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‘STABILITY ANALYSIS FOR DISCRETIZED
' STEADY CONVECTIVE-DIFFUSION EQUATION

Ming-Jiu Ni, Wen-Quan Tao, and Shang-Jin Wang
School of Energy & Power Engineering, Xi’an Jiaotong University, Xi'an,
Shaanxi, 710049, Peoples Republic of China

A comprehensive study is presented regarding the numerical stability of s_evei-dl common
iteration numerical methods applied to the discretized steady convective-diffusion equations
with some common finite-difference spatial discretizations. One-dimensional and multidi-
mensional results are obtained using the classical Von Neumann method of stability
analysis. The analysis results show that numerical stability in solving the resulting
discretization equations depends on both the finite-difference scheme and the numerical
method for solving the resulting algebraic equations. '

1. INTRODUCTION

The steady convective-diffusion equation is usually adopted to investigate the
numerical characteristics of different finite-difference schemes. It has long been

_ recognized, especially the numerical heat transfer community, that the “convective

stability” of the discretized convective-diffusion equation depends on the differ-
ence scheme, and the critical grid Peclet number is thought of as the stability
criterion of .a discretized convective-diffusion equation [1-3]. In this article we
study the discretized convective-diffusion equations of one, two, and three dimen-
sions in a Eulerian reference frame. Specifically, we examine the stability of the
solution procedure of certain finite-difference approximations to the convective-
diffusion equation:

U-Vo=V-(K-Vo) (1)

Where ¢ is a general dependent variable, U is a (constant) convective velocity
vector, and K is a (constant) diffusivity coefficient.

This study is motivated by our numerical practices. When we use some
classical difference schemes and underrelaxation iteratien methods for some 2-D
or 3-D problems, we find that even for the central difference (CD) scheme, we can
get a steady smooth solution under a large grid Peclet number if we use an
appropriate underrelaxation factor. In investigating the reasons for the above
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situation, we found that we should distinguish two kinds of numerical stability, i.e.,
the stability of solving resulting discretized equations and the stability in simulation
of the convective term. When we adopt a specific iterative method to solve a
discretized convection-diffusion equation with a certain finite-difference scheme
for the convective term, if the iterative procedure can obtain a stable solution (i.e.,
the iterative procedure converges) at any grid Peclet number, then the numerical
method of iteration is considered absolutely stable. This stability will be referred to
as solution stability. However, a numerically stable solution does not necessarily
mean that the solution is smooth and physically realistic (not wiggled). If a
discretized convection-diffusion equation can be solved to obtain a physically
realistic, not wiggled solution at any grid Peclet number, then the scheme possesses
absolute stability. This stability is called convective stability. In order to obtain a
convectively stable solution, the necessary condition is that the iterative procedure
method is stable. The critical Peclet number of solution stability differs from the
critical Peclet number of convective stability.

In the following we analyze the solution stability of some iteration methods
applied to solve discretized equations of several classical spatial difference schemes.
The fundamental tool will be the Von Neumann method, which ignores the
boundary-conditions effect yet usually can yield very useful results. In the analysis,
the diffusion term is always discretized by the second-order CD scheme; hence the
difference in schemes is from the convection term. o,

2. THE ONE-DIMENSIONAL CASE

Difference Schemes

The convective-diffusion Eq. (1) in the 1-D case can be written as follows:

9 3%
v k=L

(2)
: : ax ax*
where the numerical diffusion coefficient K (> 0) and u are constants in analysis.
Hereafter, we will assume that u is greater than zero, for simplicity. However, the
results also can be applied to the case of u <:0.
Equation (2) can be discretized in conservative form as

"

biv12— Dic1p2 _ K¢’i+1 —2¢;+ &4

®

ot Ax (Ax)?

The convective term is usually discretized by using central difference (CD),

first-order upwind difference (FUD), second-order upwind difference (SUD),

QUICK, and stability-controllable second-order difference (SCSD) schemes [4].

The interpolation formulas for these schemes for the interface value of ¢ are ..,

FUD scheme: biv12 = & | @
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.+ P
CD scheme: Giv12 = _(E‘__;ﬁ*_l 5)
3b — b, :
SUD scheme: Div1y2 = —q&'——é—?'—i (6)

Leonard’s QUICK Scheme

®is1 +.¢i + 2¢; — b1 — diny

biv1/2 = ) g8 )

SCSD scheme [4]:

(¢i+ "4’;‘) . (2¢i— i~ “ i+)
¢i+1/2=-'%‘——+(1—ﬁ) ¢'21 i

(8)

where 8 is a weighting factor ranging from 0 to 1. It has been shown [4] that the
SCSD scheme becomes the CD scheme with g =1, the QUICK scheme with
B = 3/4, and the SUD scheme with 8= 0. .

Substituting Egs. (4)-(8) into Eq. (3), we have the discretized formula for

Eq. (2)

FUD: (P, + 2D, — (Py+ Doy + &0 =0 (9)
CD: 4, — Q+ PO — 2 =P, =0 (10)
SUD: (4 +3P)d — 2+ 4P| — 2y + Padp_y =0 (11)
QUICK:

(16 + 3P, — (8 + TP )b, — (8 =3P + Pad_2 =0 (12)
SCSD: |
(4 +3(1 — BIP) & — 2+ (4-3B)P]¢;_; — (2= BPI)¢is,
(1= PPy, =0 (13)

where P, = u Ax/K is called the grid Peclet number.

The resulting algebraic equations for each scheme can be solved either by
using a direct-numerical method (such as TDMA) or by using iteration method,
such as the simple Jacobi iteration method, the dominant diagonal-element Jacobi
method, the underrelaxation method, etc. In the next part of this section, we give
detailed analysis of these schemes using different numerical methods.

Von Neumann Analysis Method

Historically, two different methods of stability analysis have been applied to
difference schemes. One, due to Von Neumann, is based on a Fourier mode
analysis [5, 6; the other is based on a spectral radius analysis of the amplification
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matrix. Article by Hindmarsh et al. [7] and Hirsch [8] are enlightening, and we
believe that the Von Neumann method is more appropriate for this study.

The Von Neumann method consists of examining Fourier modes ¢ =
gneiik 8% for a wave number K and an associated wavelength A = 2m/lk|. On.
substituting the above Fourier mode into the interior difference equations, a value
for the complex amplification factor &= qoj""'l /o is determined, which is a
function of the phase angle 8 =kAx. The Von Neumann stability condition
requires that | £| < 1 [6-8]. The standard procedure is to impose the condition for
all real values of k or, equivalently, for all 8 € [0, w]; it is therefore a slightly
stricter condition than that required for any given finite space point number N.

Solution Stability Analysis for Different Numerical Methods
Simple Jacobi iteration method. For Egs. (9)-(13), we have the following
formulas by using the simple Jacobi iteration method.

FUD-Jacobi et L. LY (14)
acobi: ¢rtt = P, +2¢,~_1. P+ 2¢i+1
_ L B+2 P-2
CD—1Jacobi: o = n o, - — i (15)
SUD—Jacobi:
nal 4PA + 2 n n n PA n . (16)
i 3P+ 44"’" 3P, + 4""‘"l 3P, +47 7
QUICK—Jacobi:
7P, + 8 8 — 3P P
n+1 A n A n A n
n+l 8 pn o —————— | — T 72 Pi-2 17
i 3P, + 16 -1 3P, +16 71 3P+ 16 777 (17)
SCSD—Jacobi:
¢n+1_(4—3,8)PA+2 - 2 - BP, ) (1 - B)P, i
i T30 -p)p+4TH 30 -B)Pt4 i+l 3(1-BIP, + %2
| (18)

Using the Von Neumann analysis method, we have the amplification factor
for the FUD—Jacobi as : '

) N
- sin 6 (19)

= -
&=cos 6 Pt 2

where I is the unit of imaginary number.
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It is apparent that |£1* = cos® § + [Py/(Py + 2P sin’0 < cos? 6 +
sin2 § = 1 is valid for any grid Peclet number. Thus, we conclude that the
FUD—Jacobi is absolutely stable. That means the solution stability criterion is
| Pyl < .

For the CD—Jacobi, we have

g=cos0— 3IP,sin 6 . . - (20)

The Von Neumann stability condition is |£ |2 = cos? 8 + (P2 sin® 6)/4 < 1, so the

~ solution stability criterion for the CD—Jacobi is |Py| < 2.

For the SUD—Jacobi, we have the amplification factor as

1
§=73

—7 {[(4 + 4P,) cos 6 — Py cos26] + I(Py sin28 — 4P, sin 6)} (21)
a v :

When 6 = m, Eq. (21) can be reduced to &= —(5P, + 4)/(3P, + 4). It is appar-
ent that | £le-- > 1 for any grid Peclet number with P, > 0, so we can conclude
that the SUD—Jacobi is unconditionally unstable.

For the SCSD—Jacebi, we have the amplification factor as

([(4 + 4(1 = B)P,)cos § — 1(1 — B)Pycos26]

_ +I[2B - 4P sind— (1 = BIP sin261]}
$= ‘ 4+301-B)P - (22)

When 6 = m, we have §=[5(1 - B)IP, + 4]/[3(1 — B)Py + 4] from Eq. (22).
When B = |, ie., for the CD—1Jacobi |&| =1, while B <1, the amplification
factor is always greater than 1. Thus we can conclude that the SCSD—1Jacobi is
unconditionally unstable with 8 € [0, 1.

Figure 1 give the stability region for the Jacobi iteration method applied to
the four schemes under different grid Peclet numbers. For the SUD—1Jacobi, that
there are always some points outside the unit circle under the three Peclet
numbers tested, and for the CD—Jacobi we can see that the amplification factor is
greater than 1 when the Peclet number is greater than 2.

Dominant diagonal-element Jacobi method. Eor a linear problem, the
dominant diagonal-element Jacobi iteration method is stable [8], and we have
shown that the Jacobi iteration method for the SUD scheme is unstable for any
Peclet number. We can expect that the dominant diagonal-element Jacobi iteration
will help to improve the stability of the solution procedure for different finite-
difference schemes. For the above difference schemes, the dominant diagonal-
element Jacobi (DDJ) methods can be written as

PA+2 PA-Z
4 ¢i"—1"'

CD—'DDJ: ) ¢i’(_ 1 = ,'n+ 1 v (23)

4
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Pe=1
UnitCircle
—g8— CD-Jacobi
—iy—= FUD-~Jacobl
-t SUD-Jacobi

o-s‘ '

Po=4
—a— CD-~Jacobi
—a&— FUD-Jacobl
UnitClrcle
—3p— SUD-Jacobi

® |P|=4

Flgure 1. Von Neumann stability region for four schemes using the
simple Jacobi iteration method: (@) [Pl = 1; (b) |Py] = 4.
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SUD—DDJ:

n+1 4PA + 2 n + 2 n " PA _ ( n . 4
SCSD—DDJ:

n+1 (4-3B)P,+2 | 2— BP, n
.¢i - : i-1 * — i+1
41— BIPy + 4 4(1 — B)P, + 4
(1-pB)P
i G Y e

Y

For the central difference scheme, the formula for the DDJ method is just
the same as that for the simple Jacobi method, and the solution stability region for
the CD—DDJ is also |P,| < 2. For the SUD-DDJ, we can obtain the amplification

factor as

4 _ sin? @+ I—PL sin 6{(cos 8 — 2) (26)
2+ 2P, 2+ 2P,

&=.cos @+
Von Neumann stability condition requires |£] < 1 for 6 € [0, 7r]. When 6 = 0, we
should have ‘R < 1, where R is the curvature radius in the complex plane for the
amplification factor. We can obtain the following expression for the curvature
radius: "
1/2
(52 + 50"

Rlomo=————| =T
g e, 172

<1=P, <2-2/2=4828 (27

where x = cos 6 + fsin? 8, y = 0.5fsin26 — 2fsin 6, and f = P, /(2 + 2P,). This

_means the solution stability criterion for SUD-DDJ is P,<2+ 2V2 = 4.828.

For the SCSD-DDJ, we can obtain the amplification factor as

~ 1-BP
E=cos bt T T —p)B,
I L "Lo[(l— ) 0— 28)
+ 3120 - B)P, sin B)cos 8 — (2 — B)] (

By using the same analysis method as for the SUD—DDJ, we can get the solution
stability criterion for the SCSD—DDI:

PA52[1——'B+\fI+(1—-B)2] < @

According to Eq. (29), we reach the following conclusions:
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For the CD—DDYJ, the solution stability region is |P,| <2 (g = 1).

For the SUD-DDYJ, the solution stability region is |Py| < 2(1 + V2) (B =0).
For the QUICK—DDY, the solution stability region is | Fy| < (m +1)/2(8=3).

Figure 2 shows the numerical solution stability region in the complex plane

for the SUD—DDJ. We can see that when the Peclet number is 16 (greater than

4.828), the amplification factor is outside the unit circle, thus it can be concluded
that the SUD—DDJ is not unconditionally stable. As we indicated earlier, the
critical Peclet number of solution stability is different from the critical Peclet
number of convective stability. The former depends both the solution method and
the scheme, while the later depends only on the scheme. Their values may also be
quite different. For example, the critical Peclet number of convective stability for
the SUD is infinite, while the Jacobi—SUD combination is unconditionally unsta-
ble, which means when the discretized equations with the SUD are solved by the
Jacobi iteration method, the procedure will always diverge for whatever Peclet
number. The convective stability is related to the important characteristics of
finite-difference scheme boundedness [9], which will be discussed elsewhere.
Underrelaxation method. The underrelaxation method is widely used in
numerical heat transfer. Here, we give the stability analysis of the dominant
diagonal-element Jacobi iteration method with the underrelaxation method, and
call it DDJ(a), where « is the underrelaxation factor. The formulas for the

SUD-DDJ
e Y nitClrcle
g Pox4

e UnitCircle
—tr— Pe=16

4 0.5 0 05 1

Figure 2. Von Neumann stability region for SUD—DDIJ under
different Peclet numbers. ,
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different difference schemes can be written as

CD—DDIJ(a):
R 'p-2, l-a
"'¢'i" = i"—-l - —“"d’i+1 + ¢‘z (30)
a 4 . 4
SUD—DDJ(a): |
1 n+1l 4PA+2 n+1l 2 n PA ( n n,)
all AP +4 T 41!>A+4d’"+1 4P, + 4 ¢ = bz
1l a
+ o 31D

SCSD—DDIJ(a)

1 n+l (4—'3ﬁ)PA+2 n+l + 2_~BPA n
P 41— B)P, +4 71 4(1—~ﬁ)PA+4¢’+‘
1-B)P, 1-—
idads (¢ — ¢L5) + ‘ ol (32)

+
41—-pB)P +4
For the CD—DDJI(a), the amplification factor can be expressed as
aPy )
.§#acose+(1—a)—[—i-—sxn0 (33)

The Von Neumann stability condition requires that the curvature radius at
6 = 0 be less than 1: ‘

(%2 +y2)”2

15 + yEl

oFs 1=P 2. (34)
= <1=P < —
8=0 4 : \/a—

R‘9=0 =

Furthermore, it can be easily proven that the solution stability region for the

CD—DDIX(a) is P, <2/ Va. | .
For the SUD—DDI(«) method the amplification factor is

9 B o %) 41 Py Gnelcoso-2 G
= + s _ -2)
&= alcos 2= 2P, m S 3T 2P, sin 8(cos 5)

Similarly, we can show that the solution stability region for the SUD-DDJ(«a)
is :

21+ a +1)
< (36)

P,

o




378 M.-J. NI ET AL.

The stability region for the SCSD—DDIJ(«) is

2[(1—B)+\/(1—-ﬁ)2+a
P, < 37

(3

For the SCSD scheme, at a given underrelaxation factor a, the stability
region can be enlarged from |P| <2/ Ve to |P| < 2(/1 + a + 1)/a by adjust-
ing the blended factor B. The enlarged ratio of the stability region for |P,| is
(V1 + a + 1)/ Va. The less the value of a, the larger is the value of the enlarged
ratio. Figure 3a shows a comparison of solution stability region for the CD scheme
and the SUD scheme with an underrelaxation factor a = 0.25, and Figure 3b
shows a comparison for SUD—DDIJ with or without an underrelaxation factor. It
can be seen that the SUD—DDIJ(a) has a bigger solution stability region than the
CD—DDJ(a) [Eq. (34)] and the SUD—DDJ under the same underrelaxation
factor.

A new iteration method. We have shown that the Jacobi iteration method "
with dominant diagonal elements can enlarge the solution stability region greatly. '
Here we propose a new iteration method, in which all the far-neighbor peints take
the values implicitly. Thus these terms must be moved from the right side of the
algebraic equation to the left side, making-all coefficients in the equation positive.
We call this method the full positive coefficient (FPC) method. Thus we have

SUD—FPC: (4 + 3P + P hl = 2¢7,, + (2 + 4P, (38)
SCSD—FPC: B '

4 +3(1-BIRI™  + (1 - B)P, P!

=@ BPYYL, + (24 (4= 38R, (39)
The amplification facto_r fbr Eq. (38) can be written as

4(1 + P, cos §) — I4P, sin 6
&= - (40)
4 + 3P, + Pycos26 — [P, sin20 : 4

The Von Neumann stability condition requires [¢] < 1 for all ¢ € [0, w]. At
¢ = w/2, we have (4P,)/(4 +2P,) <1 =|P,| <2, and we can prove that the
solution stability condition for the SUD—FPC is |P,| < 2 according to R|4-¢ < 1.
Similarly, the solution stability condition for the SCSD—FPC is |P,| < 2. For the
SUD scheme, the representation of the solution stability region for the FPC
method is shown in Figure 4. _

For the FUD and CD schemes, the FPC method is the same as the Jacobi
method. The solution stability region for the FUD—FPC is |P,| < »; for the
CD—Jacobi method it'is || < 2. E :

TDMA method. .For a three-point scheme, the TDMA is one kind of direct
algorithm method, but for a scheme with more than three points, the TDMA is one
kind of implicit iteration method. The formula for the TDMA method can be

—
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Pe=10. afa=0.2§
—ip—- BETA=0.00
UnitCircle
—&— BETA=1.00

1
N -1 . - '1 | N .
4 0.5 0 0.5 1
(@ For CD, SUD Scheme under |P,|=10
. - = Pe=16 afa=0.25
: T B —§—SUD-DDJ(a) |
T oA : UnitCircle
‘ SRE —#— SUD-DDJ
V'
. N N | A L .
A 05 0 0.5 1
L ®) For SUD Scheme under|P,| =16
Figure 3. Von Neumann stability region for CD and SUD with
' DDXa): (a) for CD, SUD under |P,|=10; (b) for SUD under
|P,| = 16. A
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SUD-FPC
UnitCircle
——ti— Po=1{

UnitCircle
P Pez=4

05}

.1 A L - L . . P

4 0.5 0 0.5 ' 1

Figure 4. Representation of the stability region for the FPC method.

expressed as
Yo B bt + oy =" (41)

where y,(i = —1,0,1) and s depend on the scheme. For the CD, SUD, SCSD, and
FUD schemes, Eq. (41) leads to:

FUD—TDMA: (1 + P)¢M' — 2 + P+ + ¢ =0 (42)
CD—TDMA: (2 + P)¢%! — 4812 = PO = 0 43)
SUD—TDMA: | |
(2+4P) ¢ — (4 + 3PP + 2901 = Pool, . (44)
'SCSD—TDMA: '
[2+ (4 = 3B)P 1M — [4 + 3(1 — B)P 1M + (2 — BB
=(1-B)Pd", ' (45)

For fhree-point schemes (FUD and CD), due to the linearization hypothesis
for the Von Neumann stability analysis method, it is in fact a kind of direct
algorithm method, and therefore it is unconditionally stable. For the SUD—TDMA
method the amplification factor from Von Neumann analysis can be written as

P, cos26 — IP, sin26

T 41 + P)cos 6 — (4 + 3P,) — [4P, sin 0

'3 (46)

{
|
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It is easy to prove that the requirement [£] <1 is valid for any grid Peclet number,
in other words, that the SUD—TDMA is unconditionally stable. Figure 5 shows
that the points are all in the unit circle for the SUD—TDMA method, even when
|P,| = 10,000.

By using similar analysis, we can prove that the SCSD-TDMA is also
unconditionally stable.

Deferred-correction method [10, 11]. In the deferred-correction method,

the interface value for the CD scheme is defined as

OLD
bir12 = ¢H—FUBZ + ( i(-:l-Dl/Z - ¢i§-U.132) 47
Consider the one-dimensional convective-diffusion equation:
dd 3%
u— =&—73 2>
ax dx”
Using the deferred-correction method, we have
y b — di-y +u (¢i+1 - iy _ b — ¢i—1)OLD _ €¢z+1 —2¢; + bi- (48)
o Ax ‘ 2 Ax Ax (Ax)

SUD-TDMA
UnitCircle v
—3— Pe=10000

-1 0.5 0 0.5 1

figure 5. Representétion for the TDMA method.
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The iteration process for the deferred-correction method can be expressed as

A+l -1 P, 1T 297 + @
frl = = Py ¢,+1 - - = - (49)
P, +2 P, +2 P+ 2 2
The amplification factor for Eq. (49) can be found as
g+ i i 6 I—2 sinp 50
& = cos 2_!_ZPAsm 2+PAsm (50)

According to the requirement for stability of the Von Neumann émalysis,

1/2
(22 +y%)7 aP?
Rl9=0=—fj_‘")')T— =7P—‘;\_—2—)‘$1=’P_\S(1+‘/§) 51D
155 = 3%l om0 A
where
- 2P : P
x=cose+-2—_'—:—2‘1f15:sin26 y=2+APAsin6

This means that the solution stability region for the deferred-correction method
applied to the CD scheme is P, < (1 + v5). When the numerical solution ap-
proaches a steady value, the above deferred-correction method can reach second-
order accuracy results just like the CD scheme, and the deferred-correction
approach can improve the solution stability region compared to the CD—Jacobi
method. When connected with the underrelaxation method, the solution stability
region can be improved even more. Lilek et al. [10] use the method to solve a
two-dimensional flow field by using the CD scheme, and they get a converged
solution with grid Peclet number less than 100.

Similar analysis may be conducted for other combinations, such as
QUICK—deferred correction, and quantitatively the same conclusion may be
obtained.

3. STABILITY ANALYSIS FOR MULTIDIMENSIONAL
CONVECTIVE-DIFFUSION EQUATIONS

The solution stability analysis results for the one-dimensional case can give
some instruction about muitidimensional problem. Hindmarsh et al. [7] give the
stability analysis of time-marching methods by using the FTCS scheme. In this
section, for the multidimensional convective-diffusion problem, the Von Neumann
analysis method is used to analyze the solution stability of three-point schemes,
such as the CD scheme and the FUD scheme, and the necessary and sufficient
stability condition is presented for the CD—Jacobi method, the FUD—Jacobi
method, and the deferred-correction approach.
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Consider a multidimensional convective-diffusion system:

M 9 M 52¢,1
Yy —~ - YK,

m=1

P (52)

where M is.the number of spatial dimensions. By using the central difference
scheme, Eq. (52) can be discretized as '

‘:‘:u‘An;sD,- _ %’:K 8 &)

m=1 ™ 2Axm - m=1 (Ax )2

(53)

where A, ¢,/ Ax,,) and 8 @; /(Ax,)* represent central difference schemes of
first-order and second-order derivatives, respectively. If the Von Neumann stability
analysis method is performed for the Jacobi iteration method of Eq. (53), we have.

M

m=1

The amiplification factor for the CD—Jacobi method can be written as

M M ‘
g=1- Y a,(1-cos6,) —12 c,(1—sinb,) (55)
m=1 m=1
~where
K,/(Ax,)  u,/Ax,

m Cm = 2
2?11 Ki/(Axi)2 ' E?sl-x K,/(Ax)

' Hindmarch et al. [7] have proved that, for Eq. (55), the necessary and
sufficient condition for || < 11is v

M oM 2 _
Y a,<1 Yy — <1 (56)
m=1 m=1%"m ’

In Eq. (56), the requirement of Y™ @, <1 is met automatically. Thus the
necessary and sufficient solution stability condition of the CD—Jacobi method for
the multidimensional convective-diffusion equation is .

M 2 M2 M K :
me1l e, L — < = (57
mZ=1 A m=1 4K, m‘él (AJC,,,)Z




384 ‘ M.-J. NI ET AL.

For Eq. (57), if Ax,, = t,Ax, k,, = K are met for all value of m, we have

M W2 (Ax)' EM_17?
M K?

(58)

M2 =
. Lo U -  ulx

. P
M & K

Then we have

Bl < 2y/M T Ls;? (59)

where i is an averaged velocity and P, is the averaged grid Peclet number for the
multidimensional convective-diffusion equation. Equation (59) reflects the same
essence as in the one-dimensional case.

For the deferred-correction method applied to the CD scheme, we have

M A qp.. M Iul S ©;
m ¥ 'm ¥

- ¥ |k, + —=Ax
L Un7ay, ,El( 2 )A 2

OoLD

(60)

M luyl 8n ¢
- m A m ¥j
[mgl( 2 xm) Axrzn

where the Jacobi iteration with-dominant diagonal elements can be formed from
the first two terms. By using the Von Neumann method, we have the amplification
factor for the CD—deferred-correction combination in the multidimensional case
as 0 '

M ' M
E=1- )Y a,(1-cos@,)—1 Y c,(L—sin8g,) (61)
' m=1 m=1
where .
K,/(Ax,)’ u,/(2Ax,)

am= cm=

THAK; + /D) /(Ax)’ I (K + lul/2)/(Ax)’
It can be seen that ¥ a, < 1 is also met automatically. In fact, we have ¥ a,, <
1,Vu; # 0. Thus the necessary and sufficient solution stability condition for the
deferred-correction method in the muitidimensional case can be written as

ut f: 2K, + lu,|lAx, )
<
=1 2K m=1 (Ax,)"

Mx‘

M 2
Z -;m— ie.,

A AT e
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For the FUD scheme, we can get the solution stability for the FUD—Jacobi

ﬁ u?, - %‘: 2K, + lu,l Ax,

o 2K, tlu,lAx, T (Axm)2

(63)

It is easy to find that the solution stability region for the FUD—Jacobi is bigger
than for the CD—Jacobi and CD—deferred-correction combinations, while the
CD—deferred-correction has a-bigger region than the CD—Jacobi. If combined
with the underrelaxation method, the solution stability region will be improved
even more. The results of Lilek et al. [10] give strong support for the analytical
result.

4. NUMERICAL EXAMPLE

Consider a one-dimensional linear convective-diffusion model equation:

J P b S
—(ug) = —(K ) (64a)
agx

ax\ ox
where u is a constant, and the boundary conditions can be expressed as
x=x, ¢=¢, x=L d=¢ | (64b)
The analytical solution for Eq. (64) can be expressed as -

d— by expux/K) — 1

. — o " exp(uL/K) — 1 (65)

In this section, we use the CD—TDMA (tri-diagonal matrix algorithm), CD—DDJ,
-~ CD—DDIJ(«a), and SUD—DDJ algorithms to simulate the equation at different
- Peclet numbers.
S Numerical results are shown in Figure 6. Figure 6a shows the results using
the CD—DD]J algorithms with |Py| = 1.0 and |P,| = 2.0. Figure 6b shows the
results using the CD—TDMA and SUD—TDMA with {P,| = 2.5 and |Py| = 5.5.
Figure 6¢ shows the results using the CD—DDX(a) (2 = 0.1 and a = 0.25) with
|Py] =25 and |P,| = 5.5. We can find that the CD—DDJ can obtain a stable
oscillation-free (convectively stable) solution when the Peclet number is less than 2.
When the Peclet number is greater than 2, the CD—DDJ method cannot obtain a
stable solution, while the CD—TDMA method and the CD—DDJ(«) with a = 0.1
and @ = 0.25 can obtain a stable oscillatory solution (i.e., the jterative procedure
does not diverge), and the SUD—TDMA and SUD—DDJ algorithms can obtain
stable oscillation-free results. We can find also that the oscillation degree for
« = 0.1 is the same as that for a = 0.25 by using the CD schemie, which means that
the underrelaxation method can expand the solution stability region, but not the
convective stability region. The results show clearly the difference between solution
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stability and convective stability. Thus, the TDMA method, the Jacobi iteration
method with dominant diagonal elements, the underrelaxation method, and the
deferred-correction approach can expand the solution stability region greatly, but
they cannot change the convective stability region of any discretization scheme of
convective terms.

5. CONCLUSIONS

The Von Neumann stability analysis method has been used with a number of
iterative solution methods applied to some finite-difference schemes. The numeri-
cal solution methods include Jacobi, dominant diagonal-element Jacobi, FPC,
TDMA, underrelaxation, and deferred-correction methods. The major findings of
this article can be summarized as follows:

1. The numerical stability of the solution procedure depends on both the
* difference scheme and the numerical solution method for the discretized equation.
The stability of the solution procedure reflects the character of the numerical error:
propagation in the solution process. It gives the restriction on the space step for a
given solution method applied to a given scheme, just like the initial stability for
time-marching method provides the restriction on the time step. The regions of
solution stability for different combinations of difference scheme and solution
method analyzed in this article are summarized in Table 1.

2. For multidimensional linear convective-diffusion equations, the Von Neu-
mann. stability analysis has been performed for the CD—Jacobi, FUD—Jacobi,
and CD—deferred-correction methods. The necessary and sufficient solution sta-
bility conditions for these methods are

M2 M 2K
CD—Jacobi: Y < L —
' ' mo1 2Kn  mo1 (Ax,)
M u? M 2K, +lu,lAx,

m .y

2K, +lunlAx, = a2, (Axm)2

FUD—Jacobi: Y.

m=1

‘Table 1. Solutiori vstability regions for different combination of method and scheme

No.  Combination of scheme and method ) Setution stability region
1 FUD—Jacobi 1Pl < =

2 DS/FUD/SUD/QUICK/SCSD—TDMA TAPE

3 CD—Jacobi, CD/FUD/QUICK/ SCSD—FPC Py <2

4 SUD/QUICK/SCSIX B < 1)—Jacobi Unconditionally unstable

5 SUD—DDJ \Py] < 201 +V2)

21—B+\/(1—’B)2+a]

SCSD—DDJ with underrelaxation Pyl <
. a
7 CD—deferred-correction P <1+ V5




¢ o e o

388 M.-J. NI ET AL.

CD—deferred-correction:

Moyl M 2K, +lu,lAx,.
) 2K < X 3
m=1“8m  m=1 (Ax,,)

3. The solution stability is different from the convective stability of the
convection term. The latter depends only on the discretization scheme itself and is
related in some sense with the boundedness of a finite-difference scheme of the

convection term. ,

" The relationship between the convective stability and boundedness and the
reasons why practical computations using conditionally stable difference schemes
often can yield physically realistic (not wiggled) solutions with grid Peclet number
much larger than their critical values obtained from the 1-D model equation are
now underway in the author’s group and will be reported elsewhere.
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