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Adaptive inner iteration processes in pressure-based method
for viscous compressible flows

Jin-Ping Wang, Jian-Fei Zhang, Zhi-Guo Qu, and Wen-Quan Tao

Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering,
Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China

ABSTRACT
In some pressure-based methods, inner iteration processes are introduced
to achieve efficient solutions. However, number of the inner iteration is
fixed as 2 or 4 for different computations. In this paper, a mechanism is
proposed to control inner iteration processes to make the number of inner
iterations vary adaptively with different problems. The adaptive inner iter-
ation processes are used in viscous compressible flows. Results reveal that
by introducing inner iteration processes, computational efficiency is highly
improved compared with that of the solution without inner iteration. In
addition, adaptive inner iteration solutions have better robustness than
fixed inner iteration solutions.
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1. Introduction

In the existing numerical methods, density-based method is used traditionally for compressible
flows. However, the performance of this method is not good for incompressible flow or low
Mach number flow due to the slight change of density. Pressure-based method was devised ori-
ginally for incompressible flows. As it can avoid the difficulties encountered in the density-based
method, the pressure-based method is of great potential to be developed as a unified method for
flows at different speeds.

SIMPLE algorithm is a famous pressure-based method, proposed initially by Patankar and
Spalding [1] for incompressible flows, and it has been used in many researches. The two assump-
tions in SIMPLE algorithm result in a poor interconnection between pressure and velocity and a
low convergence rate in calculations. To remove the first assumption in SIMPLE algorithm,
SIMPLER algorithm was put forward, which improves the inherent interconnection between pres-
sure and velocity [2]. After successful applications in incompressible flows, SIMPLE and
SIMPLER algorithms have been extended for solving viscous compressible flows [3,4].

CLEAR algorithm was developed in 2004 to remove the second assumption in SIMPLE
algorithm [5]. It is revealed that CLEAR algorithm can greatly enhance the convergence rate
with reasonable robustness compared with SIMPLER algorithm in incompressible fluid flow
[6]. With its success in incompressible flows, it was further extended for viscous compressible
flows. Compared with SIMPLE algorithm, CLEAR algorithm can significantly enhance the
convergence rate for subsonic, transonic, and supersonic flows at a small under-relaxation
factor [7].
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IDEAL algorithm is a pressure-based method developed for incompressible flows [8], which
overcomes the two assumptions in SIMPLE algorithm successfully and guarantees a close cou-
pling between velocity and pressure. After its initial construction on a staggered grid system in
2D Cartesian coordinates, IDEAL algorithm was extended to staggered grid systems in 3D
Cartesian coordinates, collocated grid systems in 3D Cartesian coordinates, and body-fitted collo-
cated grid systems in 3D non-orthogonal curvilinear coordinates. It was illustrated that IDEAL
algorithm is robust and efficient and can converge almost at any under-relaxation factor [9]. In
spite of the good performances in incompressible flows, there is no report on IDEAL algorithm
in compressible flows.

The success of IDEAL algorithm lies on two inner iterations for solving pressure equations.
The first inner iteration process is to update the pressure field to improve solutions of momen-
tum equation. The second inner iteration process is to improve velocity fields in order to guaran-
tee the mass conservation. Numbers of the inner iterations are controlled by N1 (for first inner
iteration) and N2 (for second inner iteration). In Sun’s study, N1 and N2 are fixed as 4 usually
[8]. However, it is overestimated in some computations but underestimated in other
computations.

In this paper, IDEAL algorithm is firstly extended for compressible flows. To ensure the stabil-
ity of computations, pressure correction equations are solved instead of pressure equations in the
inner iteration process. Based upon the two inner iteration processes in compressible IDEAL
algorithm, a mechanism is proposed to achieve adaptive inner iteration processes. It is supposed
that the number of inner iterations should vary with the calculation progress based on different
problems in adaptive inner iteration processes.

The adaptive inner iteration processes are validated by classical compressible test models: flow
over a bump and flow through a nozzle. The performance of adaptive inner iteration is compared
with those of CLEAR algorithm (no inner iteration process) and IDEAL algorithm (fixed inner
iteration processes).

In section 2, the governing equations of compressible flows and the discretization equa-
tions using FVM are presented. Implementation of the adaptive inner iteration processes is
shown in section 3. The accuracy of the adaptive inner iteration is verified and its compari-
son with CLEAR and IDEAL algorithms is made in section 4. The conclusions are drawn in
section 5.

Nomenclature

A Coefficient in the discretized equation
A Surface area
b Source term
E Time step
P Pressure
P

0
Pressure correction

R Gas constant
R/ Source term caused by pressure
S/ Source term caused by velocity
T Temperature
u; v Velocity components in the x- and

y-directions
x; y Cartesian coordinates
a Under-relaxation factor
C Nominal diffusion coefficient
q Density

/ General variable
Dt Time step
DV Volume
Subscripts
e, w, … east, west face of a control volume
E, W,… East, West neighbor of the main

grid point
nb Neighbours of the P grid point
P Grid point P
Superscripts
0 Correction field
0 Values from previous time step or previ-

ous outer iteration
� Values from intermediate calculation
�� Final values at present time step or pre-

sent outer iteration
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2. Governing equations and discretization equations

2.1. Governing equations for compressible flows

The governing equation for two dimensional viscous compressible flows in the Cartesian coordin-
ate is given as:

@ q/ð Þ
@t

þ @ qu/ð Þ
@x

þ @ qv/ð Þ
@y

¼ @

@x
C
@/
@x

� �
þ @

@y
C
@/
@y

� �
�R/ þ S/ (1)

In case of steady flows, the first item on the left side of the equation equals to zero. The sym-
bols in Eq. (1) are listed in Table 1.

In addition, the state equation is included into the governing equation, which is written as:

P ¼ qRT (2)

In pressure-based method, density is calculated from pressure:

q ¼ P
RT

(3)

2.2. Discretization equations

Finite volume method (FVM) is used to discretize the governing equations. The one- dimensional
derivation process is taken as an example. It can be easily extended for two-dimensional and
three-dimensional flows using the same methodology.

The momentum equation is discretized as,

aeue ¼
X

anbunb þ Ae pP�pEð Þ þ b (4)

awuw ¼
X

anbunb þ Aw pW�pPð Þ þ b (5)

where subscript e;w are the east and west interfaces of control volume P, respectively (Figure 1).
Node P lies at the center of the control volume. W;E are the neighbor nodes of control volume
Pn:b stands for the neighbors of the point to be solved. Efficient a includes the effects of convec-
tion and diffusion terms. A is the area where pressure difference affects, and b is the source term.

The discretized continuity equation is given by:

qeueAe�qwuwAw þ q�q0

Dt
DV ¼ 0 (6)

where superscript 0 indicates the solutions from previous time step (unsteady flow) or previous
outer iteration (steady flows). A denotes the area where the flow goes through. DV is volume of
a control.

Table 1. Symbols in different equations.

Equations Continuity Momentum-u Momentum-v Temperature

/ 1 u v T
C 0 l l l=Pr

PW E
ew

Figure 1. Control volumes, center nodes, and interfaces.
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The temperature equation can be discretized into the following form:

APTp ¼
X

AnbTnb þ b (7)

where A is coefficient that combines convection and diffusion effects.
The pressure correction equation is derived from discretized continuity and momentum equa-

tions. Pressure and velocity fields are updated from pressure correction. The derivation of pres-
sure correction equation is shown as follows.

The discretized momentum equation of velocity u is rewritten:

aeu
�
e ¼

X
anbu

�
nb þ Ae p0P � p0E

� �þ b (8)

After solving Eq. (8), the velocity u� is obtained.
The explicit discretized momentum equation is written:

aeu
��
e ¼

X
anbu

�
nb þ p�P�p�E

� �
Ae þ b (9)

Subtract Eq. (8) from Eq. (9) to get:

ae u��e �u�e
� � ¼ p�P � p0P

� �� p�E � p0E
� �� �

Ae ¼ p0P�p0E
� �

Ae (10)

where p�P � p0P ¼ p0P and p�E � p0E ¼ p0E
Rearrange Eq. (10) to give:

u��e ¼ p0P�p0E
� �

Ae=ae þ u�e ¼ p0P�p0E
� �

de þ u�e (11)

where de ¼ Ae=ae
Similarly, the velocity on west interface is given as:

u��w ¼ p0W�p0P
� �

dw þ u�w (12)

where dw ¼ Aw=aw
The discretized continuity equation is rewritten as:

qe
��ue��Ae�qw

��uw��Aw þ q���q0

Dt
DV ¼ 0 (13)

The following equation is defined:

q�� ¼ q� þ q0 (14)

According to Eq. (3):

q0 ¼ P0=RT (15)

Substituting Eq. (15) in Eq. (14), there is:

q�� ¼ q� þ P0=RT (16)

Substitute Eqs. (11)–(12), and (16) into Eq. (13) to get pressure correction equation:

APP
0
P ¼ AEP

0
E þ AWP0

W þ b (17)

Coefficients AP;AE;Aw are dependent on density scheme. The FUD density scheme [10] is
used as an example:

In the case u> 0:

AP ¼ qe
�Aede þ qw

�Awdw þ 1
RTP

u�eAe þ 1
RTP

DV
Dt

(18)

AE ¼ qe
�Aede (19)
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AW ¼ qw
�Awdw þ 1

RTW
u�wAw (20)

b ¼ q�wu
�
wAw�q�eu

�
eAe� q��q0

Dt
DV (21)

The items related to time disappear in solutions of steady flows.
After solving the pressure correction Eq. (17), pressure is updated by:

P�� ¼ P� þ P0 (22)

Density is calculated from the state equation:

q�� ¼ 1
RT

P�� (23)

or

q�� ¼ q� þ 1
RT

P0 (24)

At this point, we get all the discretized equations for velocity, temperature, pressure, and density.
To ensure a convergent solution, the under-relaxation technique is utilized. The under-relax-

ation form of discretized equation is written as:

AP

a
/p ¼

X
Anb/nb þ bþ 1�a

a
AP/

0
p (25)

where / stands for the variable to be solved. A are the coefficients. b is the source term. a is the
under-relaxation factor. Superscript 0 is variable from previous time step or previous outer iteration.

3. Derivation of adaptive inner iteration processes

In this part, two inner iteration processes for pressure correction equations are firstly presented
in detail. Then, the implementation of adaptive inner iteration processes is written. At the end of
this part, the overall procedure including adaptive inner iterations is shown in a flow chart.

3.1. Inner iteration processes for pressure correction equation

As shown in Eq. (8), the momentum equation is solved using pressure from the previous time
step (unsteady flow) or previous outer iteration (steady flows), leading to a poor coupling
between velocity and pressure. To solve this problem, the pressure correction equation is solved
to update pressure field before the momentum equation is solved. The detail of the first inner
iteration process for pressure correction is as follows:

The first inner iteration process:
u0e , u

0
w , q

0 , and P0 which are obtained from initial fields or from the previous time step are
used for computing the coefficients of pressure correction equation:

APP
01;1
P ¼ AEP

01;1
E þ AWP01;1

W þ b (26)

where the first number 1 in the superscript means the first inner iteration and the second num-
ber 1 means the first time calculation.

After Eq. (26) is solved, P01;1 is used to update velocity and density using Eqs. (11), (12), and
(24) which are rewritten as:

tu1;1e ¼ u0e þ p01;1P �p01;10E

� 	
de (27)

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 607



u1;1w ¼ u0w þ p01;1W �p01;1P
� 	

dw (28)

q1;1 ¼ q0 þ 1
RT

P01;1 (29)

Update coefficients and source term using q1;1, u1;1e , and u1;1w to solve pressure correction equa-
tion for the second time:

APP
01;2
P ¼ AEP

01;2
E þ AWP01;2

W þ b (30)

u1;2e ; u1;2w , and q1;2 are updated using Eqs. (11), (12), and (24). The coefficients and the source
term are calculated again with the updated velocity and density to solve pressure correction equa-
tion for the third time. n steps are repeated until the first inner iteration process ends, at which
stage the pressure P� ¼ P1;n is taken as the final pressure.

The intermediate density field is achieved from q� ¼ 1
RT0 P�. The final density field could be

obtained after the temperature equation is solved.
The pressure and density fields are improved after the first inner iterative process ends, making

the coupling between velocity, pressure, and density better in the solutions of compressible flows.
The momentum equations with the improved pressure field are given as:

aeu
�
e ¼

X
anbu

�
nb þ Ae p�P�p�E

� �þ b (31)

awu
�
w ¼

X
anbu

�
nb þ Aw p�W�p�P

� �þ b (32)

The implicit momentum equations are solved for intermediate velocity u�e and u�w . The cou-
pling between velocity and pressure is highly improved using the updated pressure instead of the
pressure from assumed initial condition so that the efficiency and accuracy of calculations
are optimized.

The second inner iteration process:
The velocity field obtained from Eqs. (31) and (32) could not in general satisfy the mass con-

servation. To make the continuity equation well satisfied, another inner iteration process is
required.

APP
02;1
P ¼ AEP

02;1
E þ AWP02;1

W þ b (33)

where the first number 2 in superscript stands for the second inner iteration, and the second
number 1 means the first calculation in this iterative process. u�e , u

�
w , and q�obtained from the

previous step are used to calculate coefficients A and source term b of pressure correction
Eq. (33).

Eq. (33) is solved for P02;1 which is then substituted into Eq. (11) and Eq. (12):

u2;1e ¼ p02;1P �p02;1E
� 	

de þ u�e (34)

u2;1w ¼ p02;1W �p02;1P
� 	

dw þ u�w (35)

A new velocity field is generated to calculate coefficients and source term of the second pres-
sure correction equation:

APP
02;2
P ¼ AEP

02;2
E þ AWP02;2

W þ b (36)

After solving the pressure correction equation for the second time, the velocity field using
expressions (11) and (12) is renewed. The coefficients and source term of pressure correction
equation are calculated again with the updated velocity to solve the pressure correction equation
for the third time.
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The second inner iterative process is completed after repeating n steps. At this stage the vel-
ocity u2;ne and u2;nw are taken as the final velocity field.

The existence of the second inner iteration process is necessary for improving the accuracy of
solutions. As shown in the work of reference [11], a minimum of two corrector steps is taken to
legitimately obtain the velocity and pressure fields which satisfy the momentum and continuity
equations. It is also suggested in the paper [12] that the pressure correction equation should be
solved by two or three times to assure the continuity equation satisfied.

The temperature equation is solved in the implicit form after getting the final velocity:

APTP ¼ AETE þ AWTW þ b (37)

The temperature field T is obtained after Eq. (37) is solved.
The final density field is obtained from the state equation q�� ¼ 1

RT P
�.

3.2. Implementation of adaptive inner iterations

In IDEAL algorithm, the number of first inner iteration and the number of second inner iteration
are fixed as 4, which is not always appropriate for different computational cases. To solve this
problem, a mechanism is proposed to control inner iteration processes so that the number of
inner iteration changes with computational progress in different computations.

As the first inner iteration process is to solve pressure correction equations to get a reasonable
pressure field, the residual norm of pressure correction equation is used to trace the error of the
pressure correction equation.

The residual norm of pressure correction is written as (One dimensional form is taken as an
example):

Rp0
nð Þ ¼

X
AEP

0
E þ AWP0

W þ b� APP
0
P

� � nð Þ
h i2
 �1

2

(38)

where superscript n stands for the nth time of calculation in the inner iteration. The first inner
iterative process ends when the criterion Rp0

ðnÞ=Rp0
ð0Þ<1 is satisfied.

The second inner iteration is to get velocity fields, which satisfy the continuity equation. The
global mass residual is used to check the error of mass conservation.

The global mass residual (1-D) is written as:

Rm
nð Þ ¼

X
qeueAe � qwuwAw þ q� q0

� �
DV=Dt

� � nð Þ
(39)

where superscript n stands for the nth time calculation in the second inner iteration process. The
second inner iterative process ends when the criterion Rm

ðnÞ=Rm
ð0Þ<1 is satisfied.

If the criteria cannot be satisfied, a maximum number should be set in the procedure to avoid a
limitless calculation. In the present work, the maximum number is set as 4 based on a number of tests.

By using this mechanism to control inner iteration processes, at least two inner iteration steps
are conducted, which keeps the feature of iteration in the computation. At the same time, errors
of the pressure correction equation and continuity equation are under surveillance and control.

3.3. Overall procedure

At this point, all the ingredients including adaptive inner iterations are available and reorganized
as follows:

1. Velocity, pressure, temperature, and density fields are obtained from the initial condition or
the previous time step.
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2. Coefficients and source term of the pressure correction equation are calculated.
3. The first adaptive inner iterative process is conducted to update the pressure and dens-

ity fields.
4. The momentum equation is solved to obtain the intermediate velocity field.
5. The coefficients and source term of pressure correction equation are renewed using the inter-

mediate velocity and updated density.
6. The second adaptive inner iterative process is performed to generate the final velocity field.
7. The temperature field is achieved after solving the temperature equation.
8. The steps 2 through 7 are repeated until the convergence is obtained for steady compressible

flows. Return to step1 and repeat for unsteady compressible flows.

The flow chart of the procedure is shown in Figure 2.

4. Verification and comparison of adaptive inner iteration processes

In this section, the validity of the adaptive inner iteration processes is evaluated. To test the per-
formance, a comparison is made with IDEAL and CLEAR algorithms.

Jin-Ping Wang et al.

Initial fields

Solve state equation

First adaptive inner
iteration process

Solve momentum
equation

Second adaptive inner
iteration process

Correct velocity field

Solve energy equation

Convergence or not?

Analyze the results

Yes

No

Figure 2. Flow chart of compressible procedure including adaptive inner iterations.
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4.1. Verification of the new algorithm

By solving the two dimensional viscous compressible flows (including flow over a bump and flow
through a nozzle), solutions of the adaptive inner iteration processes are compared with experi-
mental data and numerical results in literatures.

4.1.1. Two-dimensional viscous flow over a bump
Three different types of flows (subsonic, transonic and supersonic flows) in a channel with a cir-
cular arc bump are computed. The test cases were used by several researchers [13–15]. The width
of the channel is equal to the length of the bump, and the channel length is equal to three times
of the bump length. The thickness-to-chord ratio is 10% for subsonic and transonic flows and 4%
for supersonic flow. The detail parameters of boundary conditions for these flows can be checked
in the reference [7].

Subsonic flow:
Figure 3(a) presents the Mach number profile along the lower wall of the channel in subsonic

flow. The agreement between the adaptive inner iteration solution and the result in the reference
[16] is observed.

Figure 3(b) shows the predicted Mach number distributions in the present solution. The distri-
butions are symmetric which confirms the expectation in this subsonic flow. The predictions
match with those in the references [17–19].

Transonic flow:
The Mach number distributions for transonic flow are shown in Figure 4(a). It is seen that the

distributions are asymmetric. The location of the shock is x ’ 1:72 which is almost identical to
that in Date’s work [17].

Figure 3. Results in subsonic flow over a bump using adaptive inner iteration processes. (a) Mach number profiles along the
bump wall. (b) Mach number distribution.
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Figure 4(b) displays the Mach number profiles along the bump wall and plane channel wall.
The predicted maximum Mach number is 1.378, which is 1.41 in paper [16] and 1.332 in
paper [17].

Supersonic flow:
Computations are performed for an inlet Mach number Min¼ 1.65 in the flow over a bump.

Figure 5 shows the Mach number profiles along the bump wall of the channel. Compared with
the result in Moukalled and Darwish’s work [16], the significant differences occur at the trailing
edge of the bump and the channel exit, as seen in Figure 5. The relative error is 6.03% at the
trailing edge and 5.41% at the channel exit.

4.1.2. Two dimensional viscous flow through a nozzle
The geometry of the nozzle is: the total length of the Laval is 11.56 cm; the half-height at the
Laval throat is 1.37 cm; the half-height at the Laval inlet is 3.52 cm, and the half-height at the
Laval exit is 1.49 cm. The stagnation pressure and temperature are prescribed at the inlet. A
static-to-stagnation pressure ratio of 0.3367 is defined at the outlet.

Figure 6 shows the predicted solutions using adaptive inner iteration processes. The computed
results are in good agreement with the experimental data along the centerline of the nozzle, as
seen in Figure 6. The relative error is 5.64% between the predicted results and the experimental
data [20].

From the above discussions, the validity of adaptive inner iteration is demonstrated. In the fol-
lowing part, the performance of adaptive inner iteration is tested.

Figure 4. Predictions in transonic flow over a bump using adaptive inner iteration processes. (a) Mach number distributions.
(b) Mach number profiles along the bump wall and plane channel wall.

612 J.-P. WANG ET AL.



4.2. Comparison of adaptive inner iteration with IDEAL and CLEAR algorithms

CLEAR and IDEAL algorithms are proved to be efficient and robust in the published work [7,8].
There exists no inner iteration processes in CLEAR algorithm while the inner iteration steps in
IDEAL algorithm are fixed (Usually numbers of inner iterations is 4 for first inner iteration and
4 for second iteration). To evaluate the performance of the proposed adaptive inner iteration, a
comparison with these two methods is made.

To facilitate the comparison, the time step multiple E is introduced. The relation between a
and E is defined as:

E ¼ a
1� a

0< a< 1ð Þ (40)

Figure 5. Mach number profiles along the bump wall in supersonic flow using adaptive inner iteration processes.

Figure 6. Pressure distribution along the nozzle centerline using adaptive inner iteration.
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In this work, the range of under-relaxation factors is from 0.2 to 0.8, and the corresponding
time step E is from 0.25 to 4.0.

4.2.1. Two-dimensional viscous flow over a bump
Subsonic flow:

The computing time using adaptive inner iteration, IDEAL algorithm, and CLEAR algorithm
in the solution of subsonic flow over a bump is presented in Table 2. The alphabet D in the table
means “Divergent solution”. It is seen that solution of IDEAL algorithm is not convergent at an
under-relaxation factor 0.7 or 0.8. The solutions of adaptive inner iteration and CLEAR algorithm
are convergent in the whole region of under-relaxation factors, which illustrates the better robust-
ness of adaptive inner iteration processes and CLEAR algorithm than IDEAL algorithm.

The comparison of computing time is shown in Figure 7. The average computing time is
28.05 s, 27.45 s, and 30.91 s using adaptive inner iteration processes, IDEAL algorithm, and
CLEAR algorithm. Obviously, CLEAR algorithm is the most expensive program in this case.

To know how the number of inner iterations changes with computational progress in the
adaptive inner iteration processes, variation of the inner iteration number during the computa-
tional progress at an under-relaxation factor of 0.8 is shown in Figure 8(a). It is seen that the
number of first inner iteration stays as 3 and 4 for most of the time. The number of the second

Table 2. Computing time in subsonic flow over a bump using adaptive inner iter-
ation, IDEAL algorithm and CLEAR algorithm.

E

Computing times (s)

Adaptive inner iteration IDEAL CLEAR

0.2500 43.29 41.82 47.11
0.4286 33.48 32.60 43.49
0.6667 29.17 28.33 9.09
1.0000 27.85 26.88 32.26
1.5000 24.93 7.63 18.16
2.3333 18.86 D 33.28
4.0000 18.08 D 32.95

D: divergent solution.

Figure 7. Comparison of computing time in subsonic flow over a bump.
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inner iteration stays as 2 and 4 in most of the cases. Based on the numbers from the adaptive
inner iteration solutions, the number of first inner iteration is reset as 3 and the number of
second inner iteration is reset as 2 in IDEAL algorithm at an under-relaxation factor 0.8. It is
found that when changing the fixed times from (4,4) (the first 4 in brackets denotes the number
of first inner iteration and the second 4 is the number of second inner iteration in IDEAL algo-
rithm) to (3,2) at an under-relaxation factor 0.8, the solution of IDEAL algorithm becomes con-
vergent, showing the importance of inner iteration numbers in compressible flow solutions.
Figure 8(b) shows the convergence history for IDEAL (3,2) at a ¼ 0:8 . The computing time is
18.56 s which is a little more than that of adaptive inner iteration solution.

Transonic flow:
The computing time using adaptive inner iteration, IDEAL algorithm, and CLEAR algorithm

in transonic flow over a bump is counted in Table 3. The solutions of IDEAL algorithm are not
convergent at an under-relaxation factor 0.5, 0.6, 0.7 or 0.8, implying the worst robustness of
IDEAL algorithm among these three methods.

The CPU time of these three methods is re-presented in Figure 9. It can be observed that the
procedure of adaptive inner iteration costs much less time than CLEAR algorithm in the full

Figure 8. Use the numbers of adaptive inner iteration to reset the number of inner iteration in IDEAL algorithm (a ¼ 0:8) in sub-
sonic flow over a bump. (a) Variation of the inner iteration numbers with computational progress at a ¼ 0:8. (b) Convergence
history for IDEAL(3,2) at a ¼ 0:8.
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range of the under-relaxation factors. The computing time of IDEAL algorithm is almost the
same as that of adaptive inner iteration processes in its convergent range.

The average time cost by CLEAR algorithm, IDEAL algorithm, and adaptive inner iteration
are 77.07 s, 53.43 s, and 47.43 s, respectively. Compared with CLEAR algorithm, the efficiency is
improved by 62.5% using the adaptive inner iteration.

Figure 10(a) shows the variation of inner iteration numbers in the solution of adaptive inner
iteration processes at an under-relaxation factor 0.5. The number of the first inner iteration is 4
at the most of time and the number of the second inner iteration varies from 2 to 4. Based on
the results, the number of inner iterations in IDEAL algorithm is reset as 4 (first inner iteration)
and 2 (second inner iteration). It is noted that the solution of IDEAL algorithm at an under-
relaxation factor 0.5 becomes convergent by adjusting inner iterative numbers. Figure 10(b) shows
the convergence history of this solution. The computing time cost in the solution of IDEAL (4,
2) is 44.69 s which is more than that of adaptive inner iteration solution, showing the advantage
of adaptive inner iteration on computational efficiency.

Supersonic flow:
Table 4 shows the CPU time using adaptive inner iteration, IDEAL algorithm, and CLEAR

algorithm in supersonic flow over a bump. It should be noted that the solution of IDEAL

Figure 9. Comparison of computing time in transonic flow over a bump.

Table 3. Computing time in transonic flow over a bump using adaptive inner iter-
ation, IDEAL algorithm and CLEAR algorithm.

E

Computing times (s)

Adaptive inner iteration IDEAL CLEAR

0.2500 64.76 63.87 70.92
0.4286 50.89 51.50 72.57
0.6667 45.22 44.93 74.32
1.0000 42.81 D 77.06
1.5000 42.12 D 76.00
2.3333 42.53 D 81.54
4.0000 43.66 D 87.06

D: divergent solution.
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algorithm is convergent only at an under-relaxation factor 0.5 and divergent at other under-relax-
ation factors, showing the poor robustness of IDEAL algorithm in compressible supersonic flows.

Figure 11 presents the comparison of computing time by adaptive inner iteration and CLEAR
algorithm. The red line of adaptive inner iteration is below the blue line of CLEAR algorithm
which illustrates the higher computing efficiency of the adaptive inner iteration.

The average time is 10.74 s and 16.76 s for using adaptive inner iteration and CLEAR algo-
rithm, respectively. Compared with CLEAR algorithm, the computational efficiency is improved
by 56.1% using adaptive inner iteration.

Figure 12(a) shows variation of the inner iteration numbers in the adaptive inner iteration
solution at an under-relaxation factor 0.2. It is seen that the number of first inner iteration is 2
and the number of second inner iteration is either 2 or 4. Based on the numbers, the inner itera-
tive numbers in IDEAL algorithm is reset as 2 for the first inner iteration and 4 for the second
inner iteration, and the convergence history is shown in Figure 12(b). The computing time in
this case is 14.79 s which is a little more than that of adaptive inner iteration solution.

Figure 10. Use the numbers of adaptive inner iteration to reset the number of inner iteration in IDEAL algorithm (a ¼ 0:5) in
transonic flow over a bump. (a) Variation of the inner iteration numbers with computational progress at a ¼ 0:5:
(b) Convergence history for IDEAL(4,2) at a ¼ 0:5.
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4.2.2. Two dimensional viscous flow through a nozzle
The computing time of the adaptive inner iteration, IDEAL algorithm, and CLEAR algorithm in
the solutions of flow through a nozzle is presented in Table 5. The solution of IDEAL algorithm
is not convergent at an under-relaxation factor 0.7 or 0.8. The solution of CLEAR method is
divergent at an under-relaxation factor 0.8. The results suggest the best robustness of the adaptive
inner iteration solution.

The comparison of computing time between adaptive inner iteration, IDEAL algorithm, and
CLEAR algorithm in flow through a nozzle is shown in Figure 13. The adaptive inner iteration
line is almost coincident with the IDEAL algorithm line, suggesting the nearly same computing
time by using these two methods. The CLEAR algorithm line is on the top of the figure, illustrat-
ing the most expensive method in this case.

The average computing time is 23.30 s, 20.00 s, and 53.92 s by using adaptive inner iteration
processes, IDEAL method, and CLEAR algorithm, respectively. Compared with solution of the
CLEAR algorithm, 1.31 times computing time is saved by using adaptive inner iteration.

Figure 14(a) is the variation of inner iteration numbers in the adaptive inner iteration solu-
tion of flow through a nozzle at an under-relaxation factor 0.7. It is seen that the number of
first inner iteration varies from 2 to 4 and the number of second inner iteration is 4. Based on
the results, the inner iterative numbers in IDEAL algorithm is reset as 3 for the first inner
iteration and 4 for the second inner iteration, and the convergence history is shown in
Figure 14(b). The computing time in this case is 36.22 s, which is more than that of adaptive
inner iteration.

Figure 11. Comparison of computing time in supersonic flow over a bump.

Table 4. Computing time in supersonic flow over a bump using adaptive inner
iteration, IDEAL algorithm and CLEAR method.

E

Computing times (s)

Adaptive inner iteration IDEAL CLEAR

0.2500 14.63 D 18.74
0.4286 9.44 D 19.97
0.6667 9.88 D 13.67
1.0000 8.50 7.50 13.34
1.5000 9.72 D 20.45
2.3333 11.20 D 14.84
4.0000 11.78 D 16.32

D: divergent solution.
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Figure 12. Use the numbers of adaptive inner iteration to reset the number of inner iteration in IDEAL algorithm (a ¼ 0:2) in
supersonic flow over a bump. (a) Variation of the inner iteration numbers with computational progress at a ¼ 0:2.
(b) Convergence history for IDEAL (2,4) at a ¼ 0:2.

Table 5. Computing time in the flow through a nozzle using adaptive inner iter-
ation, IDEAL algorithm and CLEAR algorithm.

E

Computing times (s)

Adaptive inner iteration IDEAL CLEAR

0.2500 19.03 18.86 24.76
0.4286 16.26 16.27 33.13
0.6667 18.27 18.22 43.56
1.0000 21.59 21.56 63.18
1.5000 25.19 25.07 71.17
2.3333 29.25 D 87.73
4.0000 33.51 D D

D: divergent solution.
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5. Conclusions

The adaptive inner iteration processes based on pressure-based method for viscous compressible
flows are presented with the number of inner iteration varying adaptively with computational pro-
gress based on different problems. This adaptive inner iteration is applied to the calculations of flow
over a bump (subsonic, transonic, and supersonic flows) and flow through a nozzle. The results of
these calculations amply demonstrate that the method is of good accuracy in compressible flows.

The performance of adaptive inner iteration in subsonic, transonic, and supersonic flows is
compared with CLEAR algorithm (no inner iteration process) and IDEAL algorithm (fixed inner
iteration (4,4)). In subsonic flow over a bump, IDEAL algorithm is not convergent at an under-
relaxation factor 0.7 or 0.8. In the solutions of transonic flow over a bump, IDEAL algorithm is
not convergent at an under-relaxation factor 0.5, 0.6, 0.7 or 0.8. The efficiency is improved by
62.5% using adaptive inner iteration compared with CLEAR algorithm. In supersonic flow over a
bump, the solution of IDEAL algorithm is convergent only at an under-relaxation factor 0.5 and
divergent at other under-relaxation factors. The efficiency is improved by 56.1% using the adap-
tive inner iteration compared with CLEAR algorithm. In solutions of flow through a nozzle,
IDEAL algorithm is not convergent at an under-relaxation factor 0.7 or 0.8, and CLEAR method
is divergent at an under-relaxation factor 0.8, but adaptive inner iteration solutions are conver-
gent at all the under-relaxation factors.

From the above results, it is concluded that:

� The computational efficiency is highly improved by using adaptive inner iteration processes in
compressible flows.

� In the compressible solutions of IDEAL algorithm (fixed inner iteration), several computations
are not convergent. However, this issue is overcome by using adaptive inner iteration, which
illustrates a good robustness.

Though the adaptive inner iteration processes are proposed based on IDEAL algorithm, the
mechanism developed to control inner iteration processes depends on the features of iteration
calculation and physical meaning of inner iterations processes. Therefore, the method to achieve
adaptive inner iteration is not limited only for IDEAL algorithm. In any method where inner iter-
ation processes exist, this mechanism can be used. Furthermore, the adaptive inner iteration proc-
esses can not only work for compressible flows, but also work well in incompressible flows.

Figure 13. Comparison of computing time in flow through a nozzle.
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