yN ¡ yn

yNN ¡ yN
fold

NN

³ ´
¡ fold

N

¶
…13c†

Sad;s ˆ F ‡
s b

yP ¡ ys

yP ¡ yS
fold

S ‡ ys ¡ yS

yP ¡ yS
fold

P

³ ´µ

‡ …1 ¡ b† ys ¡ ySS

yS ¡ xSS
fold

W ¡ ys ¡ yS

yS ¡ ySS
fold

SS

³ ´
¡ fold

S

¶

‡ F ¡
s b

yP ¡ ys

yP ¡ yS
fold

W ‡ ys ¡ yS

yP ¡ yS
fold

P

³ ´µµ

‡ …1 ¡ b† yN ¡ ys

yN ¡ yP
fold

P ‡ yP ¡ ys

yN ¡ yP
fold

N

³ ´
¡ fold

P

¶
…13d†

3. TEST CALCULATIONS FOR TWO BENCHMARK PROBLEMS

In this section, numerical solutions from the SGSD scheme are compared with
those of the SUD, QUICK, and CD schemes. The resulting discretization equations
are solved by the block implicit method (BIM). The BIM is a direct method in that
the discretization equations for one control volume are solved simultaneously,
including velocities and pressure. The solution procedure is then advanced from
control volume to control volume. Once all the control volumes are visited, this
completes one outer iteration. Details about the BIM may be found in [14, 19, 20].

Two benchmark problems will be used to examine the proposed scheme. First,
numerical calculations are performed for the lid-driven cavity ¯ow investigated by
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Ghia et al. [21] using a multigrid method. Constant-property laminar ¯ows are
assumed for the Reynolds number 103. The Reynolds number is de®ned as Re ˆ
U0L=n, where L is the length of the square enclosure side wall, U0 is the speed of the
sliding lid, and n is the ¯uid kinetic viscosity. Second, numerical computations are
conducted for the ¯ow over a backward-facing step for Reynolds numbers 100
and 300.

3.1. Lid-Driven Cavity Flow

Both uniform and nonuniform grids consisting of 42642 nodes are used. The
nonuniform grid distribution is of sine-type pro®le, in which the grid becomes ®ner
and ®ner close to the cavity wall. Each calculation is terminated when the control-
volume maximum residual of the discretized continuity and momentum equations
becomes smaller than 10¡6, i.e.,

Residual ˆ max…Rc
max; Ru

max; Rv
max† < 1: £ 10¡6 …14†

where the superscripts c; u, and v stand for continuity, u-momentum, and v-
momentum equations.

Centerline velocity pro®les for the u (x-direction) and v (y-direction) velocity
components are shown in Figures 3 and 4 for Re ˆ 103 with a uniform grid system.
Each ®gure provides a comparison among the four schemes. Also shown there are
the results calculated by Ghia et al. on ®ner (l296129) grids as the standards for
comparison. In Figure 5, centerline velocity distributions obtained by using the
nonuniform grid system (42642) are presented. From theses three ®gures, it can be
observed that for the uniform 42642 grid system, solutions from QUICK and
SGSD are better than those from CD and SUD, and the solutions in the nonuniform
42642 grid system have appreciably better accuracy than those in the uniform grid
system of the same grid number.

Tables 1±4 list the relative errors of the centerline velocities between the present
numerical solutions using uniform and nonuniform grids and the results provided by
Ghia et al. These tables further enhance our understanding of the numerical accu-
racy of the four schemes: the numerical accuracy of the SGSD scheme is, generally
speaking, at least no less than that of the CD and SUD schemes, and sometimes it is
even better than that of the QUICK scheme (Table 2).

Since in the execution of SGSD extra computations have to be conducted to
determine the local directional Peclet number, a question may arise about its con-
vergence rate compared with other schemes. Our numerical practices show that in
the nonuniform grids, the iteration will converge more rapidly when using the SGSD
scheme. Table 5 lists the CPU time consumed using the four schemes, where the
CPU time consumed using the SGSD scheme in a uniform 42642 grid is taken as 1.
Table 5 shows that for the uniform grid, the CPU time of SGSD may be 20±30%
higher than that of QUICK and CD, while for the nonuniform grids, the CPU time
of SGSD is about 40±50% o� compared with that of QUICK and CD.

3.2. Flow over a Backward-Facing Step

There are two important parameters that exert a great in¯uence on the ¯uid
mechanics in a two-dimensional backward-facin step geometry, i.e., the Reynolds

STABILITY-GUARANTEED SECOND-ORDER SCHEME 357



Figure 3. Velocity distributions for lid-driven cavity ¯ow (Re ˆ 1,000, 42642 uniform grid system):

(a) u-velocity pro®le along the vertical centerline; (b) v-velocity pro®le along the horizontal centerline.
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Figure 4. Velocity distributions of lid-driven cavity ¯ow (Re ˆ 1,000, 82682 uniform grid system):

…a† u-velocity pro®le along the vertical centerline; …b† v-velocity pro®le along the horizontal centerline.
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Figure 5. Velocity distributions of lid-driven cavity ¯ow (Reˆ 1,000, 42642 uniform grid system):

…a† u-velocity pro®le along the vertical centerline; …b† v-velocity pro®le along the horizontal centerline.
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number Re and the channel expansion ratio ER (the ratio of the channel widths
downstream and upstream) [22]. Here the case of Re ˆ 100, ER ˆ 1.5 is taken as the
test example. Under these conditions, the predicted reattachment length calculated
by Kondoh et al. is 6.3 [22], which is slightly longer than the experimental value of
6.0. In the present study, the grids used are uniform and consist of 62632 and
122662 nodes. The predicted reattachment lengths obtained by using various
schemes and grids are listed in Table 6. For the 62632 uniform grid, the iteration
diverges when the CD scheme is adopted. On these two grid systems the QUlCK
scheme works well for Re ˆ 100. However, when the Reynolds number increases to

Table 1. Relative error of centerline u-velocity obtained using uniform grid (42642), %

y SGSD SUD QUICK CD

0.9766 0.5961 3.4477 ¡0.7099 ¡1.8278

0.9688 0.4940 5.5434 ¡1.3758 ¡3.3100

0.9609 ¡1.6179 5.8356 ¡4.1650 ¡7.0329

0.9531 1.7917 10.8210 ¡1.5664 ¡5.2377

0.8516 1.6725 14.6770 ¡4.4679 ¡10.0559

0.7344 1.0150 13.4836 ¡4.3165 ¡9.5678

0.6172 ¡7.2431 2.9113 ¡9.8562 ¡14.5212

0.5000 16.1020 33.9967 5.4276 ¡1.6118

0.4531 11.0819 27.5451 2.0098 ¡4.5642

0.2813 8.0669 23.6360 ¡0.2050 ¡5.9558

0.1719 ¡3.1419 6.3830 ¡7.6654 ¡12.6041

0.1016 ¡16.8012 ¡16.2563 ¡14.0868 ¡15.0858

0.0703 ¡23.0018 ¡27.9703 ¡16.1296 ¡14.2394

0.0625 ¡24.6782 ¡31.4765 ¡16.4884 ¡13.6463

0.0547 ¡25.9926 ¡33.9499 ¡17.0744 ¡13.7059

Mean error 9.5531 17.1956 7.0363 8.8644

Table 2. Relative error of centerline v-velocity obtained using uniform grid (42642), %

x SGSD SUD QUICK CD

0.9688 ¡16.4017 ¡18.2859 ¡13.1989 ¡8.1213

0.9609 ¡14.9011 ¡17.2648 ¡11.9592 ¡7.0584

0.9531 ¡14.2403 ¡15.8331 ¡11.7725 ¡8.6462

0.9453 ¡12.5216 ¡13.5934 ¡10.3577 ¡8.4337

0.9063 ¡4.9311 0.57807 ¡7.0805 ¡10.5936

0.8594 3.1407 16.0975 ¡2.6930 ¡7.7979

0.8047 2.5182 14.1713 ¡2.8592 ¡7.6018

0.5000 ¡12.6286 ¡20.8630 ¡4.7901 4.1171

0.2344 0.5708 10.8422 ¡4.0980 ¡8.2425

0.2266 0.1746 10.6848 ¡4.4293 ¡8.6984

0.1563 ¡1.7118 9.0362 ¡6.7151 ¡11.8210

0.0938 ¡3.3040 6.5743 ¡7.6163 ¡12.7747

0.0781 ¡3.8282 5.7028 ¡7.9530 ¡13.0695

0.0703 ¡3.9121 5.4735 ¡7.9691 ¡13.0842

0.0625 ¡3.3509 5.9341 ¡7.3640 ¡12.5122

Mean error 6.5519 11.3957 7.3904 9.5048
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Table 3. Relative error of centerline u-velocity obtained using nonuniform grid (42642), %

y SGSD SUD QUICK CD

0.9766 1.1269 2.0628 0.8540 0.4216

0.9688 0.2870 2.0246 ¡0.4871 ¡0.7740

0.9609 1.9602 4.8359 1.5063 0.3286

0.9531 0.6974 4.8021 0.1073 ¡1.5663

0.8516 2.1528 7.7318 0.2913 ¡2.3510

0.7344 4.8506 8.1307 0.9723 ¡1.3675

0.6172 1.1750 3.3847 0.5963 ¡0.5086

0.5000 5.6743 15.9539 0.9868 ¡3.5197

0.4531 4.7614 13.3921 0.8922 ¡2.9676

0.2813 4.9379 12.7099 1.3954 ¡2.2621

0.1719 ¡1.1099 2.5490 ¡2.0266 ¡4.0194

0.1016 ¡3.6629 ¡5.3178 ¡1.4799 ¡0.6492

0.0703 ¡4.1269 ¡9.6804 0.3690 3.4833

0.0625 ¡4.0503 ¡10.8041 1.0843 4.8722

0.0547 ¡4.1084 ¡11.8449 1.4799 5.7706

Mean error 2.9788 7.6816 0.9393 2.3241

Table 4. Relative error of centerline v-velocity obtained using nonuniform grid (42642), %

x SGSD SUD QUICK CD

0.9688 6.9945 0.3319 6.7140 9.1406

0.9609 6.2741 0.9397 6.2705 8.6305

0.9531 5.9233 0.1394 6.1191 8.4030

0.9453 3.3122 ¡1.0717 3.9119 5.6828

0.9063 ¡1.0766 1.0242 ¡0.7197 ¡0.38849

0.8594 0.7524 7.0385 ¡0.7828 ¡3.3798

0.8047 1.8425 7.3922 ¡0.2221 ¡2.5996

0.5000 9.1844 ¡0.7918 8.7886 12.3119

0.2344 2.6648 7.0451 1.0392 ¡1.0733

0.2266 2.5517 6.9387 1.0037 ¡1.1095

0.1563 ¡0.1105 4.1892 ¡1.0243 ¡3.0704

0.0938 ¡1.1953 3.0036 ¡1.3822 ¡3.1936

0.0781 ¡1.3705 2.7443 ¡1.3408 ¡3.0474

0.0703 ¡1.4338 2.6437 ¡1.3098 ¡2.9746

0.0625 ¡1.2370 2.8269 ¡1.0260 ¡2.6596

Mean error 3.0616 3.1517 2.7770 4.4854

Table 5. CPU time using the four schemes

SGSD SUD QUICK CD

Uniform grid 1 1.1121 0.7023 0.6018

Nonuniform grid 0.5025 0.5309 0.7139 0.7436
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300, oscillation of velocity occurs, while the SGSD scheme exhibits robustness and
provides reasonable solutions. In Figure 6, the solution from SGSD is presented
where the velocity pro®le is developing from upstream to downstream in a reason-
able manner. In Figure 7 the results from QUICK are shown. Some irregularity of
the velocity pro®les in the downstream part can be observed. Careful inspection of
the numerical solution found that velocity oscillation in the u component occurs
from the ®rst control volume near the bottom wall. This oscillation is shown Figure
8, where the solution from SGSD is a smooth continuous curve, while that of
QUICK exhibits severe bumpiness around u ˆ 0.

4. CONCLUSIONS

A new stability-guaranteed second-order di� erence (SGSD) scheme is pro-
posed in this article. The comparison among the SGSD, SUD, QUICK, and CD
schemes for two benchmark problems reveals that the SGSD scheme is more robust
than the QUICK scheme and its numerical accuracy is at least no less than that of
the CD scheme and sometimes higher than that of the QUICK scheme. For the two
cases compared, the CPU time for SGSD on uniform grids is less than SUD, but
about 20±30% more than the QUICK and CD. However, in the nonuniform grid

Table 6. Predicted reattachment lengths

Grid SGSD SUD QUICK CD

62632 6.3233 6.3323 6.1947 Divergent

1226122 6.2042 6.2098 6.1838 6.1772

Figure 6. Velocity vectors obtained using SGSD scheme (Re ˆ 300, Er ˆ 1.5, 62632 uniform grid).

Figure 7. Velocity vectors obtained using QUICK scheme (Reˆ 300, Er ˆ 1.5, 62632 uniform grid).
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system the CPU time for SGSD is the shortest, being about 40±50% less than that of
QUICK and CD. The perfect robustness and good e� ciency make the scheme
attractive in engineering computations for incompressible ¯uid ¯ow and heat
transfer problems.
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