
Automatic generation of unstructured grids
with Delaunay triangulation and its application

B. Yu, M. J. Lin, W. Q. Tao

Abstract This paper is consisted of two parts. In the ®rst
part, a method is described which generates two-dimen-
sional triangle mesh using the Delaunay triangulation
criterion. An automatic algorithm was proposed which
combines several advantages of the existing methods.
Local mesh re®nement can also be easily performed with
this method. Examples of generated grids were presented
for several convex, non-convex and multi-connected do-
mains to demonstrate the effectiveness and feasibility of
the proposed method. In the second part, the turbulent
heat transfer in an annular space ®nned by wave-like
longitudinal ®ns was numerical simulated. The proposed
technique was adopted to generate the grid in the cross-
section. The standard K-e model in conjuction with wall
function method was used to simulate the ¯uid ¯ow and
heat transfer in the complex geometry. The discretization
of the governing equations was described. The computa-
tional results were compared with the authors' test data
and the agreement was reasonably good.

1
Introduction
For handling complex geometries in computational heat
transfer and ¯uid ¯ow, a structured single block grid is
often not desirable, and quite often even impossible. Many
different approaches have been proposed to get around
this obstacle. Of those two major categories are the mul-
tiblock grids, which utilize structured grids within blocks,
and the unstructured grids, which consist of an assembly
of triangles (2D) or tetrahedra (3D). Although the com-
puter time required for the unstructured-grid solver is
usually much larger than that of structured grid, the step
of appropriate connections between blocks for the multi-

block is much time-consuming and needs more man
effort. Recent advances show that computation of ¯uid
¯ow and heat transfer on unstructured grids for
complex geometries are more competitive with those of
structured grids.

There are two dominant methods of generating un-
structured grids. The ®rst one is the advancing front
method [1±3]. In this method, giving initial boundaries of
points and triangles, points are created within the ®eld and
triangles formed, which advance into the computational
domain. The other method, which is addressed in this
paper, is the Delaunay triangulation [4±8]. This technique
triangulates a set of points in a unique way such that the
minimum angle of each triangle formed in the grid system
is maximized. This technique has the advantage that the
resulting triangles are optimal for the given set of points in
that they usually do not contain many extremely skewed
cells, which is a very desirable property from the viewpoint
of computational accuracy. Moreover, such techniques
based on the Delaunay method are particularly suited to
a self-adaptive solution strategy, because the Delaunay
construction can conveniently add new points to an
existing triangulation with no need to remesh the whole
domain. Therefore, this technique has been calling for
more and more attention in computational ¯uid dynamics
and heat transfer.

Although the Delaunay triangulation provides a unique
way with which to connect points, it does not provide the
method of generating a point within a computational do-
main. Furthermore, the resulting meshes may not boun-
dary-conforming, i.e. the boundaries of resulting triangles
may not coincide with the boundary of a computational
domain if no special method is applied during the trian-
gulation. Therefore, the emphasis of recent investigations
on the Delaunay triangulation are mainly focused on these
two subjects [6±9]. A simple and convenient way to make
the mesh boundary conforming is to start the triangulation
process with a simple square which contains the boundary
points of the computational domain [6]. The square is
divided into two triangles and its four corner points are
located at suf®cient distance from all the given boundary
points. Using the Delaunay triangulation technique (which
will be brie¯y addressed later) to form triangles, a very
coarse mesh may be obtained with triangle vertices only at
the given boundary points and the four corners. Then the
cells whose centroids are outside the given domain are
removed, resulting in an initial triangulation for the given
boundary points. The next step is to create points within
the domain. This method for boundary conforming will be
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adopted in this paper. For the point creation many
methods have been proposed, of which the methods pro-
posed recently by Anderson [6] and Weatherill and Hassan
[8] will be brie¯y reviewed. Anderson de®ned a parameter
which he called aspect ratio as the ratio of the circumcircle
radius to twice the incircle radius of any existing triangle.
It is required that this aspect ratio should be less than a
predetermined tolerance which is generally 1.5. A point is
®rst added at the circumcircle of the triangle whose aspect
ratio is the largest among the existing triangles. Then using
the Delaunay triangulation technique to connect this point
and the related points, forming a series of new triangles.
This process is performed until the aspect ratios of all the
triangles in the domain are less than the tolerance. Since
for the equilateral triangle its aspect ratio is equal to 1, the
use of the aspect ratio can effectively control the shape of
the resulting triangles. However, the information con-
tained in the boundary points which usually re¯ects a
desire variation slope may not be effectively transferred
into the domain by this method. In the method proposed
by Weatherill and Hassan [8], a typical length scale for the
boundary points is ®rst determined, which is computed as
the average of the two lengths of the connected edges. It is
desired that around the given boundary points and any
existing interior points no points should be placed within
a distance comparable to the de®ned length scale. For each
point i, a region Ci, is determined within which no interior
point should be placed. In this method, the new points are
placed at the centroids of the formed triangles and then a
test is performed to determine if any of the new points
locate within any Ci. If a point lies within Ci, it must be
rejected, otherwise, it is accepted and connected using the
Delaunay triangulation algorithm. Two additional param-
eters, a and b, are introduced to control the mesh struc-
ture, of which one for the vertices of formed triangles and
the other for the other points to be inserted. Obviously, in
this method, the information contained in the boundary
points can be smoothly transported into the domain, while
the control in shape of the resulting triangles may not be
so direct as that of Anderson's method. Furthermore, the
choices of a and b are somewhat arbitrary, and their ap-
propriate values may be problem-dependent and should
be determined by try-and-error.

Thus, it can be seen that if an algorithm can combine
the advantages of the methods mentioned above, it will
certainly prove to be ef®cient and convenient for the
Delaunay triangulation technique.

The purpose of this paper is to present a new, simple
and easy-to-implement, fully automatic point creation
algorithm. The procedure for creating interior points of
convex, non-convex and multiple-connected domains
hardly differs. In addition, the proposed method may be
easily used to re®ne local mesh within the domain. In the
following, the general procedure for generating unstruc-
tured grids in an arbitrary domain with Delaunay trian-
gulation will ®rst be introduced, followed by the detailed
description of the proposed point creation algorithm.
Since the judge whether a point is within the domain or
outside it is frequently performed in the proposed algo-
rithm, a practical convenient method for this judge will
also be presented. Finally, several grid generation exam-

ples and the preliminary computational results for a ¯uid
¯ow problem will be provided.

2
General procedure of unstructured grid generation by
Delaunay triangulation
A general procedure for generating an unstructured mesh
by Delaunay triangulation may be summarized into fol-
lowing four major steps:

� Giving the grid points and connective information on
the boundary(ies) of the computational domain. It is
assumed that the given boundary grid point distribu-
tion re¯ects the desired coarseness-and-®neness of the
grids around different part of the domain.

� Setting up the initial triangles by Delaunay triangula-
tion. This procedure includes the forming of related
square which includes all the given boundary points,
the creating of initial triangles by Delaunay technique
and the removing of the cells whose centroids are
outside the given domain.

� Creating points into the domain automatically accord-
ing to the predetermined criterion.

� Re®ning mesh (if necessary)

The detailed description of Delaunay initial triangulation
can be found in Ref. [6], and here only automatic interior
point creation method, especially the algorithm we
proposed in the present paper is described in details as
follows.

3
Automatic interior point creation
In this section a new method for creating a point into the
interior of a computational domain will be presented,
which is ¯exible, easy to implement, requires minimum
user input and provides good grid quality.

3.1
Three terminologies
To proceed, three terminologies will ®rst be de®ned as
follows.

Control background network How to obtain grid control
information ef®ciently is essential in the mesh generation.
Many approaches have been developed, one of which is the
control back-ground [11]. The control back-ground grid is
a way to associate grid parameters to grid points all over
the domain. Many implementation techniques are pro-
posed, some of which are quite time-consuming. In this
paper, we adopt the initial triangulation as the control
background network, which can be obtained directly from
the initial Delaunay triangulation for the boundary points
as described above. Based on the back-ground network, we
can de®ne the length scale for any location within the
domain.

Length scale The length scale of a boundary point is
de®ned as

���
3
p

=2 times the average distance between the
point and its two neighboring boundary points.
For any prospective point to be inserted, its length scale is
determined by an interpolation based on reciprocal rule.
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This may be illustrated by an example shown in Fig. 1. Let
Q be the point within the domain, it will be easy to ®nd
which triangle of the control background network en-
compasses this point (in the example, D145). Compute the
distance between Q and the three vertices of the triangle
and denote them by l1; l4; and l5 respectively. Then the
length scale of point Q is de®ned as:

L�Q� � L�1�=l1 � L�4�=l4 � L�5�=l5

1=l1 � 1=l4 � 1=l5
�1�

where L�1�, L�4� and L�5� are the length scale of the ver-
tices 1, 4 and 5 respectively. It should be noted that for all
interior points, their length scales are always computed by
the reciprocal interpolation equation. Furthermore,
whenever a new grid point is added, we only use the
control background network to ®nd the triangle within
which the point is located, regardless of how many new
triangles have been formed in the computation domain.
Therefore, the information of the initial triangulation is
always kept in the computer memory during the procedure
of grid generation. The reason for this will be clearly
understood from the later discussion.

Dimensionless circumcircle radius For each triangle Dk
obtained via Delaunay triangulation, its dimensionless
circumcircle radius Rk is de®ned as:

Rk � rk

L�xk; yk� �2�

where rk is the circumcircle radius of Dk, L�xk; yk� is the
length scale of the circumcircle center. At this point, a few
words may be added to the above description. The adop-
tion of the reciprocal interpolation (Eq. (1)) is based on
the consideration that the nearer the grid point to be
added to its neighboring points, the stronger their effects
on it. This interpolation rule may enhance the effect of the
boundary point distribution character to the interior node
coarseness. And it is for this purpose that we insist that for
any newly created point its related triangle should be
found from the initial triangulation whose vertices are all
on the boundary. The value of the dimensionless circum-
circle radius represents, in some extent, the size and shape
of a triangle. Obviously, at the beginning of interior point
creation the existing triangles are usually quite large and
very skewed, hence its circumcircle radius is much greater

than the length scale of its center. And the bigger the tri-
angle, the larger the value of its dimensionless circumcircle
radius. Thus an interior point should ®rst be added into
the triangle whose value of Rk is the largest among the
existing triangles. And it is interesting to note that for the
simplest case where only one equilateral triangle exists, its
dimensionless circumcircle radius is 2/3.

3.2
Goodness criterion
Each triangle is considered bad, except that its dimen-
sionless circumcircle radius is near 2/3. In this paper, if the
dimensionless circumcircle radius Rk of a triangle is less
than 1, we think the triangle is acceptable.

Keeping above discussion in mind, attention is now
turned to the implementing process of point creation into
the initial triangles. The details of the implementation are
as follows:

3.3
Interior point creation algorithm

(a) Computing the length scale via the interpolation
equation for the circumcircle center of all the
existing triangle;

(b) determining the value of Rk for all the existing
triangles;

(c) Ordering the triangles according to their values of
Rk (from large to small);

(d) Creating a new point at the center of the circum-
circle of the triangle at the top of the ordered list
(i.e., the triangle with the largest value of Rk);

(e) Regenerating triangles by Delaunay triangulation
technique;

(f) Deleting the triangles broken in the triangulation
process from the triangle list and inserting the newly
generated triangles into the list according to their
values of Rk;

(g) If max (Rk� > 1, returning to the step d, else, stop.

3.4
Local fineness of the grids
Attention is now turned to the control of the local ®neness of
the grids. The local coarseness or ®neness of the generated
mesh can be controlled by many ways. The simplest and
most convenient way is to control the grid distribution on
the boundary. Ideally any method which automatically
creates points (into the domain) should ensure that the
boundary point distribution character is extended into the
domain in a spatially smooth manner. By introducing the
length scale and its particular interpolative rule, this smooth
extension of the boundary point distribution character into
the domain is guaranteed. For some cases, the grids gen-
erated with the above described technique are not ®ne en-
ough at some local regions within the domain and can not be
expected to be suf®cient for accurate computations. We can
easily de®ne point, line and block sources to provide local
®ne grids for the unstructured mesh.

This is, to some extent, analogous to the point sources
as control functions with elliptic differential equations
[10]. In order to re®ne the local meshes around someFig. 1. Illustration for de®nition of length scale
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places within the domain we take these regions as re®ne-
ment sources and their positions are ®rst assigned as input
data with the boundary points. Besides, the length scales of
these points are also assigned a priori, rather than inter-
polated by the reciprocal rule. The magnitude of the length
scale of the point sources may be one order or so less than
the average length scale of the boundary points, depending
on the problem studied. When set up the initial triangles
by the Delaunay triangulation, these points are treated as
the boundary points and each inner point should be
connected to form triangles. The rest of the implementing
procedure is the same as outlined in the above algorithm.
Some examples will be illustrated in later discussion.

3.5
Data structure
An appropriate data structure is essential to the imple-
mentation of the above described algorithm. The data
structure used to implement this algorithm involves an
array, triangle, which contains the nodes of each triangle
(the so-called forming points), and a tree structure,
neighbor, which, for each triangle, points to the three
neighbor triangles. The circumcenter, coordc, and radius,
radius of each circle which passes through the three nodes
of each triangle are also required. Hence, the arrays
required are Triangle (nt,3), neighbor (nt,3), radius (nt),
coordc (nt,2), coorp (nt,3,2) where nt denotes the number
of the existing triangle meshes and coorp represents the
Cartesian co-ordinates of the points.

4
Practical method for judging a point-position
As outlined above, in the implementation of the unstruc-
tured grid generation, it is frequently needed to determine
whether a point is in the computation domain or not. The
judgment is ®rst encountered at the beginning of trian-
gulation, when the extended region should be discarded by
judging whether the centroid of each resulting triangle is
located within the domain or not. When a new point is to
be added at the circumcenter of a triangle, it is also nec-
essary to make sure that this circumcenter is in the com-
putation domain. In this work, a simple and convenient
way was developed for this judgment. It can be applied
to any kind of domain, whether simply-connected or
multi-connected. Take the domain shown in Fig. 2 as an
example. It is a very complicated (non-convex, multi-
connected) domain. Let p is an arbitrary point with co-
ordinates �xp; yp�. It is required to check whether point p
located within the domain.

An algorithm of judging whether a point is in the
computation domain or not is proposed as follows:

(a) From the input data of the boundary points, forming
a series of piecewise linear arcs, each of which is
ended with two neighbor boundary points. It should
be noted that the data of the point coordinates of the
same boundary (inner or outer) may be input in a
random way, but points for different boundaries are
identi®ed.

(b) Drawing a vertical line x � xp, If this line does not
intersect any linear arcs mentioned above, point p

must be outside the computation domain. If this line
intersects any of these linear arcs, it is easily to
understand that the number of these intersected arcs
must be an even one. In Fig. 2, these arcs are 19±20,
29±30, 34±35, 87±88, 79±80 and 66±67 (the number
is 6).

(c) Calculating the y-coordinates of the intersected
points.

(d) According to the value of y-coordinate of the in-
tersected points, reordering the linear arcs in a range
from the lowest to the highest. For the example
given in Fig. 2, these arcs are: 66±67, 79±80, 87±88,
34±35, 29±30 and 19±20. They will be denoted as
�i � 1; 2; . . . 6�.

(e) Deciding whether the point p�xp; yp� locates between
any two linear arcs and whether the number of lower
linear arc of the two linear arcs is an odd one. If the
two answers are both yes, p locates in the domain, else,
p outside the domain. To make this judge process
ef®ciently, a special data structure is designed.

5
Grid generation examples
In this section, a few examples of domain triangulations
are presented to illustrate the effectiveness and robustness
of the method described above. In all cases user interac-
tion with our algorithm was limited to provide necessary
boundary information. (Local ®neness sources were also
treated as boundaries). The algorithm was performed by a
special data structure and the time consumed for trian-
gulation was very small, about 3000 triangles could be
generated per minute by a personal computer
(5 X 86; 166 MHz).

A multi-connected domain (see Fig. 3) with one outer
boundary and three inner boundaries was selected as a
complex domain to be triangulated by the above algo-
rithm. Even though the domain is very complex, the re-

Fig. 2. Practical method for judging point location
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sulting cells are of good quality, i.e. most of them are
closed to equilateral.

Figure 4 illustrated unstructured grid generations by
automatic point insertion with sources. Point sources, line

source and block source were used to re®ne local meshes.
Figure 4a is an example of domain triangulation with three
point sources. Figure 4b presents triangulation with one
re¯exed line source. Figure 4c shows the case with one
point source and one re¯exed line source. Finally Fig. 4d
shows the triangulation of a region with a block source. All
the examples generated by using the approach proposed
above indicate that the quality of the triangles generated is
good, thus the local ®neness method proposed above is
effective.

Figure 5 represents the triangulation of a practical
multi-connected domain. In the cases, the inner bound-
aries are airfoils, the length scale of the inner boundary is
much less than the outer boundary, especially at the top
and the tail of the airfoil. The grids generated in the vi-
cinity of the airfoils are much denser than those near the
outer circle boundaries, and smoothly extend to the outer
boundaries, which illustrates that the dimensionless cir-
cumcircle radius is an effective parameter and may be
adopted as a good criterion for Delaunay triangulation.

In the previous sections a mesh generated method using
Delaunay triangulation criterion has been presented in
detail. In the following paragraphs the proposed method isFig. 3. Generation of triangle mesh for multi-connected regions

Fig. 4a±d. Illustration of
unstructured grid genera-
tion by automatic point in-
sertion with sources. a with
three point sources; b with
one re¯exed line source;
c with one point source and
one re¯exed line source;
d with block source
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adopted to generate an unstructured grid for simulating
turbulent ¯ow and heat transfer in a tube with wave-like
longitudinal ®ns. Numerical methods to discretize gov-
erning equations on the unstructured grid will be brie¯y
presented, followed by numerical results observation and
comparison with test data.

6
Numerical methods
The cross-section of the tube is shown in Fig. 6a. As seen
there, longitudinal ®ns consisted of 4 waves is attached at
the tube inner wall. A blocked inner tube is inserted as a
cartridge of the ®n. From the symmetry of the con®gura-
tion, only the shaded area is taken as the computation
domain. Since a part of the wave-like ®n is included in the
computation domain, unstructured grids generated by the
proposed method were used in the cross-section, while
structured grids were adopted in streamwise-direction.
The resulting control volume is a pentahedron (Fig. 6b).

Attention is now turned to discretize the equations
governing ¯uid ¯ow and heat transfer in a 3-D domain.
The turbulent model adopted in the present study is the
standard K-e model in conjunction with the wall function
method. The governing equations for K and e are:

o
oxj
�qujK� � o

oxj
l� lt

rk

� �
oK

oxj

� �� �
� PK ÿ qe �3�

o
oxj
�quje� � o

oxj
l� lt

re

� �
oe
oxj

� �� �
� c1

e
K

PK ÿ c2
e2

K
�4�

where

Fig. 5a,b. Triangulation of practical multi-connected domain.
a with one airfoil inner boundary; b with two airfoil inner
boundaries

Fig. 6a,b. The ®nned tube and the computational grid

366



lt � clq
K2

e
PK � lt

oui

oxj
� ouj

oxi

� �� �
oui

oxj
�5�

and the values of the empirical coef®cients used were
taken as follows [11]:

Cl � 0:09; C1 � 1:44; C2 � 1:92

rK � 1:0; re � 1:3; rT � 0:9

For simplicity of discretization, the governing equations
for velocities, temperature, turbulent kinetic energy and
dissipation are cast into a general transport equation with
appropriate choice U, C and SU:

o
oxj
�qujU� � o

oxj
C

oU
oxj

� �� �
� SU �6�

The numerical boundary conditions were taken as follows.

1. Inlet boundary

uin � 0; vin � 0; win � wm;

Tin � constant; Kin � iw2
m; e � K

3=2
in =�kDh� �7�

where i is the turbulent intensity �i � 0:25%�, and
k�k � 0:05� is the length scale constant.

2. Outlet boundary
Axial length l of the computation domain was as large as
180 times of Dh, and one-way behavior at the outlet
boundary was assumed.

3. Wall
The wall function method was used, which consisted of
following treatments:

uw � 0; vw � 0; ww � 0;

Tw � constant;
oK

on

� �
P

� 0; eP �
C3=4

l K
3=2
P

jyP
�j � 0:4�

�8�
4. Symmetrical line

o~U
on
� 0;

oT

on
� 0;

oK

on
� 0;

oe
on
� 0 �9�

A colocated (non-staggered) variable arrangement was
adopted, for which all dependent variables are stored in
the centroid of the control volume. Integration of Eq. (6)
[12] on an arbitrary control volume yields:Xn

j�1

FjUj �
Xn

j�1

Dj � �SUDV�p0
�10�

where Fj is the control volume face mass ¯ux, Dj is the
transport due to diffusion (diffusive ¯ux) through the face
j, and Uj is the value of the cell face. To avoid the check-
erbroad pressure ®eld, a special interpolation practice for
cell-face velocity proposed by Rhie and Chow [13] was
adopted to calculate the mass ¯ux at each cell face.

To determine the face value Uj, CDS (Central Difference
Scheme) is used in the present study:

Uj � gPUP0
� �1ÿ gP�UPj

�11�
where gP is an interpolated factor. In the solution of re-
sulting algebraic equations, the deferred correction

method suggested by Khosla and Rubin [14] was used to
avoid iterative instability

The diffusion term at the cell face is:

Dj � Dm
j � Dc

j �12�
where Dm

j and Dc
j represent main diffusion and cross dif-

fusion ¯ux, respectively. The main diffusion ¯ux can be
directly determined by:

Dm
j � Cj

UPj
ÿ UP0

j~djj
~dj

j~djj
�~A �13�

where UP0
, UPj are the values of variable U at the centroids

of control volume P0 and Pj, respectively. Cj is the dif-
fusivity of the cell face, ~dj is a distant vector from the
centroid of control volume P0 to that of Pj and ~A is normal
vector of the cell face.

In order to avoid the use of face tangents and the related
nodes, the cross diffusion ¯ux is written as the difference
between the total diffusion and the main diffusion com-
ponent. That is:

Dc
j � Cj rUj ÿ

UPj
ÿ UP0

j~djj
~dj

j~djj

 !
�~A �14�

where rUj is the gradient at the cell face j which was taken
as the average of the gradients at the two adjacent cells.
In the present work a least-squares method was used to
calculate the three components of the gradient of U at
centroids P and then their values were averaged to
obtain rUj.

The resulting linear algebraic equations can be cast into
the following form:

aPUP �
Xn

j�1

anbUnb � SP �15�

To minimize storage requirements, a segregated solution
strategy was adopted, with pressure and velocity coupled
by the SIMPLE algorithm [15]. Gauss-seidel iteration
method was used to solve the discretized equations. The
discretized computational domain and the control vol-
umes which are pentahedra in shape are shown in Fig. 6b.
There are 45 nodes in the streamwise direction and 1000
nodes in the cross-section, resulting total 45 000 nodes in
simulation. For the use of the K-e model in conjuction
with wall function, the near wall nodes should be far en-
ough from the wall. In the present study, the range of y�
was generally from 20 to 90 for all Reynolds number which
guaranteed validity of K-e model with wall function. The
convergence criterion used in this study was that the
maximum mass ¯ux residual in each control volume was
less than 1.0e-5 and the maximum relative deviations of
both the most representative velocity and temperature
were less than 1.0e-4.

7
Numerical results and comparison
Our ®nal purpose is to obtain the relation between Nu and
Re. Hydraulic diameter was used as the characteristic
length which was determined as follows:
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Dh � p�D2
i ÿ d2

o� ÿ 4cd
p�Di � do� � 2c

�16�

where Di is the inner diameter of the test tube, do is the
outer diameter of the inner tube, c is the expansion length
of the wave-like ®n within annulus, d is the thickness of
the ®n.

The local heat ¯ux qz and local heat transfer coef®cient
hz are de®ned as:

qz � kt
tw ÿ tp

DrP
�17�

hz � qz

tw ÿ tb
�18�

where tw is the temperature of the wall surface, tp is the air
temperature of the control volume adjacent to the wall
surface, kt is turbulent thermal diffusivity, DrP is the
normal distance from the point P which is the centroid of
control volume P. The turbulent thermal diffusivity is re-
lated to lt by the following equation:

rT � ltCP

kt
�19�

The average heat transfer coef®cient over the surface (in-
clude wall and ®n) is de®ned as:

Fig. 7. Velocity vector diagram in the developing region
of the X Y plane

Fig. 8a±d. Distribution of dimensionless element at the sym-
metric line (h � p=4) (k-axial index of cross section)
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hm �
Z

A

h dA=A �20�
Two important dimensionless parameters Re, Nu are de-
®ned as follows:

Re � wmDh

m
; Nu � hDh

k
�21�

In the computation the Reynolds number was varied in the
range of 3300±30 000.

Attention is now turned to the computational results
which will be presented in following sequence: (1) the
cross-section ¯ow ®eld; (2) the distribution of velocity,
temperature, turbulent kinetic energy and dissipation;
(3) local Nusselt number distribution; (4) comparison
with experimental results.

(1) The cross-section ¯ow ®eld
A typical ¯ow ®eld at a cross section with
z=Dh � 12:3 �Re � 16 875� is shown in Fig. 7, It can be
found from the vector diagram that the ¯uid ¯ows away
from the wall and ®n. No secondary cross ¯ow was found
in parameter range computed in this study.

(2) The distribution of velocity, temperature, turbulent
kinetic energy and dissipation
The distributions of dimensionless main ¯ow velocity,
dimensionless temperature, dimensionless kinetic energy
and dimensionless dissipation at the symmetrical line
h � p=4 (Fig. 6a) of several representative cross section are

shown in Fig. 8a±d, respectively. It can be distinctly found
that the ¯ow in the ®nned tube at Re � 16875 is in the
developing region before k � 24 �i.e. lz < 99Dh�, after that
position the ¯ow can be considered fully developed; fur-
thermore both the kinetic energy and dissipation adjacent
to the wall are much greater than their counterpart at the
center of the symmetrical line. The contour maps of the
computational velocity, temperature, kinetic energy and
dissipation for the fully developed region in the case of
Re � 16875 are given in Fig. 9.

(3) Local Nusselt number distribution
The local Nusselt number is plotted against the axial co-
ordinate Z as shown in Fig. 10. It can be found that the
thermal entrance length is about 40±110Dh for the prob-
lem studied, which agrees well with our experimental re-
sults.

(4) Comparison with experimental results
The Nusselt numbers in the fully developed region are
presented and compared with the experimental results in
Fig. 10. where the black triangles and squares represent the
calculating data and the experimental data, respectively
[16]. It can be seen from the ®gure that both the experi-
mental and computational Nusselt number can be well-
correlated by a power-law equation.

The numerical results agree fairly well with the experi-
mental ones with a maximum deviation of 25%. The main
reasons for the difference may be attributed to the fol-

Fig. 9a±d. Contour maps of the compu-
tational velocity, temperature, kinetic and
dissipation in the fully developed region
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lowing three aspects: (1) experimental uncertainty (2) the
simulation condition is not quite the same as the experi-
mental ones. For example, uniform inlet velocity was as-
sumed in the present study, thus the ¯ow rate of the two
parts separated by the ®n, inner and outer tube, were
proportional to the areas of the two parts, which, appar-
ently, might not match our test condition and (3) the
drawback inherent in the turbulent model adopted.

8
Conclusions
In this paper a robust, simple and fully automatic un-
structured grids generation for a two-dimensional region
is presented. The Delaunay triangulation method is used.
A new conception, dimensionless circumcircle radius, is
proposed as a good criterion for Delaunay triangulation.
And an automatic point creation algorithm is proposed,
which can smoothly extend the boundary points distri-
bution character into the interior. This criterion can keep

the resulting cells as equilateral as possible. Local mesh
®neness can be easily implemented by regarding the re-
gion sources as boundaries. A practical simple algorithm
for judging a point location is also presented. Several
general meshes are presented to show the effectiveness and
feasibility of the proposed method.

The proposed method was used to generate an un-
structured grid system to simulate turbulent ¯ow and heat
transfer in a tube with wave-like longitudinal ®ns. The
discretization process on the unstructured grid was brie¯y
described. The numerical results show that the entrance
length of the tube studied varied with Reynolds number,
ranging from 40 to 110 in the Reynold number range from
3300±30 000. The average Nusselt numbers in the fully
developed region agree fairly well with author's test data
with a maximum deviation of 25%.
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