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ABSTRACT 
A hybrid flux splitting scheme, called AUSMþ–FVS((advection upstream 
splitting method)þ–flux vector splitting), is proposed in this article to calculate 
the inviscid fluxes of Euler/Navier–Stokes equations. This new scheme is 
obtained by hybridizing the AUSMþ scheme with FVS method. When the local 
Mach number tends to zero, this scheme is similar to the AUSMþ. Contrarily, 
this scheme is similar to the FVS at the shock region. Thus, this scheme has the 
accuracy of AUSMþ in boundary layer region and the robustness of FVS in 
shock region. Several numerical tests show that AUSMþ–FVS can reduce the 
shock instability and has a good accuracy in boundary layer region. 
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1. Introduction 

Compressible flow problems are usually very complex, often containing shock waves and shock– 
shock interaction phenomena. Simulation of compressible fluid flow has been a big challenge over 
the years. Lots of numerical methods to predict the inviscid fluxes of Euler/Navier–Stokes (N–S) 
equations have been proposed. Among them, the upwind methods have been widely adopted. The 
commonly used upwind schemes include flux vector splitting (FVS) scheme, flux difference splitting 
(FDS) scheme, and advection upstream splitting method (AUSM)-type scheme. In the FVS scheme, 
the inviscid fluxes are split into upstream and downstream fluxes. Different splitting methods give rise 
to different FVS schemes, such as Steger and Warming splitting [1] and Van Leer splitting [2]. It is 
found that the FVS schemes are very robust and can capture the shock wave successfully. However, 
because of excessive numerical dissipation, the FVS schemes have a very poor accuracy in resolving 
the boundary layer region. In the FDS scheme, the flow between two adjacent grid units is regarded as 
a local Riemann problem which is based on Godunov’s idea. The FDS scheme has shown its great 
capability of capturing the shock wave and contact discontinuity accurately. Those FDS schemes such 
as Roe’s FDS [3] and Harten, Lax, van Leer and Einfeldt (HLLE) [4] can provide precise resolution in 
the boundary layer for viscous flow calculation. In the AUSM-type scheme [5], the inviscid flux vector 
is divided into convective part and pressure part. For the convective part, the upwind direction at the 
interface is decided by the sign of Mach number. Many researchers have pointed out that this method 
has both the efficiency of FVS and the accuracy of FDS [6]. This method was first proposed by Liou 
and Steffen [5]. After that, there are lots of developments, like advection upstream splitting 
method (AUSM)þ [7], advection upstream splitting method flux-Difference splitting-biased scheme 
(AUSMD) [8], advection upstream splitting method with pressure-based weight function 
(AUSMPW)þ [9], and AUSMþ-up [10]. All those are called AUSM-type scheme. 

Although lots of shock-capturing methods as mentioned above have been proposed to obtain the 
inviscid fluxes of Euler/Navier–Stokes equations, there are still some unresolved problems of these 
schemes. When using the low-diffusion schemes such as Roe’s FDS, AUSM, AUSMþ, AUSMPWþ, 
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the results all suffer, to a certain extent, from spurious solutions of the shock in some situation, such 
as the carbuncle phenomenon and kinked Mach stem problem. In 1988, Peery and Imlay first named 
the carbuncle phenomenon when they simulated the hypersonic flow over a blunt body using Roe’s 
scheme [11]. The carbuncle phenomenon often means a distorted bow shock prediction at the region 
ahead of the stagnation point. The kinked Mach stem problem can be shown in the double-Mach 
reflection problem [12]. Some characteristics about the carbuncle phenomenon are observed by 
Pandolfi and D’Ambrosio [13]. It is found that many factors can result in this phenomenon, such as 
flow Mach number, mesh geometry, and shock-capturing schemes. It is worth mentioning that the grid 
aspect ratio plays an important role in bringing about this phenomenon. The elongated mesh cell along 
the normal direction of the shock can exacerbate the shock instability [13]. The carbuncle phenomenon 
occurs more often in the first-order integration scheme, than in higher order reconstruction schemes 
[13]. Many investigations have been presented to reveal the causes and to solve this problem. Liou 
[14] examined lots of mass flux schemes and proposed the conjecture that if the mass flux scheme is 
not related to the pressure term, this scheme is free from the carbuncle solution. But this conjecture 
was disproved by other researchers later [15]. Ramalho et al. [16] found the numerical shock instabilities 
when using unstructured meshes in the computation which was contrary to Xu’s observation [17]. 
Thus, as indicated in [18] there is still a lack of accepted explanations for the carbuncle phenomenon, 
and for the AUSM-type schemes, this key problem has not yet solved for the past quarter-century [19]. 
For the FVS schemes, according to Xie et al. [20], they are free from the shock instability. But, as 
mentioned above, they have a bad property in the boundary layer because of excessive dissipation. 

To find a scheme which has both good accuracy and robustness, one way is to construct a scheme 
which possesses the accuracy of AUSM type and robustness of FVS. In this paper, a new scheme 
which hybridizes FVS scheme and AUSMþ scheme together, called AUSMþ–FVS for simplicity, is 
proposed to calculate the inviscid fluxes. To verify the accuracy and robustness of this new scheme, 
some classical numerical tests are studied. 

In the following presentation, the 2-D compressible N–S equations will be presented, followed by 
the detailed description of the flux splitting schemes, including the new scheme proposed by this 
paper. Then the results of five numerical tests will be provided to show the robustness and the 
accuracy of the new scheme. Finally, some conclusion will be drawn. 

2. Governing equations 

The 2-D compressible N–S equations can be written as: 

qU
qs
þ
qF1ðUÞ
qx

þ
qF2ðUÞ
qy

�
qFt1ðUÞ
qx

�
qFt2ðUÞ
qy

¼ 0 ð1Þ

where U signifies the conserving variables. The vector in the present work is 

U ¼ ½q; qu; qv; qe�T ð2Þ

Nomenclature 

a acoustic speed, m/s 
e total energy, J/kg 
H enthalpy, J/kg 
M Mach number 
p pressure, Pa 
q heat flux, W/m2 

T temperature, K 
u velocity in x-direction, m/s 
v velocity in y-direction, m/s 
w velocity in z-direction, m/s 
x Cartesian coordinate, m 

y Cartesian coordinate, m 
γ specific heat ratio 
λ thermal conductivity, Wm� 1K� 1 

μ dynamic viscosity, Pa s 
ρ density, kg/m3 

τ time, s 
Subscripts 
f fluid 
w wall 
1 freestream   
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Here, ρ is the density, u and v are the x and y components of the velocity, and e is the energy per 
unit volume. The inviscid fluxes F1 and F2 are 

F1ðUÞ ¼ ½qu; qu2 þ p; qvu; uqH�T

F2ðUÞ ¼ ½qv; quv; qv2 þ p; vqH�T
ð3Þ

where p is the pressure, H is the gas enthalpy. They are calculated as follows: 

p ¼ ðc � 1Þq½e � ðu2 þ v2Þ=2� ð4Þ

H ¼
c

c � 1
p
q
þ

1
2
ðu2 þ v2Þ ð5Þ

The specific heat ratio γ is taken as 1.4 for the perfect gas. The viscous flux vectors are 

Ft1ðUÞ ¼ ½0;rxx;rxy; urxx þ vrxy � qx�
T

Ft2ðUÞ ¼ ½0;ryx;ryy; uryx þ vryy � qy�
T ð6Þ

In Eq. (6), qx and qy are the x and y components of the heat flux, σ is the viscous stress tensor of the 
fluid. 

3. Flux splitting method 

It is well known that the upwind method has many advantages in numerical simulation, such as a 
good robustness and being consistent with the physical characteristics. The execution of this 
scheme for incompressible flow is very simple, but when using this method in the compressible flow 
simulation, the implementation is usually complicated and needs some special treatments. For 
example, for one-dimensional situation, Euler equations can be written as: 

qU
qs
þ A

qU
qx
¼ 0 ð7Þ

where A is the Jacobian matrix which can be defined as A ¼ qFðUÞ=qU. The matrix A can be 
decomposed as follows: 

A ¼ LKR ð8Þ

where L is the left eigenvector, R is the right eigenvector, and Λ is the eigenvalue matrix which is 

K ¼

u 0 0
0 u � a 0
0 0 uþ a

2

4

3

5 ð9Þ

The eigenvalues of Jacobian matrix are λ1 ¼ u, λ2 ¼ u � a, λ3 ¼ u þ a. Here, a is the acoustic 
speed. When |u| < a, the signs of the three eigenvalues are not the same which means that the waves 
have different propagation direction. This makes some trouble in adopting the upwind method 
compared with incompressible flow. There are different ways to adopt the upwind method. In the 
following, after the introductions to FVS and AUSM-type schemes, the new flux splitting scheme 
AUSMþ–FVS will be defined. 

3.1. FVS scheme 

To use the upwind method, the eigenvalue matrix Λ is divided into positive and negative parts in the 
FVS scheme. The matrix can be written as follows: 

K ¼ Kþ þ K� ð10Þ
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The eigenvalues λþi in Kþ are all positive. On the contrary, λ�i in K� are all negative. So the 
inviscid fluxes can be divided into positive fluxes and negative fluxes. 

FðUÞ ¼ LKRU ¼ LðKþþK� ÞRU
¼ AþUþ A� U ¼ FþðUÞ þ F� ðUÞ

ð11Þ

For a given form of F�ðUÞ, it is easy to calculate the positive and negative fluxes using the upwind 
method in the two directions, respectively. 

There are different kinds of FVS schemes in which different forms of F�ðUÞ are used. Among 
them, one scheme which can be regarded as an improvement of Van Leer’s FVS is expressed as 
follows [21, 22]: 

F�1 ¼ �
1
4
qaðM � 1Þ2; F�2 ¼ F�1 ½u �

p
qa2 ðu� 2aÞ�; F�3 ¼ F�1 H; ðjMj � 1Þ ð12Þ

here, F�1 ; F�2 ; F�3 are the components of F�. Eq. (12) can be rewritten as: 

F�1 ¼ �
1
4
ðM � 1Þ2aq

F�2 ¼ �
1
4
ðM � 1Þ2aqu � F�1

u� 2a
qa2 p

¼ �
1
4
ðM � 1Þ2aquþ

1
4
ðM � 1Þ2ð2�MÞp

F�3 ¼ �
1
4
ðM � 1Þ2aqH; ðjMj � 1Þ

ð13Þ

Thus, F� can be calculated as: 

F� ¼ M�aUþ P�P ð14Þ

Where U ¼ ½q; qu; qH�T ; P ¼ ½0; p; 0�T ; and M�; P� can be calculated as: 

M� ¼ � 1
4 ðM � 1Þ2; jMj � 1

1
2 ðM þ jMjÞ; jMj > 1

�

ð15Þ

P� ¼
1
4 ðM � 1Þ2ð2�MÞ; jMj � 1
1
2 ð1� signðMÞÞ; jMj < 1

�

ð16Þ

Eqs. (14)–(16) define the positive and negative fluxes of the FVS scheme based on [21, 22]. Using 
the above equations, the inviscid fluxes at the interface can be calculated as 
F1=2 ¼ Fþ1=2 þ F�1=2 ¼ Fc

1=2 þ Fp
1=2.here 

Fc
1=2 ¼ aLMþL UL þ aRM�R UR ð17Þ

Fp
1=2 ¼ PþL PL þ P�R PR ð18Þ

3.2. AUSMþ scheme 

When using the AUSMþ scheme to obtain the 1-D inviscid fluxes, the fluxes are divided into 
convective part and pressure part which can be written as follows: 

F ¼
q

qu
qH

0

@

1

Auþ
0
p
0

0

@

1

A ¼ Fc þ P ð19Þ

36 S. GUO AND W.-Q. TAO 



The Jacobian matrix of Fc is 

Ac ¼

0 1 0
� u2 2u 0

� cueþ ðc � 1Þu3 ce � 3
2 ðc � 1Þu2 cu

0

@

1

A ð20Þ

The eigenvalues of Ac are 

λ1 ¼ u; λ2 ¼ u; λ3 ¼ cu ð21Þ

From the above equations, it can be seen that the eigenvalues have the same sign, which means that the 
waves have the same propagation direction. So at the interface, the inviscid fluxes can be calculated as: 

F1=2 ¼ a1=2ðMþL þM�R ÞUL=R þ PþL PL þ P�R PR ð22Þ

The upwind variables can be decided as follows: 

�ð ÞL=R¼
�ð ÞL; if M1=2 � 0
�ð ÞR; otherwise

�

; ð23Þ

where M1/2 is the Mach number at the interface which can be calculated as M1=2 ¼ MþL þM�R . Here, 
M� and P� are calculated as: 

M� ¼ � 1
4 ðM � 1Þ2 � 1

8 ðM
2 � 1Þ2; jMj � 1

1
2 ðM þ jMjÞ; jMj > 1

�

ð24Þ

P� ¼
1
4 ðM � 1Þ2ð2�MÞ � 3

16 MðM2 � 1Þ2; jMj � 1
1
2 ð1� signðMÞÞ; jMj < 1

�

ð25Þ

3.3. The hybrid splitting scheme: AUSMþ–FVS 

In the FVS scheme, for adopting the upwind method, the eigenvalues are divided into positive part 
and negative part, so the inviscid fluxes are the sum of two different splitting fluxes. For each of the 
splitting fluxes, the upwind method can be adopted easily. As indicated above, the FVS schemes are 
very robust and can avoid the carbuncle phenomenon, but these schemes have a very poor perfor-
mance in solving the boundary layer region. In the AUSMþ scheme, the inviscid fluxes are divided 
into convective part and pressure part. For the convective part, the eigenvalues have the same sign. 
The AUSMþ scheme has a very good accuracy in the boundary layer, but it suffers from the car-
buncle phenomenon. Here, the major idea of these two different splitting schemes are combined 
to construct the new scheme AUSMþ–FVS which hopefully can retain their advantages and eliminate 
their disadvantages. 

First, similar to the AUSMþ, the eigenvalue matrix Λ is divided into two different matrixes Ka and Kb: 

Ka ¼

u 0 0
0 u 0
0 0 cu

2

4

3

5;Kb ¼

0 0 0
0 � a 0
0 0 aþ ð1 � cÞu

2

4

3

5 ð26Þ

The matrix Ka itself can also be divided into two parts Ka1 and Ka2. Here Ka1 ¼ bKa and 
Ka2 ¼ ð1 � bÞKa; ð0 � b � 1Þ. So the matrix Λ can be written as: 

K ¼ Ka1 þ Ka2 þ Kb ð27Þ

Thus, the inviscid fluxes can be divided into three parts. The fluxes which are corresponding to Ka2 
and Kb can be calculated by the method used in AUSMþ (Eq. 22). The sum of these two fluxes can be 
written as: 

Fa2 þ Fb ¼ ð1 � bÞa1=2ðMþL þM�R ÞUL=R þ PþL PL þ P�R PR ð28Þ
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Second, similar to FVS scheme, the matrix Ka1 is divided into positive part and negative part 
(Ka1 ¼ Kþa1 þ K�a1). So, the fluxes which are corresponding to Ka1 can be obtained using Eq. (17) 
of the FVS. To integrate it into the above equation, aL and aR in Eq. (17) are replaced by a1/2. Thus, 
the fluxes can be written as: 

Fa1 ¼ ba1=2ðMþL UL þM�R URÞ ð29Þ

Third, by summing up the above three components through some manipulations, it can be shown 
that the inviscid fluxes at the interface of the new hybrid scheme can be calculated as: 

F1=2 ¼ Fa1 þ Fa2 þ Fb ¼ a1=2ðM
þ

L UL þM�R URÞ þ PþL PL þ P�R PR ð30Þ

where if M1=2 � 0; then 

MþL ¼ MþL þ ð1 � bÞM�R
M�R ¼ bM�R

ð31Þ

if M1/2 < 0, then 

MþL ¼ bMþL
M�R ¼ M�R þ ð1 � bÞMþL

ð32Þ

where M� and P� are calculated by Eqs. (24) and (25). 
The parameter β in Eqs. (31) and (32) should be carefully determined. It should meet the following 

requirement: in the boundary layer region, the new scheme should be similar to AUSMþ to retain a 
good accuracy. In the shock region, the new scheme should be similar to FVS. After several 
preliminary computations, we propose the following equation for determining its value: 

b ¼
1 Mb > g

exp½� ðMb� gÞ
2

2a2 � Mb � g

�

ð33Þ

where g ¼ 0:5 and a ¼ 0:1. Mb is the local Mach number at the interface. For three-dimensional 
situation, Mb can be calculate as: 

Mb ¼ 0:5ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
L þ v2

L þ w2
L

q

=a1=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
R þ v2

R þ w2
R

q

=a1=2Þ: ð34Þ

From Eq. (33), it can be obtained bðMb ¼ 0Þ ¼ 3:727� 10� 6 and bðMb � 0:5Þ ¼ 1. So when 
Mb ¼ 0, this new scheme is very similar to AUSMþ, and it is equal to FVS near the shock region. 
In the following presentation, this new scheme is called as AUSMþ–FVS. 

4. Numerical experiments 

In this section, the proposed new splitting scheme (AUSMþ–FVS) is applied to simulate five 
well-known compressible fluid flows to demonstrate its robustness and accuracy 

4.1. One-dimensional Riemann problem 

A Riemann problem consists of an initial value problem described by a conservation equation. At 
initial time, the field is usually separated by some constant states. Because the properties such as 
shocks and rarefaction waves appear as characteristics in the solution, the Riemann problem is very 
useful for examining the numerical schemes of solving the Euler conservation equations. 

The one-dimensional Riemann problem is commonly used to study the performance of numerical 
schemes. In the test, the computational domain contains two constant states ðq; u; pÞL and ðq; u; pÞR 
at initial time. Here, this one-dimensional test is implemented in the domain x 2 ½� 1; 1�. The initial 
conditions are 
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ðq; u; pÞL ¼ ð1; 0; 1Þ; x 2 ½� 1; 0�
ðq; u; pÞR ¼ ð0:125; 0; 0:1Þ; x 2 ½0; 1�

ð35Þ

The second-order Runge–Kutta scheme is adopted to advance the transient term of Euler equation. 
Totally, 100 nodes are used to discretize the domain. Spatial accuracy is of second order. The profiles 
of density, pressure, temperature, and velocity which are obtained using AUSMþ–FVS and AUSMþ
at time 0.4 are illustrated in Figure 1. For comparison, the theoretical solution is also shown in the 
figure with the black line. From the figure, it can be seen that the results obtained by the new scheme 
are very close to those obtained by the AUSMþ scheme. From the above results, it can be found that 
AUSMþ–FVS can capture the 1-D discontinuities accurately. 

4.2. Two-dimensional Riemann problem 

In this test, two cases are solved in a 2-D domain x 2 ½0; 1� � y 2 ½0; 1�. The initial conditions are as 
follows [23]: 

Case1 : ðp; q; u; vÞ ¼

ð0:4; 0:5313; 0; 0Þ; x 2 ð0:5; 1� and y 2 ð0:5; 1�
ð1; 1; 0:7276; 0Þ; x 2 ½0; 0:5Þ and y 2 ð0:5; 1�
ð1; 0:8; 0; 0Þ; x 2 ½0; 0:5Þ and y 2 ½0; 0:5Þ
ð1; 1; 0; 0:7276Þ; x 2 ð0:5; 1� and y 2 ½0; 0:5Þ

8
>><

>>:

ð36Þ

Figure 1. Numerical results of one-dimensional Riemann problem. (a) Density, (b) pressure, (c) temperature, and (d) velocity.  
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Case2 : ðp; q; u; vÞ ¼

ð1:0; 1:0; 0:75; � 0:5Þ; x 2 ð0:5; 1� and y 2 ð0:5; 1�
ð1:0; 2:0; 0:75; 0:5Þ; x 2 ½0; 0:5Þ and y 2 ð0:5; 1�
ð1:0; 1:0; � 0:75; 0:5Þ; x 2 ½0; 0:5Þ and y 2 ½0; 0:5Þ
ð1:0; 3:0; � 0:75; � 0:5Þ; x 2 ð0:5; 1� and y 2 ½0; 0:5Þ

8
>><

>>:

ð37Þ

A structured grid system with 400 � 400 points is used in this test. The simulation are 
second-order accuracy in space. The methods of advancing the transient term are also the second- 
order Runge–Kutta scheme. The density distributions at two time instants are displayed in 
Figure 2. As can be seen from the figure, the complex flow features are well predicted by 
AUSMþ–FVS (Figures 2(a) and 2(b)). The results are very similar with those obtained by AUSMþ
(Figures 2(c) and 2(d)). It is very obvious that this new scheme has good capability of capturing 
the discontinuities. 

4.3. Double-mach reflection problem 

This test is particularly adopted to verify whether the proposed scheme can eliminate the kinked 
Mach stem. As mentioned before, many high-accuracy upwind schemes can produce kinked Mach 
stem in the numerical simulation of this problem. The problem is schematically shown in 
Figure 3. In the problem, an oblique shock of Ma ¼ 10 hits the bottom reflecting wall. 

Figure 2. Density distributions of two-dimensional Riemann problems. (a) Case 1, AUSMþ–FVS, time ¼ 0.25. (b) Case 2, 
AUSMþ–FVS, time ¼ 0.3. (c) Case 1, AUSMþ, time ¼ 0.25. (d) Case 2, AUSMþ, time ¼ 0.3.  
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The computational domain is x 2 ½0; 4� � y 2 ½0; 1�. At the initial time, the shock is inclined to the 
bottom wall with an 60° angle. The intersection of shock line and bottom boundary line is ð1=6; 0Þ:
Therefore, the initial conditions are [24] 

ðq; u; v; pÞ ¼
ð8:0; 8:25 cosð30�Þ; � 8:25 sinð30�Þ; 116:5Þ; x < 1

6þ
yffiffi
3
p

ð1:4; 0; 0; 1:0Þ; x � 1
6þ

yffiffi
3
p

(

ð38Þ

Figure 3. Schematic diagram of double-Mach reflection problem.  

Figure 4. Density contours of double-Mach reflection problem. (a) AUSMþ–FVS, grid 400 � 100; (b) AUSMþ–FVS, grid 400 � 400; 
(c) AUSMPWþ, grid 400 � 100; (d) AUSMPWþ, grid 400 � 400; (e) AUSMþ, grid 400 � 100; and (f) AUSMþ, grid 400 � 400.  
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The left and the nonreflective bottom (x 2 ½0; 1=6�) boundaries are of postshock condition. The 
bottom boundary for x � 1=6 is a reflecting wall. The right boundary is zero-gradient condition. 
The intersection of the shock and the top boundary at time t is 1

6þ
1þ20tffiffi

3
p ; 1

� �
. 

Two grids are used in this simulation. One is 400 � 100 and the other is 400 � 400. For the 
transient term, the second-order Runge–Kutta scheme is used. As mentioned above (Section 1), 
the shock anomalies occur more often in first-order integration method. Here, the first-order 
accuracy is achieved in space. The interface fluxes are calculated by AUSMþ–FVS, AUSMþ, and 
AUSMPWþ for comparison. The density contours at time 0.2 are displayed in Figure 4. As seen from 
the figure, when the grid system is 400 � 100, the result obtained by AUSMþ–FVS does not show the 
instability phenomenon, while the kinked Mach stem phenomenon (marked by red circle in Figure 4) 
slightly exists in those results of AUSMþ and AUSMPWþ. 

When the grid system is 400 � 400, the results obtained by AUSMþ and AUSMPWþ both show 
the kinked Mach stem phenomenon (marked by red circle in Figure 4), but this phenomenon has not 
been found in the result obtained by the new scheme. It can be clearly seen that AUSMþ–FVS is more 
robust than the AUSMþ and AUSMPWþ in this test. 

4.4. Odd–even problem 

This test was first proposed by Quirk [12] to demonstrate the shock instability. In the test, a planar 
shock with Mach 6 moves from the left to the right in a duct. The inlet Mach number 6 is defined as 
ushock=aup where ushock is the speed of the shock, aup is the sound speed of the upstream flow. In this 
test, the domain is x 2 ½0; 1000� � y 2 ½0; 25�. The computational mesh is uniform with 800 � 20 cells. 
To add some perturbations, the centerline of the mesh is determined as follows: 

yi;jmid ¼ yjmid þ ð� 1Þi � 10� 2 ð39Þ

where i is the grid subscript in x-direction. 
Figure 5 is the schematic diagram of this treatment. The domain is initialized with 

q ¼ 1:4; p ¼ 1:0; u ¼ v ¼ 0. The left boundary is set to postshock values which can be calculated 
using Rankine–Hugoniot equations. The right boundary is just a simple extrapolation. The top 
and bottom boundaries are both the wall condition (normal velocity is zero). The new scheme and 
AUSMPWþ, AUSMþ are used to obtain the fluxes of interface. The CFL number is set to 0.5 for 
these schemes. All the computations are performed in the first-order accuracy in space. At time t ¼
150, the density contours obtained by AUSMPWþ, AUSMþ, and AUSMþ–FVS are shown in 
Figures 6(a)–(c), respectively. In those contours, there are 20 contour levels varying from 1.5 to 7.5. 

From the figure, it can be seen that AUSMPWþ and AUSMþ both have the instability 
phenomenon. However, AUSMþ–FVS successfully preserves the initial shock. 

Figure 5. Schematic diagram of the grid.  
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4.5. Blunt body problem 

4.5.1. Mach 20 inviscid flow over a cylinder 
This is a well-known test [25] to examine the performance of a scheme in regard to 
carbuncle instability. The free stream Mach number is 20. A structured grid with 40 � 1020 
(radial � circumferential) cells is used in this simulation. The initial conditions are 
q ¼ 1:4; p ¼ 1:0; u ¼ 20; v ¼ 0. First-order spatial accuracy is used for all the schemes. The density 
contours obtained by three schemes are illustrated in Figure 7. As shown in this figure, AUSMPWþ
and AUSMþ both produce the instability in this test. But the carbuncle phenomenon is not found in 
the result obtained by this new scheme. 

To further verify the robustness of this new scheme, some perturbations are then added on the 
centerline of the above grid as follows: 

hi;jmid ¼ hjmid þ ð� 1Þi � ð2� 10� 2DhÞ ð40Þ

Here, Dh ¼ 180�=1020. Figure 8 is the schematic diagram of this treatment. The density contours 
obtained using this grid system are shown in Figure 9. It can be seen that AUSMþ–FVS is very robust 
even with the distorted cells. 

4.5.2. Mach 15 viscous flow over a cylinder 
To examine the accuracy of the new scheme, this viscous flow test is used for which reference 
solutions are available for comparison. This test was once adopted in the work done by Lee and 
Rho [26] to examine the accuracy of AUSMþ scheme. The test conditions which are taken from 
the run 89 in references [27] are as follows: 

Ma1 ¼ 15:13; T1 ¼ 86:5 K; P1 ¼ 2:205 Pa; Tw ¼ 297:5 K
u1 ¼ 2821:83m=s; cylinderradius :r ¼ 0:0381m  

In this test, the dynamic viscosity of the air is determined by the Sutherland formula. The 
thermal conductivity of air can be calculated as λf ¼ cpm=Pr. The Prandtl number Pr takes the 

Figure 6. Density contours of odd–even problem. (a) AUSMþ, (b) AUSMPWþ, and (c) AUSMþ–FVS.  
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value 0.72. The grid system is a structured one with 61 � 61 cells. The second-order Runge–Kutta 
scheme is adopted to advance the transient term. In space, the second-order accuracy is 
obtained by the reconstruction of primitive variables. In Figure 10, the curves of wall heat fluxes 
varying with the degrees from centerline are shown. The black line represents the results based 

Figure 8. Schematic diagram of the distorted grid.  

Figure 7. Density contours of flow over a cylinder with Ma ¼ 20. (a) AUSMþ, (b) AUSMPWþ, and (c) AUSMþ–FVS.  
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on Fay–Riddell theory from [27]. From the figure, it can be seen that the results obtained by 
AUSMþ–FVS are very close to those obtained by AUSMþ and AUSMPWþ. The good accuracy 
of AUSMþ–FVS in this test is consistent with the theoretical analysis that the hybrid scheme is 
very similar to AUSMþ in the boundary layer region (Section 3.3). Because of the high 
numerical diffusion, the results obtained by FVS are very far from those obtained by the above 
three schemes. 

Figure 10. Wall heat flux distributions.  

Figure 9. Density contours of flow over a cylinder with Ma ¼ 20 and distorted grid. (a) AUSMþ, (b) AUSMPWþ, and 
(c) AUSMþ–FVS.  
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5. Conclusion 

By dividing the eigenvalue matrix into three parts, a new scheme, called AUSMþ–FVS, which 
hybridizes the two different upwind schemes AUSMþ and FVS is proposed to calculate the inviscid 
fluxes of Euler/Navier–Stokes equations. Several numerical tests show that this new scheme can 
capture the discontinuities exactly. For the tests in which many low-diffusion upwind schemes 
produce the carbuncle phenomenon and shock instability, this new scheme shows its good robustness 
and can avoid those phenomena. For the viscous flow, this new scheme is very similar to AUSMþ in 
the boundary layer region and can obtain solutions with good accuracy in this region. 
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