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Abstract

The concept of enhancing parabolic convective heat transfer by reducing the intersection angle between velocity and

temperature gradient is reviewed and extended to elliptic fluid flow and heat transfer situation. Five examples of elliptic

flow are provided to show the validity of the new concept (field synergy principle). Two further examples are sup-

plemented to demonstrate the importance of the concept in the design of the enhanced surfaces. � 2002 Published by

Elsevier Science Ltd.

1. Introduction

The enhancement of convective heat transfer is an

everlasting subject for both the researchers of heat

transfer community of academia and the technicians in

industry. Numerous investigations, both experimental

and numerical have been conducted and great achieve-

ments have been obtained [1–5]. However, there is no

unified theory which can reveal the essence of heat

transfer enhancement common to all enhancement

methods. In 1998, Guo and his co-workers proposed a

novel concept for enhancing convective heat transfer of

parabolic flow [6,7], the reduction of the intersection

angle between velocity and temperature gradient can

effectively enhance convective heat transfer. The purpose

of this paper are threefold: the major idea of this novel

concept will be extended to the general elliptic fluid flow

and heat transfer; the numerical example will be pro-

vided to show the correctness of this new idea; and some

examples of application will be provided to show the

importance of this new concept.

Guos’ proposal [6,7] will be briefly reviewed here. For

two-dimensional (2-D) boundary layer flow and heat

transfer along a plate with a temperature different from

the oncoming flow, the energy equation takes following

form:
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Integrating above equation along the thermal boundary

layer and notice that at the outer edge of the thermal

boundary layer ðoT=oyÞy¼dt
¼ 0, we have
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The convective term has been transformed to the dot

product form of the velocity vector and the temperature

gradient, and the right-hand side is the heat flux be-

tween the solid wall and the fluid, i.e., the convective

heat transfer rate. The dot product ð~UU � gradT Þ ¼
j~UU jjgradT j cos h, where h is the intersection angle be-

tween velocity and temperature gradient. It is obvious

that for a fixed flow rate and temperature difference, the

smaller the intersection angle between the velocity and

the temperature gradient, the larger the heat transfer

rate. That is, the reduction of the intersection angle will

increase the convective heat transfer. According to the

Webster Dictionary [8], when several actions or forces

are cooperative or combined, such situation can be

called ‘‘synergy’’. Thus, this idea introduced for en-

hancing convective heat transfer focuses on the synergy
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between velocity and temperature gradient and will be

hereafter called ‘‘field synergy principle’’.

2. Extension of the field synergy principle to elliptic flow

cases

Most convective heat transfer problems encountered

in engineering are of elliptic type, and hence, extending

the ‘‘field synergy principle’’ to elliptic cases will be of

great importance.

Consider a typical elliptic convective heat transfer

case—fluid flow and heat transfer over a backward step,

as shown in Fig. 1. The solid walls are of constant

temperature Tw, and fluid with temperature Tf flows into
the domain. The 2-D energy equation for this case can

be written as
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We now integrate this equation over the entire domain

Xabcdea, and express the integral of the left and right parts

by FM and HD, respectively, we have:

FM ¼
Z Z

X
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By using the Gauss theorem for reduction of the integral

dimension, Eq. (4b) can be rewritten as

HD ¼
I
oXabcdea

~nn � krT dxdy

¼
Z
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where ~nn represents the outward normal along each

boundary, and dS is the length differential of boundary.

Moving the integrals along the inlet and outlet bound-

aries of computation domain to the left hand of the

balance equation, we have

Z Z
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Z
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The right-hand side of Eq. (6) stands for the heat

transfer between the surface of the backward step and

the fluid, which is the convective heat transfer between

Nomenclature

A surface area, m2

cp specific heat capacity, J kg�1 K�1

H duct height or transverse distance between

plates, m

h heat transfer coefficient, Wm�2 K�1

Int integral,
R

X qcpð~UU � gradT ÞdA, W
Int0 modified integral,

R
Xð~UU � gradT ÞdA, m3 Ks�1

k thermal conductivity, Wm�1 k�1

L length, m

~nn outward normal unit vector

Nu Nusselt number

q heat flux, Wm�2

Re Reynolds number

R radius, m

S length of arc, m

t plate thickness, m

T temperature

u, v velocity component in x- and y-directions
~UU velocity vector

x, y Cartesian coordinates, m

dt thermal boundary layer thickness, m

h intersection angle between velocity and

temperature gradient, degree

q fluid density, kgm�3

/ oblique or inclined angle, degree

Subscripts

f fluid

in inlet

m mean

max maximum

min minimum

w wall

Fig. 1. Fluid flow and heat transfer over a backward step.
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the fluid and the solid surface. The first term at the left-

hand side is the energy transferred due to fluid motion,

while the second and the third terms represent the axial

heat conduction within the fluid. It is well known that

[9], for fluids with a Peclet number greater than 100, the

axial heat conduction within the fluids may be neglected

compared to the energy transferred by the fluid motion.

For conventional working fluids adopted in engineering,

the Peclet numbers are usually greater than 100, and

hence, the integration
R R

X qcpð~UU � gradT Þdxdy actually
represents the energy transferred by convection. Thus

it is clear that a better synergy (i.e., decreasing the

intersection angle between the velocity vector and

the temperature gradient) will make the integrationR R
X qcpð~UU � gradT Þdxdy larger, i.e., enhancing the heat

transfer. Even for fluids whose Peclet number is less than

100, the reduction of the intersection angle between ve-

locity and the temperature gradient can also enhance

heat transfer, though the effect is not so significant as for

the case with a larger Peclet number. Thus either for

parabolic flow or for elliptic flows, the idea proposed in

[6,7] is all valid. The extension of above discussion to

three-dimensional case is very straightforward, and will

not be discussed here for simplicity.

The contents mentioned above, is a rather new idea

in the heat transfer literatures. It is better to have some

verifications in order to give readers more confidence in

this concept. We have conducted verifications, which

can be grouped into two types: primary verification and

advanced verification. For the primary verification, we

check the integration over the entire domain to see if

its variation trend with Reynolds number is the same

as the averaged Nusselt number or heat transfer coeffi-

cient of the studied surface. The advanced verification

means applying this principle to design heat transfer

surface which can effectively enhance the convective heat

transfer.

3. Primary verifications

For more than 10 heat transfer surfaces, numerical

computations were carried out to obtain the integral ofR R
X qcpð~UU � gradT ÞdA over the whole computation do-

main and the average Nusselt number for the configu-

ration studied. For the simplicity of presentation, the

integral will be represented by ‘‘Int’’ and the numerical

results of five cases are provided. All computations were

conducted by finite volume method, with SIMPLE al-

gorithm to deal with the linkage between velocity and

pressure. The power-law scheme was used to discretize

the convection and diffusion term. All the flows com-

puted were assumed to be laminar and in steady state.

For the first four cases the periodic fully developed

convective heat transfer was simulated and the cyclic

average Nusselt number was determined for the con-

stant wall temperature case. For all the five examples, air

was used as the heat transfer medium.

3.1. Heat transfer for fluid flowing across discrete parallel

plates

The configuration studied is presented in Fig. 2. The

computation conditions are as follows: L1 ¼ L2, H=L1 ¼
0:6, H=t ¼ 1:5, Pr ¼ 0:707. The grid number used was

44
 22. For comparison purpose, the continuous par-

allel plate duct with width H was taken as the reference

duct. The characteristic length for the Nusselt number

and Reynolds number was taken as 2H for both cases.

The numerical results are shown in Figs. 3 and 4. The

Nusselt number in the fully developed region will be 7.54

[10], and numerical result agrees with this very well (with

a grid system of 44
 26). Two features may be noted.

First, the variation trends of Int and Nu with Re are very

similar, and both Int and Nu of the discrete parallel

plates are much higher than that of the continuous plate

duct; second, the Nusselt number tends to be kept

constant, independent of Re computed, while the value

of Int decreases with decreasing in Reynolds number in

the region for which heat conduction within the fluid

Fig. 2. Heat transfer across discrete parallel plates.

Fig. 3. The variation of Int with Reynolds number (flow across

discrete parallel plates).
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plays a role and the percentage of heat transfer via fluid

motion starts to decrease as Re decreases. Similar vari-

ation trends may be found in following examples.

3.2. Heat transfer for fluid flowing across discrete

staggered plates

The configuration studied is presented in Fig. 5.

The computation conditions are as follows: L=H ¼ 0:5,
t=H ¼ 1=3, Pr ¼ 0:707. A grid system of 50
 29 was

used, and the characteristic length of Nu and Re was

taken as (H–t), which corresponds to the twice of the

width between two adjacent plates.

The numerical results are shown in Figs. 6 and 7.

Obviously, the variation trends of Int and Nu with Re

are very similar to each other.

3.3. Heat transfer in a two-dimensional wavy channel

The configuration studied is presented in Fig. 8.

Computations were conducted under following condi-

Fig. 5. Heat transfer across discrete staggered plates.

Fig. 6. The variation of Nu with Reynolds number (flow across

discrete staggered plates).

Fig. 7. The variation of Int with Reynolds number (flow across

discrete staggered plates).

Fig. 8. Heat transfer in a wavy channel.

Fig. 4. The variation of Nu with Reynolds number (flow across

discrete parallel plates).
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tions: Rm=S ¼ 0:6, L=S ¼ 1:84, H=S ¼ 0:6, Pr ¼ 0:707.
The grid number user was 48
 22, and 2H was taken as

the characteristic length.

Numerical results presented in Figs. 9 and 10 indicate

the same variation trend of Int vs. Re and Nu vs. Re.

3.4. Heat transfer in a corrugate duct

A diverging and converging duct is shown in Fig. 11.

Following conditions were adopted in the computa-

tion: Hmin=L ¼ 1=3, Hmax=L ¼ 2=3, Pr ¼ 0:707. A mesh

of 42
 42 was used. The characteristic length was taken

as ðHmin þ HmaxÞ=2.
The numerical results presented in Figs. 12 and 13

obviously lead to the same conclusion presented before.

3.5. Natural convection in square enclosure

Natural convection in square enclosure is a bench-

mark problem in computational heat transfer [11]. The

two vertical walls of the enclosure are maintained at

constant but different temperatures and the top and

bottom walls are adiabatic. Our computations were

conducted for Ra ranging from 103 to 106. The value of

Nusselt number varies from about 1.1 to 8.8 [11]. To

make a clear comparison between the variation trends of

Nu and Int, a modified integral has been computed,

which is defined as Int0 ¼ Int=qcp. The variation range

of the modified integral is from about 0 to 5, which is in

the same order as Nusselt number. The curve of Nu vs.

Ra was then lowered down such that at Ra ¼ 106, the

curve of Nu vs. Ra coincides with the curve of Int0 vs.

Ra. The numerical results are presented in Fig. 14, from

which the value of Int0 (and Int) for the entire domain is

zero, since the heat released at hot surface is absorbed at

the cold surface. The enclosure was vertically cut into

two parts and integration was only conducted for one of

the parts, with artificially cut boundary where the heat

conduction within the fluids occurs. The dashed line in

Fig. 14 represents the variation trend of Nusselt number

of one vertical wall, while the solid line stands for the

integral. It can be seen that in the low Rayleigh number

region, the heat conduction within the fluid becomes

important, and hence the difference between the value of

Int0 and that of Nu gradually becomes larger and larger

with the decreasing in Ra.

4. Applying field synergy principle to develop new heat

transfer surfaces

Probably the most challenging task of developing

the field synergy principle is to design enhanced heat

transfer surfaces at the guidance of the principle. Such

work is now underway in the authors’ group. Some

computational results are presented for illustration.

4.1. Heat transfer across plate array positioned obliquely

to the flow direction

Plate array positioned obliquely to the oncoming

flow is shown in Fig. 15. It may be regarded as a 2-D

model for louver fin. The major geometric parameter

affecting heat transfer performance is the oblique angle

/. Laminar fluid flow and heat transfer were simulated

for the periodic fully developed situation with varying

angle /. The geometric parameters were set as Tp=L ¼ 1,

Lp=L ¼ 1, t=L ¼ 1=15. The grid numbers in x- and y-

directions were 82 and 42, respectively.

Comparison of our numerical and experimental

results presented in Figs. 16 and 17 shows the intersection

angle variation trend. Both test data and simulation

Fig. 9. The variation of Int with Reynolds number (flow in a

wavy channel).

Fig. 10. The variation of Nu with Reynolds number (flow in a

wavy channel).
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results show that Nusselt number reaches its maximum

for / � 30�, and Fig. 17 shows that at this oblique angle
the average intersection angle correspondingly reaches

its minimum, exactly indicating the synergy concept.

4.2. Heat transfer in a corrugate duct

The effect of the inclined angle of the corrugate duct

wall, /, shown in Fig. 11, was investigated for the

periodic fully developed situation. A grid system of

42
 42 was used. The variation of inclined angle was

implemented by varying the value of Hmax, while keeping

L and Hmin unchanged. The relation between the cycle

average heat transfer coefficient with the inclined angle is

Fig. 11. Corrugate duct.

Fig. 13. The variation of Nu with Reynolds number (flow in a

corrugate duct).

Fig. 15. Obliquely-positioned plate array.

Fig. 12. The variation of Int with Reynolds number (flow in a

corrugate duct). Fig. 14. Nu vs. Ra and Int0 vs. Ra for natural convection in

square enclosure.
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presented in Fig. 18 and the curve of hm vs. / is pre-

sented in Fig. 19. The numerical results demonstrate

once again that the configuration with highest heat

transfer rate has the minimum average intersection angle

between velocity and temperature gradient.

The two examples mentioned above show that the

best performance of an enhanced heat transfer surface

may be reached if the geometric parameter(s) of the

configuration could make the average intersection angle

minimum. This gives us a guidance to reveal the best

geometric parameters in developing an enhanced heat

transfer surface.

5. Conclusions

In this paper, the new concept ‘‘field synergy princi-

ple’’ proposed firstly in [6,7] is extended from parabolic

flow to elliptic flow. According to this principle, the

convective heat transfer can be enhanced by reducing

the intersection angle between the velocity and the

temperature gradient. Several numerical examples are

provided to show the validity of the principle.
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