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Existing methods for analyzing the stability of a discretized scheme for convection-diffusion
terms are usually based on � ve assumptions, i.e., one-dimensional, linear, � rst kind of
boundary condition, source term free, and uniform grid system. In this article we examine
numerically whether deviation from one of the assumptions may enhance the stability of the
discretized scheme. The second part of the article is devoted to the criterion of convective
boundedness. It is shown that the convective boundedness criterion (CBC) proposed by
Gaskell and Lau is only a suf� cient condition. Another region in the normalized variable
diagram is proposed within which any scheme de� ned is convectively bounded. Three new
bounded high-resolution schemes de� ned in this region, SBECBC1, 2, and 3, are proposed,
and numerical experiments for two advection problems and one diffusion-convection pro-
blem demonstrate the high-resolution ability of the SBECBCs for a sharp change in scalar
pro� le.

INTRODUCTION

Successful simulation of convection is one of the most challenging and inter-
esting research branches in computational ¯ uid dynamics (CFD) and numerical heat
transfer (NHT), which attracts many CFD=NHT workers to exert themselves to
develop an ideal (perfect) scheme. It is well known that stability, boundedness, and
accuracy are the most important properties of modeling schemes for the convection
term. In developing a computational program for ¯ uid ¯ ow and heat transfer pro-
blems it is desired to adopt a modeling scheme possessing high accuracy, high sta-
bility, and boudedness characteristics with reasonable computational e� ort. In
practice, however, no scheme has been proved to have such virtues simultaneously.
The di� culty in devising a satisfactory scheme lies in the con¯ icting requirements of
accuracy on one hand, and stability and boundedness on the other. High-order-
accuracy schemes may lead to unphysical oscillatory or overshoot=undershoot be-
havior in the region where steep gradients exist, while computations based on
classical ® rst-order upwind schemes (FUS) or the like often su� er severe inaccuracies
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due to the so-called false di� usion resulting from low-order truncation error. It is
widely accepted that the central di� erence scheme (CDS) is a conditionally stable
scheme owing to its small critical Peclet number, over which the numerical results
may be oscillating [1± 4]. However, many recent studies [5± 7] using the central dif-
ference scheme show that numerical solutions resulting from the central di� erence
scheme are often found to have no oscillatory behavior, though the grid Peclet
number is much greater than the critical Peclet number 2, obtained from the analysis
of a one-dimensional model equation. Recently, research work [8± 10] again revealed
a similar phenomenon. For example, the numerical results in [10] show that for the
case of impingement heat transfer of oncoming ¯ ow onto slatlike surfaces, the
central di� erence scheme for the convection term still leads to a physically reason-
able solution, even though in most computational regions the grid Peclet number is
much greater than 2, with the maximum Peclet number as high as 180. To the best of
the authors’ knowledge, there seem to be no articles in the literature which indicate
clearly the reasons for such di� erent results from the classic analysis [1± 4]. It is to be
noted that conventionally the stability analysis for the discretized convection-di� u-
sion equation is conducted for one-dimensional, linear, source-free, and two-point
boundary-value problems on a uniform grid system. Thus, one purpose of the pre-
sent study is to reveal the e� ect on the critical grid Peclet number if one of the above-
mentioned ® ve conditions is not ful® lled. The terminology of critical Peclet number
is adopted here to represent that value of grid Peclet number beyond which wiggles
will occur in the numerical solution.

Another important property of convective schemes, boundedness, is also stu-
died in this article. When the convection term is discretized by a bounded scheme,
the resulting numerical solution will never surpass the maximum or minimum values
inherently determined by the physical process itself. For example, the concentration
of a component of a mixture can only be varied from 0 to 1. If the numerical results
of concentration from some convection scheme have local values larger than 1
(overshoot) or less than 0 (undershoot), the convection scheme does not possess
boundedness. Obviously, boundedness is of immense importance to keep numerical
results physically reasonable, especially for the case where a large gradient occurs in

NOMENCLATURE

A coe� cients of the discretized equation
Superscripts

f cell face
I total ¯ ux across the cell face
Q source term in transport equation
S source term in the discretized

equation
u velocity component in x direction
v velocity component in y direction
U velocity vector
G di� usion coe� cient
r density
f general dependant variable

Superscripts

C convection contribution
D di� usion contribution

Subscripts

A refers to deferred correction
C central grid point
D downstream grid point
E, W , N, S refer to neighbors of the P grid point
e, w, n, s refer to the control-volume face
f refers to the control-volume face
NB refers to neighbors
P main grid point
U upstream grid point
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the computation domain. Gaskell and Lau [12] proposed a criterion for a convection
scheme to possess the boundedness character and named the criterion the convective
boundedness criterion (CBC). In addition, they also delineated a corresponding
region in the normalized variable diagram (NVD), shown in Figure 1 by the hatched
lines. They claimed that the characteristic lines (i.e., the de® nition line) of all
bounded schemes should be located within this region, and vice versa. Considerable
e� orts have been made in recent years to develop what is called high-resolution
composite schemes to overcome the unphysical overshoot=undershoot behavior of
some high-order schemes such as QUICK [13]. A number of high-resolution com-
posite schemes have been proposed for the calculation of viscous ¯ uid ¯ ow with
® nite-volume methods. The schemes are, for example, MUSCL [14], CLAM [15],
OSHER [16], MINMOD [17], SMART [12], STOIC [18], etc., which all satisfy the
convection boundedness criterion. The CBC and the restricted region at the NVD
have long been accepted as both su� cient and necessary conditions for a scheme
possessing boundedness [12,18,19]. In the authors’ opinion, however, the CBC
proposed by Gaskell and Lau is only a su� cient condition for a scheme to achieve
computed boundedness. In this article, another new su� cient condition is proposed.

NUMERICAL DISCRETIZATION OF THE TRANSPORT EQUATION

The two-dimensional di� usion and convection equation is discretized by the
® nite-volume method [1]. The di� usion term is discretized by linear interpolation
(central di� erence scheme) [1], while the interfacial term is interpolated by various
methods, including central di� erence, QUICK, and high-resolution schemes. To
ensure the solution stability of the discretization equation, the implementation of
CDS and QUICK is carried out by the deferred correction procedure proposed by
Rubin and Khosla [20] as

Ff ff ˆ Ff fFUS
f ± Ff (f

FUS
f ± ff )

¤ (1)

Figure 1. Gaskell and Lau CBC area in NVD.
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where the superscript FUS denotes values obtained using the ® rst-order upwind
scheme, ff represents cell face value computed by the high-order scheme adopted,
and ¤ indicates the value of the previous iteration. The ® nal discretized algebraic
equation can be written as follows:

APfP ˆ
X

NBˆE;W ;N;S

ANBfNB ‡ SP ‡ SA (2)

SA ˆ
X

fˆe;w;n;s

Ff (fFUS
f ± ff )

¤ (3)

where AP and ANB are the convection-di� usion coe� cients obtained from the ® rst-
order upwind discretization, SP is the original source term contribution, and SA is
the contribution from the deferred correction. It should be noted that in some ar-
ticles the function (or virtue) of the deferred correction technique seems to be ex-
aggerated. For example, in [21], after adopting the defer correction technique to the
coe� cient rearrangement of QUICK, it is claimed that `̀ the coe� cients are always
positive and now satisfy the requirements for conservativeness, boundedness and
transportiveness . ’ ’ From this statement it seems that once the coe� cients of the
discretization equation are reorganized by the deferred correction technique, any
scheme could be absolutely stable and bounded. Our numerical practice does not
support such viewpoint. As illustrated in [22], deferred correction is an e� cient way
to ensure the solution stability of discretization equation, but it cannot change the
inherent convective stability and boundedness of a scheme.

STABILITY OF FINITE-DIFFERENCE SCHEME FOR THE
CONVECTIVE-DIFFUSION EQUATION

As indicated earlier, all existing analysis methods on the stability of convec-
tion-di� usion di� erence schemes are based on the following ® ve assumptions:
(1) one-dimensional; (2) linear; (3) source term free; (4) uniform grid; and (5) two-
point boundary-value problem. However, practical problems are often far away
from the above assumptions Ð for example, three-dimensional nonlinear ¯ uid me-
chanics problems are often encountered in computational ¯ uid dynamics. Thus it is
necessary to investigate the in¯ uence of dimension, nonlinearity, source term,
boundary condition, and nonuniform grid on the stability of di� erent schemes. In
the following sections we will demonstrate that all ® ve factors have e� ects, more or
less, on the stability of convection ® nite-di� erence scheme.

1. Influence of the Boundary Condit ion

As stated above, all existing stability analysis methods consider only the ® rst
kind, i.e., Dirichlet boundary condition. Leonard studied a one-dimensional problem
with such a boundary condition [11]. The one-dimensional equation and boundary
condition considered by Leonard took the following form:

ru
df
dx

ˆ G
d 2f
dx2 ‡ S(x) x ˆ 0; f ˆ 0; x ˆ 1; f ˆ 1 (4)

where S(x) is a source term whose variation pattern is shown in Figure 2c.
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Leonard discretized the computational domain by practice A [1]. He found that
for PD ˆ 5 wiggles appeared at the right end of the computational domain for both
the QUICK and central di� erence schemes. In the present study the same problem

Figure 2. Solution oscillation of CDS and QUICK for PD ˆ 5: (a) solution of CDS; (b) solution of QUICK;
(c) source term.

STABILITY AND BOUNDEDNESS OF CONVECTIVE DISCRETIZED SCHEME 347



was solved on a grid system resulting from practice B [1] and similar results were
observed, with the wiggles caused by the central di� erence scheme being more severe
than those caused by QUICK (see Figures 2a and 2b). For the same problem, Shyy
[23] changed only the boundary condition of the right-hand side from ® rst kind to
adiabatic condition, and found that for the QUICK scheme no wiggles occurred
even with a Peclet number as high as 108. Our computationa l results also reveal the
same phenomenon, which indicates that boundary condition has a great e� ect on the
convective stability.

2. Effect of Nonconstant Source Term in the Ent ire Domain

A one-dimensional problem with nonconstant source term existing in the entire
computational domain (shown in Figure 3c) is tested by using both the QUICK and
central di� erence schemes (CDS) with 18 control volumes. The e� ect of the non-
constant source term seems trivial if the boundary conditions at the two ends are
both of ® rst kind, as witnessed from Figures 3a and 3b, where both QUICK and
CDS show oscillatory results when the grid Peclet number is a bit larger than the
critical value. However, if the boundary condition of the right-hand side is changed
to the third kind, expressed by fL ˆ f(L± 1) ± 0:1, then the stability of the two
schemes will be greatly enhanced: for QUICK, no oscillation occurs (see Figure 4);
for CDS, oscillation does not occur when the grid Peclet number is less than 10
(Figure 5a). However, for the case of third-kind boundary condition and zero source
term, the solution of CDS is still oscillating (Figure 5b). These reuslts illustrate the
important in¯ uence of both the nonconstant source term and boundary condition on
the stability of the convection scheme.

It is interesting to note that Kriventsev and Ninokata [24] recently proposed a
so-called EFD scheme in which the convection part is actually upwind-based and the
e� ect of a linearly varied source term was incorporated. Their computational results
show that when a linear interpolation cannot describe the source term distribution
correctly, EFD may also generate unphysical oscillating solutions even at very high
grid Peclet number.

3. Influence of Nonuniform-Grid Peclet Number

The test problem represented by Eq. (4) and Figure 2c is adopted again to
investigate the in¯ uence of nonuniform grid Peclet number. All the conditions are
the same as those mentioned in the section on boundary condition in¯ uence except
the distribution of grid Peclet number. The grid Peclet number in the present pro-
blem has di� erent values in the two regions of the computational domain (Figure 6).
Grid Peclet number tends to be in® nite (di� usive coe� cient equals zero) where x is
less than 4

9
, while for the rest of the domain, where x is greater than 4

9
, three di� erent

values of grid Peclet number are adopted: 0.0556, 0.556, and 5.56, corresponding to
three cases. Three curves shown later, in Figure 10, represent the three test cases,
which show the in¯ uence of nonuniform grid Peclet number distribution on stability.
Inspection of the results reveals that: (1) when grid Peclet number equals 0.556, no
oscillatory behavior is found; while for grid Peclet numbers 0.0556 and 5.56, wiggles
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appear; and (2) for the two unstable cases, wiggles occur on di� erent sides of the
computational domain, showing that oscillatory behavior may not be just a local
phenomenon.

Figure 3. Numerical solutions for ¢rst-kind boundary condition with entire-domain-¢lled source term
(CDS and QUICK): (a) CDC; (b) QUICK; (c) source term.
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4. The Influence of Mult iple Dimensions

In order to investigate the e� ect of the space dimension, 2-D lid-driven ¯ ow in
a cavity with di� erent wall temperatures is proposed. The moving lid is at high
temperature, while the other three stationary walls are at uniform but lower tem-
perature. The thermophysical properties are assumed to be constant, hence
convergent velocity ® elds may be obtained ® rst, and then the temperature ® eld
computed. This is a perfect model to study the e� ect of the space dimension while the
other four conditions remain the same as for the 1-D case. Computations were
conducted for Re ˆ 100. The local velocity components in the x and y directions are
used to calculate grid Peclet numbers PDx and PDy, respectively. It is found that for
the central di� erence scheme no oscillation occurs until the maximum grid Peclet
number is as high as about 7.1. This shows that multiple dimensions in space lead to
a more robust numerical stability of the convection scheme.

5. The Effect of Nonlinearity

The discussion of the previous section is based on given velocity ® elds. For
such cases, the governing equation is linear for the variable to be solved. The pro-
blem becomes nonlinear if the solved variable is velocity itself. By using the central
di� erence scheme, Kong et al. [7] studied a three-dimensional lid-driven ¯ ow in
a cubic cavity and found that the computational results of velocities were not

Figure 4. Numerical solution for combination of ¢rst- and third-kind boundary conditions with entire-
domain-¢lled source term (QUICK for PD ! 1).

350 B. YU ET AL.



oscillatory even when grid Peclet number was as high as 45 in a local region, which
shows the e� ect of both nonlinearity and multiple dimensions in space.

To this end, we may raise a very important problem for judging the numerical
stability of the convective ® nite di� erence scheme: Is the grid Peclet number a unique
criterion? If it is, then we believe that the critical grid Peclet number should be
routine-independent . In other words, for the same situation, when we search for the
critical Peclet number from its low-value case, we may increase the velocity, coarsen

Figure 5. Numerical solutions for combination of ¢rst- and third-kind boundary conditions: (a) with
entire-domain-¢lled source term (CDS for PD ˆ10); (b) without source term (CDS).
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the grid network, decrease ¯ uid viscosity, or we may use all the above methods si-
multaneously. For whatever method we use, the ® nal value of the critical Peclet
number should be the same in the numerical sense. In our numerical search of the
critical Peclet number, we have found that for all one-dimensional cases we studied,
the value of the critical grid Peclet number is approximately routine-independent .
For multidimensional cases, however, our preliminary computations show that not
all cases exhibit such character. Further research work is imperatively needed for
multidimensional cases to reveal the factors which a� ect the numerical convective
stability and the quantitative relationships among them.

BOUNDEDNESS OF CONVECTIVE FINITE-DIFFERENCE SCHEM ES

Attention is now turned to the analysis of boundedness of convection schemes.
First, a brief review of normalized variable formulation and the convective bound-
edness criterion will be given, with discussion of the relationship between stability
and boundedness. Then a new region in the normalized variable diagram (NVD) will
be introduced within which a bounded scheme may be de® ned. A new scheme de-
® ned in this new region is proposed, and three test cases are provided to demonstrate
its e� ectiveness to avoid unphysical undershoot=overshoot behavior.

1. The Normalized Variable

In order to simplify the de® nition of functional relationship of high-order
composite schemes, the normalized variable proposed by Leonard [13] is used in the

Figure 6. E¡ect of grid Peclet number distribution.
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present study. Considering three neighboring grid points as shown in Figure 7a,
de® ning fU ; fD; fC ; ff as the upstream (U ), downstream (D), central (C) nodal
values, and interface values ( f ), the de® nition of an upwind-biased higher-order
scheme usually can be formulated as

ff ˆ f(fU; fC; fD) (5)

Now, de® ning a normalized variable as

~ff ˆ f ± fU

fD ± fU
(6)

we have ~ffU ˆ 0, ~ffD ˆ 1, and the interpolation for ff ˆ f(fU; fC; fD ) is simpli® ed to

~ff ˆ f( ~ffC) (Figure 7b) (7)

2. Stability Judgment via NVD

Taking ~ffC and ~fff as the abscissa and ordinate, respectively, we may outline
many schemes in this coordinate system (often called a normalized variable diagram,
NVD) by a single straight line. In Figure 8a, six such schemes are presented, where
SUS and TUS represent the second-order upwind and third-order upwind schemes,
respectively. For simplicity of presentation, we shall call such a line the characteristic
line of the scheme. In Table 1, their de® nitions are provided in both usual and
normalized variables. It is interesting to note that the critical Peclet number of a
scheme determined from the one-dimensional analysis may be obtained from its
characteristic line in the NVD. Actually, the intersection of the characteristic line
and the ordinate of the NVD equals the coe� cient of the downstream point in the
conventional de® nition of a scheme (Table 2); and the value of this coe� cient is
equal to the reciprocal of the critical Peclet number of the scheme.

Figure 7. Stencil of interface variable interpolation: (a) original variable; (b) normalized variable .
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Thus we may come to the conclusion that for a convective scheme to be un-
conditionally stable, its characteristic line in the NVD must go though the co-
ordinate original point (0, 0).

Figure 8. Representation of di¡erent schemes in NVD: (a) characteristic lines of six schemes; (b) ECBC
area in NVD; (c) characteristic lines of three new schemes.
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3. The Convect ive Boundedness Criterion (CBC)

Gaskell and Lau proposed the convective boundedness criterion based on
normalized variable analysis, which states the conditions for boundedness as follows:

~fff ˆ f( ~ffC) ˆ ~ffC for ~ffC µ 0 (8a)

~fff ˆ f( ~ffC) ˆ ~ffC for ~ffC ¶ 1 (8b)

~ffC µ ~fff µ 1 for 0 < ~ffC < 1 (8c)

In Figure 1, the shaded region and the diagonal, which goes through the points (0, 0)
and (1, 1) in the NVD, represent the CBC. This means that if the characteristic line
of a convection scheme is located within this shaded area for ~ffc 2 [0; 1] and coincides
with the diagonal for ~ffc outside [0, 1], the scheme possesses boundedness. As
mentioned above, many authors, including Gaskell and Lau, consider that the above
conditions are both su� cient and necessary for convective boundedness. And all the
existing high-resolution schemes, including the newly proposed scheme WACEB
[26], are de® ned within the region prescribed by Eq. (8).

4. The Extended Convect ive Boundedness Criterion (ECBC)

Our numerical experiments show that the CBC proposed by Gaskell and Lau
is only a su� cient condition. In other words, there may be another region(s) in

Table 1. De¢nitions of six schemes in conventional and normalized forms

No. Scheme name Conventional de¢nition Normalized de¢nition

1 FUS ff ˆ fC
~fff ˆ ~ffC

2 CDS ff ˆ 1
2 (fC ‡ fD) ~fff ˆ 1

2 ( ~ffC ‡ 1) ˆ 0:75 ‡ 0:5( ~ffC ± 0:5)

3 SUS ff ˆ 3
2 fC ± 1

2 fU
~fff ˆ 3

2
~ffC ˆ 0:75 ‡ 1:5( ~ffC ± 0:5)

4 QUICK ff ˆ 1
8 (3fD ‡ 6fC ± fU ) ~fff ˆ 1

8 (3 ‡ 6 ~ffC ) ˆ 0:75 ‡ 0:75( ~ffC ± 0:5)

5 Fromm [25] ff ˆ 1
4 (fD ‡ 4fC ± fU ) ~fff ˆ 1

4 (1 ‡ 4 ~ffC ) ˆ 0:75 ‡ ( ~ffC ± 0:5)

6 TUS ff ˆ 1
6 (2fD ‡ 5fC ± fU ) ~fff ˆ 1

6 (2 ‡ 5 ~ffC ) ˆ 0:75 ‡ 5
6 ( ~ffC ± 0:5)

Table 2. Relationship between PDcr and coe¤cients of fD

Scheme Coe¤cient of fD Intersection PDcr

CD 1
2 0.5 2

QUICK 3
8 0.375 8

3

TUD 1
3 0.333 3

Fromm 1
4 0.25 4

SUS 0 0 1
FUS 0 0 1
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the NVD within which the characteristic lines of bounded schemes may be located.
The present authors have found that schemes satisfying the following constraints are
also bounded:

~ffC µ ~fff µ
~ffC

2
for ~ffC µ 0 (9a)

~ffC µ ~fff µ
~ffC ‡ 1

2
for 0 < ~ffC < 1 (9b)

~ffC ‡ 1
2

µ ~fff µ ~ffC for ~ffC ¶ 1 (9c)

This constraint is called the extended convective boundedness criterion (ECBC). The
shaded area in Figure 8b represents this bounded criterion. In what follows, nor-
malized variable analysis will be used to elucidate the ECBC. As usual, the case of
one-dimensional ¯ ow with constant velocity u and di� usion coe� cient G is assumed
which is formulated by Eq. (4). The normalized integral form of Eq. (4) over the
control volume (Figure 9) can be written as

~fff ± ~fff’ ˆ
ff ± ff’
fD ± fU

ˆ ~SS ¤ (10)

where the e� ective normalized source term ~SS ¤ is composed of di� usion and physical
source terms and takes the following form:

~SS ¤ ˆ
[G(df=dx)]f ± [G(df=dx)]f’ ‡

R f
f’ S(x) dx

r u(fD ± fU)
(11)

As indicated by Gaskell and Lau [12], the following constraints can ensure com-
putational boundedness:

1 < ~fff µ ~ffC; 0 µ ~fff’ < ~fff for ~SS¤ > 0; ~ffC > 1 (12a)

0 µ ~fff’ µ ~ffC < ~fff µ 1 for ~SS¤ ¶ 0; 0 µ ~ffC µ 1 (12b)

~ffC µ ~fff < ~fff’ < 0 for ~SS¤ < 0; ~ffC < 0 (12c)

It can be shown that the ECBS meets the above constraints .
First, it can be seen from Figure 9 that cell face values ~fff de® ned in Eq. (12) are

somewhat between those obtained from a ® rst-order-upwind scheme and a central
di� erence scheme, i.e., the values of ff and ff’ de® ned in Eq. (12) satisfy the fol-
lowing condition:

ff 2 {min[fC; (fC ‡ fD)=2]; max[fC; (fC ‡ fD )=2]} (13a)

ff’ 2 {min[fU; (fU ‡ fC)=2]; max[fU; (fU ‡ fC)=2]} (13b)

Equation (13) will be recast into normalized form for the three variation ranges
of ~ffC.
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1. For ~SS¤ > 0, ~ffC > 1, Eqs. (13a) and (13b) lead to the following two
inequalities, respectively:

~fff 2 [~ffC; ( ~ffC ‡ 1)=2] (14a)

~fff’ 2 [0; ~ffC=2] (14b)

Thus we have

1 < ~fff µ ~ffC 0 µ ~fff’ < ~fff (a)

2. For ~SS¤ ¶ 0, 0 µ ~ffC µ 1, the normalized form of Eqs. (13a) and (13b) are
the same as those of Eqs. (14a) and (14b), which now can be combined into

0 µ ~fff µ ~ffC < ~fff µ 1 (b)

3. For ~SS¤ < 0, ~ffC < 0, Eq. (13a) becomes

~fff 2 [~ffC; ( ~ffC ‡ 1)=2] (c)

From the speci® ed condition, Eq. (9a), we have

~fff 2 [~ffC; ~ffC=2] (d)

In addition, Eq. (13b) becomes

~fff’ 2 [~ffC=2; 0] (e)

Combining Eqs. (d) and (e) we obtain

~ffC µ ~fff µ ~fff’ < 0 ( f )

From the above discussion, we can see that the ECBC is a su� cient condition
for convective boundedness.

5. SBECBC

In the present work three new schemes are proposed in the region of the ECBC.
Since the major di� erence between the CBC and the ECBC is in the regions of
~ffC µ 0 and ~ffC ¶ 1:0, the de® nitions of the three new schemes are all the same in the

Figure 9. Control volume of one-dimensional grid system.
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region of ~ff 2 [0; 1:0], with di� erent characteristic lines in the region outside
~ff 2 [0; 1:0]. The three new schemes are formulated as follows:

SBECBC1 ~fff ˆ ~ffC=2 for ~ffC µ 0 (15a)

~fff ˆ 3 ~ffC for 0 < ~ffC < 0:2 (15b)

~fff ˆ ( ~ffC ‡ 1)=2 for ~ffC ¶ 0:2 (15c)

SBECBC2 ~fff ˆ 3 ~ffC=4 for ~ffC µ 0 (16a)

~fff ˆ 3 ~ffC for 0 < ~ffC < 0:2 (16b)

~fff ˆ ( ~ffC ‡ 1)=2 for 0 < ~ffC µ 1 (16c)

~fff ˆ (3~ffC ‡ 1)=4 for ~ffC > 1 (16d)

SBECBC3 ~fff ˆ 7 ~ffC=8 for ~ffC µ 0 (17a)

~fff ˆ 3 ~ffC for 0 < ~ffC < 0:2 (17b)

~fff ˆ ( ~ffC ‡ 1)=2 for 0 < ~ffC µ 1 (17c)

~fff ˆ (7~ffC ‡ 1)=8 for ~ffC > 1 (17d)

These schemes are based on the extended convection boundedness criterion, hence
are called SBECBC with di� erent digits as su� xes to indicate di� erent versions. The
three schemes are illustrated in Figure 8c, where S1, S2, and S3 represent SBECBC1,
SBECBC2, and SBECBC3, respectively.

6. Test Examples

We adopted SBECBCs to compute the transport of a scalar ® eld with dis-
continuities in its gradient by pure convection. The problems of purely convective
transport of a scalar ® eld with discontinuities are widely used to test high-order
composite schemes for boundedness. The computational results are considered
converged when the residual error given by Eq. (18) becomes less than 0.05%:

Res ˆ
X

APfP ±
X

nb

Anbfnb ‡ SP ‡ SA

Á !
(18)

The ® rst test problem is convection of a step pro® le in an oblique velocity ® eld.
The given velocity ® elds of the test problem are as follows:

x ˆ 0 0 µ y µ 0:5(1 ± tan 35¯) f ˆ 1

x ˆ 0 0:5(1 ± tan 35¯) < y µ 1 f ˆ 2

0 µ x µ 1 y ˆ 0; f ˆ 1

u ˆ cos 35¯ v ˆ sin 35¯

A comparison of the numerical solutions at the vertical central plan of the solution
domain computed by 12 di� erent schemes with a 21 £ 21 uniform mesh is presented
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in Figure 10. It can been seen that the solution from the FUS is extremely di� usive.
The numerical results of the second-order upwind di� erence scheme (SUS), CD, and
QUICK produce results with strong oscillations and overshoot=undershoot. On the

Figure 10(a)± (f). Continued
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Figure 10. Comparison of velocity pro¢les at the vertical central plane from di¡erent schemes: (a) FUS;
(b) SUS; (c) CDS; (d) QUICK; (e) MINMOD; ( f) OSHER; (g) CLAM; (h) SMART; (i) STOIC;
(j) SBECBC1; (k) SBECBC2; (l) SBECBC3.
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other hand, all high-order composite schemes, namely, CLAM, OSHER, MINMOD,
SMART, STOIC, and SBECBC1, 2, 3, give physically reasonable results. To qualify
the numerical accuracy of di� erent schemes, an average error is de® ned as follows:

Eav ˆ 1
N

XN

n

fn;exact ± fn;numerical

fn;exact

(19)

The average errors of the numerical results of di� erent schemes are listed in Table 3.
It can be seen that the STOIC scheme gives the most accurate simulation, followed
by the SBECBCs family and SMART.

Our second test problem is advection of a square scalar ® eld in a given velocity
® eld skewed at an angle of 45¯ with respect to the meshes. The 2-D domain is shown
in Figure 11a, and a 3-D perspective view of the initial ® eld is presented in Figure
11b. The maximum and minimum values of the ® eld are 10 and 0.0, respectively.
Computations were conducted using three new schemes. Since the results are
essentially the same, only the results of SBECBC1 are presented. Figures 11c ± 11f
depict the advection process predicted by SBECBC1. It can be seen clearly that
SBECBC1 gives oscillation-free results.

The last example is the two-dimensional lid-driven cavity ¯ ow. This is a
convection-di� usion problem. The convection term is discretized by SBECBC1, 2,
3 and the di� usion term by central di� erence. The computational results are
compared with the benchmark solution [27]. Since the curve representations of
the three solutions of SBECBC1, 2 and 3 can hardly be distinguished, only the
results of SBECBC1 are compared with the benchmark solution. The velocity dis-
tributions at two mid-cross sections are presented at Figure 12. The very good
agreement between the numerical results and the benchmark solution can be clearly
observed.

CONCLUSIONS

The main ® ndings of the present article can be summarized as follows.

1. Existing analysis methods for the stability of a discretized convective term
are based on ® ve assumptions. Thus, obtained critical grid Peclet number is
the most severe requirement for convective stability.

2. When a conditionally stable scheme, such as QUICK or central di� erencing
is adopted to discretize a practical problem, oscillation-free solution may be
obtained under much greater grid Peclet than that predicted by the existing

Table 3. Comparison of average error of di¡erent schemes

Scheme CD SUD QUICK FROMM MINMOD SMART

Error6100 10.200 4.1570 4.0661 3.8378 4.7446 2.9223

Scheme STOIC SECBC1 SECBC2 SECBC3 OSHER MUSCL
Error6100 2.2178 2.8648 2.8684 2.8684 3.6082 3.1788
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Figure 11. Transport of a square scalar ¢eld in a given velocity ¢eld predicted by SBECBC1: (a) £ow con-
¢guration ; (b) initial ¢led; (c) numerical solution after 20 time steps; (d) numerical solutions after 50 time
steps; (e) numerical solutions after 80 time steps; ( f) numerical solution after100 time steps.
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analysis methods. Any deviation from the ® ve assumptions of the existing
analyses may attribute, more or less, to enhance convective stability.

3. For a convective scheme to be absolutely stable, its characteristic line in the
NVD must goes through the original point. The reciprocal of the intersec-
tion of the characteristic line with the ordinate is equal to the critical Peclet
number from the one-dimensional analysis.

4. The CBC de® ned by Gaskell and Lau is only a su� cient criterion for
boundedness. The convective bounded region in the NVD can be extended,
and a new region has been discovered.

5. Three new high-order bounded schemes called SBECBC1, 2, and 3 are
proposed. Numerical computations with the SBECBCs are performed for
three test problems containing discontinuities in gradient, and no over-
shoot=undershoot is found. The new schemes are compared with six other
high-order composite schemes for a pure convection problem of scalar
pro® le with steep gradient, and it is found that their numerical accuracy is
slightly better than that of SMART.

6. The convection term in the 2-D Navier-Stokes equation was discretized by
SBECBCs and the resulting discretized equations were used to solve the lid-
driven cavity ¯ ow by the SIMPLER algorithm. The numerical results agree
well with the benchmark solution, indicating the feasibility of the proposed
schemes in the simulation of both advection and convection-di� usion
problems.
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