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Abstract-The ray effect in ray tracing method was analyzed and three new ray emitting methods for a 
surface element (method A, B and C) were presented. Numerical computations of viewfactors for three 
different typical configurations indicated that the proposed methods can significantly eliminate the ray 
effect. Compared with the conventional ray emitting method, the proposed methods, especially method C, 
can give much higher accuracy with less computer cost. In addition, the new method may have much wider 

range of applications. 0 1997 Elsevier Science Ltd. 

INITRODUCTION 

Extensive researches have been done on the evaluation 
of diffuse view factors for irregular geometrical sys- 
tems [l-3]. For planar surface systems the contour 
double integral formula (CDIF) can give results with 
higher accuracy even using simple formula [4]. The 
radiative heat transfer between such surfaces can be 
calculated easily. A comparative study of different 
numerical methods for evaluating the viewfactors of 
diffuse surfaces of arbitrary configuration was made 
by Emery et al. [5]. The Monte Carlo method is pos- 
sibly the most flexible for the cases of irregular geo- 
metrical systems. 

With the restraints of the RTE, a finite number of 
beams (bundles, particles, rays) are traced, and great 
pseudo-random nurnbers must be used for Monte 
Carlo method. The accuracy of the results mainly 
depends on the sample of beams and, hence, results 
fluctuate around the exact solution. Efforts are still 
needed to increase the accuracy as with the ray tracing 
method [6, 71, the uniform deterministic discrete 
method [8,9] and the discrete techniques such as radi- 
ative heat ray method [lo] and nonstochastic Monte 
Carlo [ 111. The num’erical computations for the deter- 
mination of diffuse viewfactors of different cases indi- 
cated that the ray emitting method for ray tracing 
method cannot be applied to varied geometries for 
obtaining numerical solutions with high accuracy. 

In the present study, the ray effect was analyzed 
and revised ray emitting methods were proposed. 
Numerical tests for three typical diffuse viewfactors 

indicated that these revisions can give much 
accuracy than that reported in Refs [6,7l. 

higher 

ANALYSIS OF RAY EFFECT AND THE 

DESCRIPTION OF REVISED METHODS 

Generally speaking, the procedure of the ray tracing 
method is nearly deterministic. For example, the emit- 
ting points on subelements are predetermined geo- 
metric uniformly and the directions of the beams are 
also predetermined with the condition that the radi- 
ative energy flux emitted by the subelement is equally 
distributed over the entire space around it. For a fixed 
number of beams, the group of directions which are 
measured by the longitude degree 0, and the latitude 
qj, as shown in Fig. 4, are calculated just once for all, 
because every subelement has the same solid angle 
dividing of the entire space around it. Thus a great 
deal of pseudo-random numbers used in Monte Carlo 
can be avoided and due to the unbiased distribution 
of radiative energy flux around the entire space (for 
diffuse surface or isotropical radiative properties), 
there will not be any statistical errors or sampling 
bias. 

Usually for a surface element the dividing of the 
whole 2x-steradian solid angle can be conducted on 
the hemispherical surface under the condition that all 
the solid angles are equal (2x/N for a total IV beams). 
Then, each beam is set in the direction of the ray 
which starts from the centre point of element and 
passes through the centroid of pencil. Let the radius 
of the hemisphere as unity, then any dividing method 
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NOMENCLATURE 

A transient variable for equation (4), 
curved surface element on x 

radial direction coordinate [m] 
radius of sphere, value of unity 

hemisphere, area of surface zone [m’] V volume of pencil [m’] 
Kj viewfactor from surface i to surfacej x, y, z Cartesian coordinate location [m] 
AF relative error of viewfactor R, 9, z Cartesian coordinate location of 
ho height of surface 0 in a channel in centroid [m] 

case 1 zo height of the cylinder in case 2. 
I, distance of the centres between the 

sphere and the surface element in 
case 3 

Greek symbols 

N total number of beams from one 
e circumferential angle [rad] 

emitting point rp polar angle measured from normal 

NP number of emitting point vector of a surface [rad] 

N,, N, Number of emitting point in x and y 
R domain of integration. 

coordinates, respectively 
N,, N, partition number in 6’ and cp in Subscripts 

directions a analytical. 

(4 

04 $ 

I 

Fig. 1. (a) Spherical surface dividing method A ; (b) ray effect 
in spherical surface dividing. 

which can make each curved element equal to 2alN is 
acceptable. However, from the authors’ practice it is 
interesting to note here that the proper dividing of 
element in the hemisphere, i.e. the proper description 
of solid angles in space, is of great importance to the 
numerical solution. In the following three revised 
ray emitting methods (i.e. three element dividing 
methods) will be proposed. In the subsequent section, 
they will be used to determine the viewfactors of three 
diffuse configurations and some comparison will be 
made. 

Let the elemental longitude angle be 2n/N0 and the 
number of the elemental latitude angle be N,, then, 
for a hemisphere space the total number of beams is 
NO * N,, each of which is confined in an elemental 
solid angle of 27r/(N0 * NJ. However, if there is a 
spherical crown element at the top of the sphere (Fig. 
l(a)), the total number of beams will be NO * N, + 1 
and this dividing method is called method A, in which 
the elemental solid angles of each beam are equal. 

Let us pay attention to an arbitrary curved element 
ABCD on a hemisphere surface shown in Fig. l(b). 
For the same element longitude angle, the shape of 
the element depends on its position. If ABCD is closed 
to the top of the hemisphere, the arc length of 
(AD+ BC) is greater than that of (AB+CD). While 
if ABCD is closed to the bottom, the situation is just 
opposite. In other words, even for the equal elemental 
solid angle 27rIN, the shape of the curved quadri- 
laterals on the hemisphere surface can be very different. 
This phenomenon may significantly affect the accu- 
racy of numerical solution by ray tracing method, 
just like the “ray effect” in discrete ordinates method. 
Numerical examples will be provided in the following 
section. 

Now another two dividing methods will be intro- 
duced. Attention will be focused on the octant of a 
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hemisphere. First, the whole hemisphere surface is 
divided into many spherical rings. Then from the top 
to the bottom, each ring is divided into different num- 
ber of elements and the element numbers in the 
successive spherical rings constitute an arithmetic pro- 
gression. There are several choices for the number of 
elements of the top zone (say 1,2 and 3) and the value 
of the common diflrerence (say 1, 2 or 3). From our 
numerical practice, among the many combinations of 
the element number of the top zone and the common 
difference, there are two ways which can give good 
accuracy with the same common difference 1. In one 
way the first spherical zone on the top of the sphere 
reduces to a crown (Fig. 2, method B). In the second 
way, the first spherical zone reduces to two elements 
(Fig. 3, method C). The same dividing procedure can 
be conducted for the other three octants of the hemi- 
sphere. 

The determination of ray’s direction (e,, cpi) is a 
geometrical problem. For any curved surface element 
(ABCD in Fig. 4), the angles 8,, B,, ‘p,, (p2 can be easily 
calculated. Then the location of the centroid 
G(x, y,Z) can be calculated through a series of inte- 
gration within the dlomain a : 0 < r < R, 0, < Bi < 0,, 
CPI G ‘p/ G (P2 

I 
1 R=- 
V 

xdV 
n 

J=’ 
V sss 

ydV. 
n 

(1) 

zdV 

Equation (1) can be integrated through the trans- 
form from spheroidal into Cartesian coordinates. 
First : 

Similarly 

Fig. 2. Spherical surface dividing method B. 

Fig. 3. Spherical surface dividing method C. 

The ray OG is the beam direction in 
O-ABCD (Fig. 4). So 

cpj = tg-’ (-‘“;“iTi) 

Set 

solid angle 

(3) 

p= 3R(cose, -cose2)[2((p2 -cp,)-(sin2qz--sin2rp,)] 
i6(e2-el)(c0scp, -Cafe,) 

z= ;R(cosq, fcoscp,). 

(2) 
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Fig. 4. Illustration of the calculation of ray’s direction. 

A = 3~]2(~, - ql) - (sin 2q, -sin 2q, )I 
16(f72-~,)(coscp1 -cosrp,) 

Equation (3) can be rewritten as 

” = rg-’ 

‘4J2[1 -cos@, -e,)] 
(3/8)R(cos (pr +cos & . (4) 

The longitude angle Bi can be calculated easily. For 
example, as to the second spherical ring in Fig. 3 
(elements A,, Ad, A, are shown there), the A0 is (rr/2)/3 
and 

e3 = ge. (5) 

NUMERICAL TEST AND COMPARISONS WITH 

THE PREVIOUS RESULTS REPORTED 

For the initial direction (0, cp,), the same formula 
used in both Refs [6, 71 will be adopted. In terms of 
the symbols used in the present paper, it can be written 
as: 

-1. @----\ 
Fig. 5. Radiation model of a channel with rectangular 

surfaces. 

for N0 = N, > 40” and the values of N,, = NV = 40 
(No/N, = 1) were used finally. Therefore, it can be 
concluded that, the appropriate range of the ratio 
NJN, is highly problem-dependent when NB and N, 
were calculated by the equation (6). 

In order to check the revised ray emitting methods, 
three different cases will be adopted in which the view- 
factors for three diffusive configurations are calcu- 
lated. For comparison purpose, the numerical error 
AF is defined in the same way as that in Refs [6, 71, 
with its subscript 1, 2, 3, 4 standing for the results 
from Refs [6, 71 and method A B and C of this paper, 
respectively. 

Case 1 
As adopted from Ref. [6], a channel shown in Fig. 

5 is considered here. The channel is composed of three 
rectangles 0, 0 and 0. Let the value of h, be 1.0, 
2.0 and 5.0, the viewfactors of surface 0 to surface 
0, Fz,,, were computed using formula (6) and method 
A, B and C, respectively. The exact viewfactors, F2,, 
or Fz,3, can be calculated by means of the contour- 
integral method using Stokes’ theorem. For 

8, = ‘p, = 0 

Bi = 2n(i- 1)/N,, i # 1 

sin-’ [(l +jN@--N,)/(N,N,+ l)]“’ 

+sin-’ [(l +jN,)/(N,N,+ l)]“.’ 
12, j#l. 

(6) 

However, it should be noted that for the different 
cases used in Refs [6, 71, the effect of the ratio No/N, 
on the numerical accuracy when keeping the total 
number (NO x N,+ 1) constant seems very different. 
As described in Ref. [6], for its calculated case (Fig. 3 
in Ref. [6]) the relative error AF keeps small for the 
range of 4 < No/N, < 16 and the values of NB = 80, 
N, = 20 (No/N, = 4) were used finally. While in Ref. 
[7], for its calculated case (Fig. 3 in Ref. [7]), the 
authors claimed that : “sufficient accuracy is obtained 

AF, - AF4, keep the number of rays from one emitting 
element constant, 101 (No x N, = 20 x 5, NB/N, = 4) 
for AF,, 101 (N,x N, = 10x 10) for AF,, 60 
(4x(1+2+;..,+5)) for AF2 and 56 (4x 
(2+ 3 +4+ 5)) for AF,, then increase the emitting 
points NP (N, = N, x NY in x and y coordinates respec- 
tively and N, = NY), the AFare computed accordingly 
for different values of h,. The results are shown in 
Figs. 6-8. 

It is very clear from Fig. 6 that, with the increasing 
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Fig. 6. Relative errors with the increasing of emitting point 
number N, (h, = 1 .O). 

Fig. 7. Relative errors with the increasing of emitting point 
number N, (h, = 2.0). 
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Fig. 8. Relative error:3 with the increasing of emitting point 

number NP (h = 5.0). 

of Nr, the absolute value of the relative errors of AF3, 
AF2 quickly decrease to less than 3.5%, especially that 
of AF4 decreases to less than l%, but that of AF, 
remains as high as greater than 8%. Figures 7 and 8 
show that the absolute values of AF, and AF4 almost 
have the same value when the emitting point Nr is 
greater than 100. Finally, it can be seen that for differ- 
ent values of ho, AFr-AF., keep almost unchanged 
when NP is greater than 100 (NX x NY = 10 x 10). Gen- 
erally speaking, the accuracy of the viewfactors will 
be improved gradually with increasing NB and N, 
when the emitting point NP keeps constant. For 
example, for sufficient accuracy of viewfactors of finite 
element to surface, the number of rays should be as 
high as NB x N,,, = 1600 [6,7]. Keep the emitting point 
N, constant and increase the ray number from one 
point, the comparison of accuracy for the above 
methods can be found in Ref. [9]. 

Case 2 
This case is copied from Ref. [7] (see Fig. 9). The 

radius of the disk is taken as unity. Fdz,, is computed 
for different height of the cylinder, z, = 0.2, 0.5, 0.9 
and 1.5. The analytical solution of (Fd2,Ja is presented 
in Ref. [12]. Due to the practice of Ref. [7], the ratio of 
NJN, in equation (6) should always be 1 for different 
number of ray. The same ratio was used for method 
A, and the results are shown in Figs. l&13 for 
different zO. 

From the results methods B and C have almost 
the same convergence speed and for different z0 their 
relative errors AF decrease to less than 2% when the 
number of rays is greater than 300. However, the 
results of equation (6) seem to be irregular for differ- 
ent z,, and the average absolute values of the relative 
error increase with the increasing of z,,. As for the 
method A, its numerical errors are greater than those 
of method B and C, but less than that of equation (6) 
and in some case, for example z, = 0.2, approach that 
of method C. 

According to Ref. [7], good accuracy may be 
obtained if the number of rays is big enough 
(No = N, > 40). For the purpose of testing, the great 
enough numbers of rays (even as high as 10 000) were 

Y 

X 

Fig. 9. Radiation model of a configuration consisting of a 
disk and a cylinder. 
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Fig. 11. Relative errors with the increasing of rays (z,, = 0.5). 

used for the cases of z0 = 0.2 and 0.9 with equation 
(6) and method C, respectively. It can be seen from 
the results (Fig. 14) that the relative errors of equation 
(6) decreases very slowly when the number of rays is 
greater than 2000 and keeps a relatively high level 
finally. However, that of method C is just opposite 
with an error less than 1.5% when the number of rays 
is greater than 2000. 
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Case 3 

Number of rays 

In order to examine the flexibility of the revised 
methods, another configuration which consists of a 
surface element and a sphere (Fig. 15) was considered. 
The radius of sphere is taken as unity, the viewfactors 
of dA, to the sphere were computed using equation 
(6) and method A, B and C under the conditions of 
I,, = 1.2, 1.5 and 1.9. The analytical values of Fd,,2 was 
obtained by the formula in Ref. [13]. For equation (6) 
and method A, the values of N0 = N, was used for 
different number of rays. 

Fig. 12. Relative errors with the increasing of rays (zO = 0.9). From the results (Figs. 16-18), method B and C 
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Fig. 15. Radiation model of a configuration consist of a 

surface element and a sphere. 
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Fig. 17. Relative errors with the increasing of rays (l,, = 1.5). 

have almost the same relative errors for different &, 
and their accuracies are high enough to be accepted 
when the number of rays was greater than 1200. The 
same conclusion may be obtained for method A except 
for its little higher relative error than those of method 
B and C. Unfortunately, the relative errors of equation 
(6) always kept very high for different I, which even 
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Fig. 18. Relative errors with the increasing of rays (1, = 1.9). 

could not be less than 10% finally with the increasing 
number of rays. Similar results were obtained for the 
range of 4 < No/NV < 16 when using equation (6). 

CONCLUSIONS 

The ray effect in conventional ray tracing method 
was analyzed and three revised ray emitting methods 
for a surface element were proposed which can sig- 
nificantly discard the ray effect. The numerical com- 
putation of the diffuse viewfactors for three different 
geometrical systems by the three new methods show 
good agreement with analytical solutions, and much 
higher accuracy can be obtained with the revised 
methods proposed as compared with the conventional 
one. According to the numerical test, the revised 
method C would be the best one for discarding ray 
effect and the flexibility of the ray tracing method can 
be greatly improved. The revised methods proposed 
can be used to evaluate the radiative heat transfer 
directly for arbitrary bodies with specular and/or 
diffuse surfaces [6, 71, or to determine the radiative 
direct exchange areas of irregular geometric systems 
[91. 
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